
ISE103E Sample Questions

Question 1

Analyze run-time behavior of the following code and fill in the table given below with the
output generated by each line of the code. If there is no output for a given line, leave the
related cell empty.

Line 1:

Line 6:

Line 2:

Line 7:

Line 3:

Line 8:

Line 4:

Line 9:

Line 5:

class Aclass{

public:

 Aclass(){

cout << "Aclass()" << endl;}

 ~Aclass(){

cout << "~Aclass()" << endl;}

 Aclass(const Aclass &in_c) {

cout << "Aclass(const &)" << endl;}

};

class Bclass{

 Aclass subpart;

public:

 Bclass(){cout << "Bclass()" << endl;}

 ~Bclass(){

cout << "~Bclass()" << endl;}

 void func1(Aclass obj){

cout << "func1" << endl;}

 void func2(){

 Aclass obj;

cout << "func2" << endl;}

};

int main(){

Line 1 : Aclass obj1;

Line 2 : Aclass *obj2;

Line 3 : obj2 = new Aclass;

Line 4 : Bclass obj3;

Line 5 : obj3.func1(obj1);

Line 6 : obj3.func2();

Line 7 : Bclass obj4 = obj3;

Line 8 : delete obj2;

Line 9 : return 0;

}

Question 2

Design a class to model airplanes (Airplane) for an airline company. Each airplane is

represented by an integer id and the passenger capacity, which are given during the creation

of an airplane. The same id may be assigned to different airplanes. If the capacity is not

determined during the definition, its value is set to 100.

The automation system of the airline company sets a Flight for a specific route (source and

destination airport ids) by assigning an existing airplane for the flight. The list of

passengers (psList), size of which is equal to the capacity of the airplane, is constructed for a

specific flight by automatically taking names from the user when the flight is defined. To define

passenger names, you can use the String class presented in the lecture notes. You don’t need to

write the String class.

The ontime status (determines if the flight is on time or delayed) of a flight is defined as a flag

(initially a flight is set on time) and can be changed during the flight. A service for printing all

attributes of a flight and the airplane information should be provided.

Design the required classes with all attributes being private. Provide only the required and

necessary methods. Make sure that your classes are efficiently and properly designed for public

use.

A sample test program is given below:

Airplane aip1(1,135); // Airplane:1, Capacity: 135

aip1.print();

Airplane aip2 = aip1;

Airplane aip3(3); // Airplane:3, Capacity: 100

Flight fl1(23,45,aip1); // From 23 to 45, by aip1

Flight fl2 = fl1;

fl1.print(); // Prints both flight and airplane

information

fl2.setDelayed();

fl2.print(); // Prints both flight and airplane

information

