Functional Programming

Introduction

H. Turgut Uyar

2013-2016

1/35

License

©0LO
© 2013-2016 H. Turgut Uyar

You are free to:

@ Share - copy and redistribute the material in any medium or format
@ Adapt - remix, transform, and build upon the material

Under the following terms:

@ Attribution - You must give appropriate credit, provide a link to the license, and
indicate if changes were made.
@ NonCommercial - You may not use the material for commercial purposes.

@ ShareAlike - If you remix, transform, or build upon the material, you must
distribute your contributions under the same license as the original.

For more information:
https://creativecommons.org/licenses/by-nc-sa/4.0/

Read the full license:

https://creativecommons.org/licenses/by-nc-sa/4.0/1legalcode

2/35

Topics

o Programming Paradigms
@ Introduction
@ Imperative
@ Functional

© Haskell
@ Expressions
@ Definitions
@ Functions

3/35

Paradigms

@ paradigm: approach to programming
@ based on a set of principles or theory
o different paradigms: different ways of thinking

@ idioms: patterns for using language features

4/35

Paradigms

@ imperative: how to solve @ declarative: what to solve

@ procedural, object-oriented o functional, logic

5/35

Universality

@ universal: capable of expressing any computation

@ any language that supports iteration or recursion is universal

@ Church-Turing thesis:
Any real-world computation can be translated
into an equivalent computation involving a Turing machine.
It can also be calculated using general recursive functions.
(http://mathworld.wolfram.com/)

6/35

Imperative Programlnming

@ based on the Turing machine

@ program: sequence of instructions
for a von Neumann computer

@ contents of memory constitute state

@ statements update variables
(mutation)

) assignment, control structures

@ natural model of hardware

Alan Turing
(1912-1954)

7/35

Imperative Programming Example

greatest common divisor (Python)

def gcd(x, y): ‘ X ‘ y ‘ v ‘
r=29 9702 | 945 | O
whiley > 0: 945 | 252 | 252
; _ ; sy 252 | 189 | 189
oy 189 | 63| 63
63| 0] O
return x
~> 63

8/35

Milestones in Imperative Programming Languages

Fortran (1957)
ALGOL (1960)
C(1972)

Ada (1983)
Java (1995)

AT

John Backus
(1924-2007)

9/35

Functional Programming

based on \-calculus

program: function application

same inputs should produce
same output (“pure’)

function modifies context — side effect

avoid mutation

higher-order functions

Alonzo Church
(1903-1995)

10/35

Functional Programming Example

gcd (9702, 945)
~> gcd (945, 252)
~> gcd (252, 189)
~> gcd(189, 63)

greatest common divisor (Python)

def gcd(x, y):

X ~> gcd(63, O
if y == 0: ?> é3)
return x
~> 63
else:
~> 63

return gcd(y, X % vy) > 63

~> 63

1/35

Side Effects

@ sources of side effects: global variables

example

factor = 0

def multiples(n):
global factor
factor = factor + 1
return factor x n

12/35

Side Effects

@ sources of side effects: function state, object state

example

class Multiplier:
def __init__(self):
self.factor = 0

def multiples(self, n):
self.factor = self.factor + 1
return self.factor * n

13/35

Side Effects

@ sources of side effects: input/output

example

def read_byte(f):
return f.read(1)

14 /35

Side Effects

@ sources of side effects: randomness
example

import random

def get_random(n):
return random.randrange(l, n + 1)

15/35

Problems with Side Effects

harder to reason about programs

harder to test programs

harder to parallelize programs

could we write programs without side effects?

or, at least, could we separate pure and impure parts?

16/ 35

Milestones in Functional Programming Languages

@ Lisp (1957)
@ ML (1973)
@ Haskell (1990)

John McCarthy
(1927-2011)

17/35

Multiple Paradigms

functional languages with object-oriented features
Ocaml, F#, Scala

@ imperative languages with functional features
@ Python, Ruby, C#, Java

what makes a language functional or imperative?

higher-order functions

@ immutable data structures

@ recommended idioms in functional style

18/ 35

Expressions and Statements

@ an expression is evaluated to produce a value

@ astatement is executed to update a variable

19/35

Expression and Statement Example

conditional statement (Python)

if x < 0:
abs_x = -x

else:
abs_x

Il
X

conditional expression (Python)

abs_x = -x if x < 0 else x

conditional expression (Haskell)

abs_x = if x < 0 then -x else x

20/35

Expression and Statement Example

@ bad:
if age < 18:
minor = True
else:
minor = False
@ better:

minor = True if age < 18 else False

@ much better:

minor = age < 18

21/35

Definitions

binding: an association between an identifier and an entity

environment: a set of bindings

signature: name, type

definition: name, expression

n:: t
n=e

redefining not allowed

22/35

Definition Examples

-- diameter of the circle
d :: Float
d =14.8

-- circumference of the circle
c :: Float
c = 3.14159 * d

-- d=15.62 ~> error: multiple declarations

23/35

Local Definitions

@ local definition: used only within expression

n=e let
where nl :: tl
nl :: tl1 nl = el
nl = el
n2 :: t2
n2 :: t2 n2 = e2
n2 = e2
in
n=e

24 /35

Local Definition Example

-- diameter of the circle

Type Inference

@ Haskell can infer types (more on that later)

g _ : 4legoat @ we will leave out type declarations for data in local definitions
example
-- area of the circle P
a :: Float a Float
a=3.14159 *rxr a=3.14159 % r * r
where where
r :: Float r=d/2.0
r=d/ 2.0
25/35 26/ 35
Functions Function Definitions

@ imperative: function body is a block
@ special construct for sending back the result: return

@ functional: function body is an expression

27/35

@ function definition:

n:: tl ->t2 ->... ->tk -> t
n x1 x2 ... xk = e

@ function application:

nele2...cek

28/35

Function Examples

sqr :: Integer -> Integer
sqr x = X * X

-- sqr 21 ~> 441

-- sqr (2 + 5) ~> 49

-- sqr -2 ~> error

-- sqr (-2) ~> 4

sum0fSquares Integer -> Integer -> Integer

sum0fSquares X y = sqr x + sqr y

-- sumOfSquares 3 4 ~> 25
-- sumOfSquares 2 (sqr 3) ~> 85

29/35

Function Example

sumOfCubes :: Integer -> Integer -> Integer
sumOfCubes x y = cube X + cube y
where
cube :: Integer -> Integer

cube n=n *xn *xn

30/35

Infix - Prefix

@ functions infix when in backquotes
mod n 2
n ‘mod‘ 2

@ operators prefix when in parentheses

6 x 7
(x) 6 7

31/35

Guards

@ writing conditional expressions can become complicated

@ guards: predicates to check cases

n:: tl >t2 ->... >tk >t
n x1 x2 ... xk

| pl = el

| p2 = e2

| otherwise = e

@ function result is the expression for the first satisfied predicate

32/35

Guard Example

maximum of three integers

maxThree :: Integer -> Integer -> Integer -> Integer
maxThree x y z

Errors

@ errors can be reported using error
@ doesn't change the type signature

example: reciprocal (multiplicative inverse)

| x>=y && x>=z = x reciprocal :: Float -> Float
| YEZ _ 3 y reciprocal x
| otherwise =1z | x == = error "division by zero"
| otherwise = 1.0 / x
33/35 34/35
References

Required Reading: Thompson
@ Chapter 1: Introducing functional programming
@ Chapter 2: Getting started with Haskell and GHCi

35/35

