
Functional Programming
Input/Output

H. Turgut Uyar

2013-2017

1 / 26

License

© 2013-2017 H. Turgut Uyar

You are free to:

Share – copy and redistribute the material in any medium or format

Adapt – remix, transform, and build upon the material

Under the following terms:

Attribution – You must give appropriate credit, provide a link to the license, and
indicate if changes were made.

NonCommercial – You may not use the material for commercial purposes.

ShareAlike – If you remix, transform, or build upon the material, you must
distribute your contributions under the same license as the original.

For more information:
https://creativecommons.org/licenses/by-nc-sa/4.0/

Read the full license:

https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode

2 / 26

Topics

1 I/O Model
Introduction
String Conversions
Action Sequences

2 Example: Rock - Paper - Scissors
Data Types
Strategies
Game Play

3 / 26

I/O Model

how can I/O fit into the functional model?

how about a function that reads in a value of the desired type
from the input?
inputInt :: Integer

breaks reasoning:
inputDiff = inputInt - inputInt

any function might be affected:
foo :: Integer -> Integer
foo n = inputInt + n

4 / 26

I/O Type

new type: IO a
a program which will do some I/O and return a value of type a

instead of:
inputInt :: Integer

we have:
inputInt :: IO Integer

no longer valid:
inputInt - inputInt
inputInt + n

5 / 26

I/O Type

if I/O doesn’t produce a result: IO ()

output:
putStr :: String -> IO ()
putStrLn :: String -> IO ()

input:
getLine :: IO String

6 / 26

Program Start

entry point of the program: main

example: Hello, world!

main :: IO ()
main = putStrLn "Hello, world!"

7 / 26

String Conversions

convert a type to string: show

convert a string to another type: read

examples

show 42 ~> "42"
show 3.14 ~> "3.14"

read "42" :: Integer ~> 42
read "42" :: Float ~> 42.0

read "3.14" :: Float ~> 3.14

8 / 26

Action Sequences

I/O consists of actions happening in a sequence

create an action sequence: do

small imperative programming language

do action1
action2
...

9 / 26

Sequence Example

print a string 4 times

put4times :: String -> IO ()
put4times str = do putStrLn str

putStrLn str
putStrLn str
putStrLn str

10 / 26

Capturing Values

capture value produced by the program: <-

can only be used within the sequence

example: reverse and print the line read from the input

reverseLine :: IO ()
reverseLine = do line <- getLine

putStrLn (reverse line)

11 / 26

Local Definitions

local definitions: let

can only be used within the sequence

example: reverse two lines

reverse2lines :: IO ()
reverse2lines = do line1 <- getLine

line2 <- getLine
let rev1 = reverse line1
let rev2 = reverse line2
putStrLn rev2
putStrLn rev1

12 / 26

Returning Values

returning result of sequence: return

example: read an integer from the input

getInteger :: IO Integer
getInteger = do line <- getLine

return (read line :: Integer)

13 / 26

Recursion in Sequence

copy input to output indefinitely

copy :: IO ()
copy = do line <- getLine

putStrLn line
copy

14 / 26

Conditional in Sequence

copy input to output a number of times

copyN :: Integer -> IO ()
copyN n = if n <= 0

then return ()
else do line <- getLine

putStrLn line
copyN (n - 1)

15 / 26

Conditional in Sequence

copy until input line is empty

copyUntilEmpty :: IO ()
copyUntilEmpty = do line <- getLine

if line == ""
then return ()
else do putStrLn line

copyUntilEmpty

16 / 26

Rock - Paper - Scissors

two players repeatedly play Rock-Paper-Scissors

data types

data Move = Rock | Paper | Scissors
deriving Show

type Match = ([Move], [Move])

-- moves in reverse order
-- ex: ([Rock, Rock, Paper], [Scissors, Paper, Rock])

17 / 26

Outcome

outcome of one round
A wins 7→ 1, B wins 7→ -1, tie 7→ 0

outcome :: Move -> Move -> Integer
outcome mA mB = case (mA, mB) of

(Rock, Scissors) -> 1
(Scissors, Rock) -> -1
(Paper, Rock) -> 1
(Rock, Paper) -> -1
(Scissors, Paper) -> 1
(Paper, Scissors) -> -1
_ -> 0

exercise: determine the outcome of a match
matchOutcome ([Rock, Paper], [Paper, Scissors]) ~> -2

18 / 26

String Conversions

convert a round in the game to string

showRound :: Move -> Move -> String
showRound mA mB = "A plays: " ++ show mA

++ ", B plays: " ++ show mB

exercise: convert match result to string
showResult ([Rock, Paper], [Paper, Scissors])

~> "Player B wins by 2"

showResult ([Rock, Paper], [Paper, Rock])
~> "It’s a tie"

19 / 26

Strategies

strategy: selects move based on previous moves of opponent
[Move] -> Move

always play the same move

rock, paper, scissors :: [Move] -> Move
rock _ = Rock
paper _ = Paper
scissors _ = Scissors

20 / 26

Strategies

cycle through the options

cycle :: [Move] -> Move
cycle ms = case (length ms) ‘mod‘ 3 of

0 -> Rock
1 -> Paper
2 -> Scissors

21 / 26

Strategies

play whatever opponent played last

echo :: [Move] -> Move
echo [] = Rock
echo (latest:_) = latest

22 / 26

Interactive Play

player A: human

player B: computer, plays echo

convert a character into a move

convertMove :: Char -> Move
convertMove c
| c ‘elem‘ "rR" = Rock
| c ‘elem‘ "pP" = Paper
| c ‘elem‘ "sS" = Scissors
| otherwise = error "unknown move"

23 / 26

Game Play

playRound :: Match -> IO ()
playRound match@(movesA, movesB) = do

ch <- getChar
putStrLn ""
if ch == ’.’

then putStrLn (showResult match)
else do let moveA = convertMove ch

let moveB = echo movesA
putStrLn (showRound moveA moveB)
playRound (moveA : movesA, moveB : movesB)

playInteractive :: IO ()
playInteractive = playRound ([], [])

24 / 26

Automatic Play

generate match: cycle versus echo

generateMatch :: Integer -> Match
generateMatch 0 = ([], [])
generateMatch n = step (generateMatch (n - 1))
where
step :: Match -> Match
step (movesA, movesB) =

(cycle movesB : movesA, echo movesA : movesB)

25 / 26

References

Required Reading: Thompson
Chapter 8: Playing the game: I/O in Haskell

26 / 26

