
Functional Programming
Type System

H. Turgut Uyar

2013-2016

1 / 32

License

© 2013-2016 H. Turgut Uyar

You are free to:

Share – copy and redistribute the material in any medium or format

Adapt – remix, transform, and build upon the material

Under the following terms:

Attribution – You must give appropriate credit, provide a link to the license, and
indicate if changes were made.

NonCommercial – You may not use the material for commercial purposes.

ShareAlike – If you remix, transform, or build upon the material, you must
distribute your contributions under the same license as the original.

For more information:
https://creativecommons.org/licenses/by-nc-sa/4.0/

Read the full license:

https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode

2 / 32

Topics

1 Type System
Type Inference
Type Classes

2 Algebraic Types
Recursive Types
Polymorphic Types
Error Types

3 / 32

Type Checks

Haskell has strong and static typing

strong: operands/parameters of incorrect types not allowed

static: types checked at compile-time

4 / 32

Type Inference

type annotations may be omitted

types inferred by the language processor

assign every binding a type such that type checking succeeds

fail if no such assignment can be found

5 / 32

Type Inference Examples

nand x y = not (x && y)
-- nand :: Bool -> Bool -> Bool

limitedLast s n =
if (length s > n) then s !! (n - 1) else (last s)

-- limitedLast :: [a] -> Int -> a

capitalize s = toUpper (s !! 0) : drop 1 s
-- capitalize :: [Char] -> [Char]

foo1 x y = if x then y else x + 1
-- type inference fails

foo2 f g x = (f x, g x)
-- (a -> b) -> (a -> c) -> a -> (b, c)

6 / 32

Type Inference Examples

f (x, y) = (x, [’a’ .. y])

g (m, zs) = m + length zs

h = g . f

exercise: what are the types of f, g, and h?

7 / 32

Type Classes

check whether an item is an element of a list

elemChar :: Char -> [Char] -> Bool
elemChar _ [] = False
elemChar x (c:cs) =

if x == c then True else elemChar x cs

different function for every type?

better if we can write it as:
a -> [a] -> Bool

provided that type a supports equality check

8 / 32

Type Classes

type class: collection of types
over which some functions are defined

every type belonging to the class must implement its functions

member of type class: instance

equality class

class Eq a where
(==) :: a -> a -> Bool

Bool, Char, Integer, Float are instances of Eq

tuples and lists are also instances of Eq

9 / 32

Context

type signature can contain context (“provided that“)

a type being an instance of a class

elem :: Eq a => a -> [a] -> Bool
elem _ [] = False
elem x (c:cs) = if x == c then True else elem x cs

10 / 32

Instance Example

data Move = Rock | Paper | Scissors

instance Eq Move where
(==) Rock Rock = True -- Rock == Rock = True
(==) Paper Paper = True
(==) Scissors Scissors = True
(==) _ _ = False

-- elem Paper [Rock, Paper, Rock] ~> True
-- elem Scissors [Rock, Paper, Rock] ~> False

11 / 32

Derived Instances

default equality check: derive from Eq

data Move = Rock | Paper | Scissors
deriving Eq

default string conversion: derive from Show

class Show a where
show :: a -> String

data Move = Rock | Paper | Scissors
deriving (Eq, Show)

12 / 32

Instance Example

rational numbers

data Rational = Fraction Integer Integer

instance Eq Rational where
Fraction n1 d1 == Fraction n2 d2 = n1 * d2 == n2 * d1

instance Show Rational where
show (Fraction n d) = show n ++ "/" ++ show d

13 / 32

Default Definitions

classes can contain default definitions for functions

defaults can be overridden by instances

example: equality class

class Eq a where
(==), (/=) :: a -> a -> Bool

x /= y = not (x == y)
x == y = not (x /= y)

defining one of == and /= is enough

14 / 32

Derived Classes

type classes can depend on other type classes

example: order class

class Eq a => Ord a where
(<), (<=), (>), (>=) :: a -> a -> Bool

x <= y = (x < y || x == y)
x > y = y < x

15 / 32

Type Class Example

instance Ord Rational where
Fraction n1 d1 < Fraction n2 d2 = n1 * d2 < n2 * d1

qSort :: Ord a => [a] -> [a]
qSort [] = []
qSort (x:xs) = qSort smaller ++ [x] ++ qSort larger
where
smaller = [a | a <- xs, a <= x]
larger = [b | b <- xs, b > x]

16 / 32

Order Class

data Ordering = LT | EQ | GT

class Eq a => Ord a where
(<), (<=), (>), (>=) :: a -> a -> Bool
max, min :: a -> a -> a
compare :: a -> a -> Ordering

compare x y
| x == y = EQ
| x <= y = LT
| otherwise = GT

define one of compare and <=

17 / 32

Order Default Definitions

x <= y = compare x y /= GT
x < y = compare x y == LT
x >= y = compare x y /= LT
x > y = compare x y == GT

max x y
| x <= y = y
| otherwise = x

min x y
| x < y = x
| otherwise = y

18 / 32

Numeric Class

class (Eq a, Show a) => Num a where
(+), (-), (*) :: a -> a -> a
negate :: a -> a
abs, signum :: a -> a
fromInteger :: Integer -> a

x - y = x + negate y

exercise: make Rational an instance of Num

19 / 32

Recursive Algebraic Types

types can be described in terms of themselves

example: expressions

data Expr = Lit Integer |
Add Expr Expr |
Mul Expr Expr

20 / 32

Recursive Algebraic Types

example: evaluating an expression

eval :: Expr -> Integer
eval e = case e of

Lit n -> n
Add e1 e2 -> (eval e1) + (eval e2)
Mul e1 e2 -> (eval e1) * (eval e2)

21 / 32

Recursive Algebraic Types

example: converting an expression to a string

instance Show Expr where
show e = case e of

Lit n -> show n
Add e1 e2 -> show e1 ++ "+" ++ show e2
Mul e1 e2 -> show e1 ++ "*" ++ show e2

precedences incorrect, try with:
Mul (Add (Lit 2) (Lit 3)) (Lit 5)

exercise: write a correct implementation
with minimal use of parentheses in string

22 / 32

Polymorphic Algebraic Types

example: integer binary tree

data BinTree = Nil | Node Integer BinTree BinTree

depth :: BinTree -> Int
depth Nil = 0
depth (Node _ t1 t2) = 1 + max (depth t1) (depth t2)

sumTree :: BinTree -> Integer
sumTree Nil = 0
sumTree (Node n t1 t2) = n + sumTree t1 + sumTree t2

different tree for every type?

23 / 32

Polymorphic Algebraic Types

example: polymorphic binary tree

data BinTree a = Nil | Node a (BinTree a) (BinTree a)

depth :: BinTree a -> Int
depth Nil = 0
depth (Node _ t1 t2) = 1 + max (depth t1) (depth t2)

sumTree :: Num a => BinTree a -> a
sumTree Nil = 0
sumTree (Node n t1 t2) = n + sumTree t1 + sumTree t2

24 / 32

Maybe Type

returning an error value

data Maybe a = Nothing | Just a
deriving (Eq, Ord, Read, Show)

example

errDiv :: Integer -> Integer -> Maybe Integer
errDiv m n
| n == 0 = Nothing
| otherwise = Just (m ‘div‘ n)

25 / 32

Maybe Example

maximum of a list

maxList :: Ord a => [a] -> Maybe a
maxList [] = Nothing
maxList xs = Just (foldl1 max xs)

26 / 32

Maybe Type Handling

transmitting an error through a function

mapMaybe :: (a -> b) -> Maybe a -> Maybe b
mapMaybe g Nothing = Nothing
mapMaybe g (Just x) = Just (g x)

-- mapMaybe length Nothing ~> Nothing
-- mapMaybe length (Just "haskell") ~> Just 7

27 / 32

Maybe Type Handling

trapping an error

maybe :: b -> (a -> b) -> Maybe a -> b
maybe n f Nothing = n
maybe n f (Just x) = f x

-- maybe 0 length Nothing ~> 0
-- maybe 0 length (Just "haskell") ~> 7

28 / 32

Either Type

one of two types

data Either a b = Left a | Right b
deriving (Eq, Ord, Read, Show)

example

isFalse :: Either Integer [a] -> Bool
isFalse (Left 0) = True
isFalse (Right []) = True
isFalse _ = False

29 / 32

Either Type Handling

either :: (a -> c) -> (b -> c) -> Either a b -> c
either f g (Left x) = f x
either f g (Right y) = g y

-- either length abs (Left "haskell") ~> 7
-- either length abs (Right (-8)) ~> 8

30 / 32

Either Type Handling

join f g (Left x) = Left (f x)
join f g (Right y) = Right (g y)

exercise: what is the type of join?

how can it be invoked?

express join in the form:
join f g = either ___ ___

31 / 32

References

Required Reading: Thompson
Chapter 13: Overloading, type classes and type checking

Chapter 14: Algebraic types

32 / 32

