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Topics

o Recursion
@ Basics
@ Tail Recursion
@ Tree Recursion

© Examples
@ Square Roots
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Recursion Examples

greatest common divisor

gcd :: Integer -> Integer -> Integer
gcd x y = if y == 0 then x else gcd y (x ‘mod’ vy)

factorial

fac :: Integer -> Integer

fac n
| n< 0O = error "negative parameter"
| n == =1
| otherwise = n * fac (n - 1)
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Stack Frame Example Stack Frame Example

fac n
gcd x y = if y == 0 then x else gcd y (x ‘mod‘ vy) : n< 0 = error "negative parameter"
n == =1
gcd 9702 945 | otherwise = n * fac (n - 1)
~> gcd 945 252
~> gcd 252 189 fac 4
~> gcd 189 63 ~> 4 x fac 3
~> gcd 63 0 ~> 3 * fac 2
~> 63 ~> 2 x fac 1
~> 63 ~> 1 x fac 0
~> 63 ~> 1
~> 63 ~> 1
~> 63 ~> 2
~> 0
~> 24
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Tail Recursion Stack Frame Example

gcd x y = if y == 0 then x else gcd y (x ‘mod’ vy)
@ tail recursive: result of recursive call is also result of caller

e recursive call is last action, nothing left for caller to do gcd 9702 945
~> gcd 945 252

~> gcd 252 189
~> gcd 189 63
~> gcd 63 0
~> 63

@ no need to keep the stack frame, reuse frame of caller

@ increased performance
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Tail Recursion

@ rearranging a function to be tail recursive:

@ define a helper function that takes an accumulator
@ base case: return accumulator

@ recursive case: make recursive call with new accumulator value
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Tail Recursion Example

tail recursive factorial

facIter :: Integer -> Integer -> Integer
facIter acc n

| n< 0 = error "negative parameter"

| n == = acc

| otherwise = facIter (acc * n) (n - 1)
fac :: Integer -> Integer

fac n = facIter 1 n
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Stack

fa

Frame Example

cIter acc n

~>

| n< 0 = error "negative parameter"
| n == = acc
| otherwise = facIter (acc * n) (n - 1)
fac 4
~> facIter 1 4

~> faclter 4 3
~> faclter 12 2
~> faclter 24 1
~> faclter 24 0
~> 24

24
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Tail Recursion Example

@ helper function can be local

@ negativity check only once

fac :: Integer -> Integer
fac n
| n<0 = error "negative parameter"
| otherwise = facIter 1 n
where
facIter :: Integer -> Integer -> Integer
facIter acc n’
| n' == = acc
| otherwise = facIter (acc * n’') (n’ - 1)

12/24




Exponentiation

pow :: Integer -> Integer -> Integer
pow X Yy

| y == = 1

| otherwise = x * pow x (y - 1)

@ exercise: write a tail recursive version

@ to get faster, use the following definition:
1 ify=0
X = (xy/z)2 if y is even
x-x'~1 ifyisodd
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Fast Exponentiation

pow :: Integer -> Integer -> Integer
pow X Yy
|y == =1
| even 'y = sqr (pow x (y ‘div‘ 2))
| otherwise = x * pow x (y - 1)
where
sqr :: Integer -> Integer
sqr n =n *x n
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Tree Recursion

Fibonacci sequence
1 ifn=1
fib, = < 1 ifn=2
fibh_y + fibp—1 ifn>2

fib :: Integer -> Integer

fib n
| n == =1
| n == =1
| otherwise = fib (n - 2) + fib (n - 1)
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Tree Recursion Example

fib 6
fib 4 fib 5
/ N\ N
fib2 fib3 fib 3 fib 4

/N /N /N

fib1 fib2 fibl1 fib2 fib2 fib3

/\

fib1 fib2
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Tail Recursive Fibonacci

fib n = fibIter 1 1 n

where
fibIter :: Integer -> Integer -> Integer -> Integer
fibIter f1 f2 n
| n==1 = fl
| n==2 = f2
| otherwise = fibIter f2 (fl1 + f2) (n - 1)
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Combinations

counting combinations
1 ifn=1

C(m,n) =<1
C(m—1,n—-1)+C(m—1,n)

ifn=m

otherwise

comb :: Integer -> Integer -> Integer
comb m n
| n==1 =1
| n==m =1
| otherwise = comb (m - 1) (n - 1) + comb (m - 1) n
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Square Roots with Newtons Method

@ start with an initial guess y (say y = 1)
@ repeatedly improve the guess by taking the mean of y and x/y
@ until the guess is good enough (/x - v/x = x)

example: /2
y x/y next guess
1 2/1=2 15
15 2/15=1333 14167
14167 2/1.4167 =1.4118 14142
1.4142
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Square Roots with Newtons Method

newton :: Float -> Float -> Float
newton guess X
| isGoodEnough guess x = guess

| otherwise newton (improve guess Xx) X

isGoodEnough :: Float -> Float -> Bool
isGoodEnough guess x = abs (guess*guess - Xx) < 0.001

-> Float -> Float
(guess + x/quess) / 2.0

improve :: Float
improve guess X =

sqrt :: Float -> Float
sqrt x = newton 1.0 x
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Square Roots with Newtons Method

sqrt :: Float -> Float
sqrt x = newton 1.0 x
where
newton :: Float -> Float -> Float
newton guess x'

| isGoodEnough guess x' = guess
| otherwise = newton (improve guess x')
isGoodEnough :: Float -> Float -> Bool

isGoodEnough guess x' =
abs (guessxguess - x') < 0.001

improve :: Float -> Float -> Float
improve guess x' = (guess + x'/guess) / 2.0
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Square Roots with Newtons Method

@ doesn't work with too small and too large numbers (why?)

isGoodEnough guess x' =
(abs (guessxguess - x')) / x' < 0.001
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Square Roots with Newtons Method

@ no need to pass x around, it's already in scope

sqrt x = newton 1.0
where
newton :: Float -> Float
newton guess

| isGoodEnough guess = guess
| otherwise = newton (improve guess)
isGoodEnough :: Float -> Bool

isGoodEnough guess =
(abs (guess*guess - x)) / x < 0.001

improve :: Float -> Float
improve guess = (guess + x/guess) / 2.0
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