FIZ102E – Lecture 10 Inductors

Alexandr Jonas

Department of Physics Engineering

İTÜ

What did we cover last week?

Induction experiments

Changing magnetic flux through a test coil leads to generation of induced current through the coil \rightarrow electromagnetic induction

Faraday's law

"The induced electromotive force (emf) in a closed loop equals the negative of the time rate of change of magnetic flux through the loop"

$$\mathcal{E} = -\frac{d\Phi_B}{dt}$$

For a coil formed by N identical loops

$$\mathcal{E} = -N \frac{d\Phi_B}{dt}$$

Magnetic flux $\Phi_B = \overrightarrow{B} \cdot \overrightarrow{A}$

Changes due to changing magnitude and/or orientation of \vec{B} and/or \vec{A}

Lenz's law

"The direction of any magnetic induction effect is such as to oppose the cause of the effect"

Induced current sets up its own magnetic field \vec{B}_{ind}

Induced field tends to preserve the current state by opposing any changes that caused the induction in the first place

Motional electromotive force

Magnetic force \vec{F}_R causes charge separation \rightarrow generation of electric field $E = (V_a - V_b)/L$ and electric force $\vec{F_E}$ opposing the magnetic force

In equilibrium:
$$\vec{F}_B = -\vec{F}_E \Rightarrow q(\vec{v} \times \vec{B}) = -q\vec{E} \Rightarrow E = vB \land E = (V_a - V_b)/L$$

Motional electromotive force: $|\mathcal{E} \equiv (V_a - V_b) = v B L|$

$$\mathcal{E} \equiv (V_a - V_b) = v B L$$

Motional electromotive force

Motional electromotive force lifts charges within the moving conductor from low to high potential due to action of a <u>non-electrostatic force</u> → analogy to a battery

General expression for motional emf in a moving conductor

In equilibrium in a stationary magnetic field:

$$\overrightarrow{F}_{B} = -\overrightarrow{F}_{E} \Rightarrow q(\overrightarrow{v} \times \overrightarrow{B}) = -q\overrightarrow{E} \Rightarrow \overrightarrow{E} = -(\overrightarrow{v} \times \overrightarrow{B})$$

Potential difference across conductor segment di:

$$dV_{ab} = -\overrightarrow{E} \cdot d\overrightarrow{l} = (\overrightarrow{v} \times \overrightarrow{B}) \cdot d\overrightarrow{l}$$

Potential difference across the whole conductor: $\mathcal{E} \equiv (V_a - V_b) = \int (\vec{v} \times \vec{B}) \cdot d\vec{l}$

$$\mathcal{E} \equiv (V_a - V_b) = \int (\vec{v} \times \vec{B}) \cdot d\vec{l}$$

Induced electric fields

In a modulated magnetic field $\frac{d\Phi_B}{dt} \neq$

Electromotive force \mathcal{E} is induced in the test coil

Origin of this induced electromotive force cannot be the motion of a conductor in a magnetic field

There has to be an <u>induced electric field</u> in the test coil due to the changing magnetic flux through the coil

Induced electric fields

Induced electric field is non-conservative:

From Faraday's law for a stationary integration path:

$$\oint_{\substack{closed\\loop}} \overrightarrow{E} \cdot d\overrightarrow{l} = -\frac{d\Phi_B}{dt}$$

Orientation of the induced electric field

Electric field \overrightarrow{E} induced in the test coil is tangential \rightarrow it moves the charge around individual windings of the coil

Displacement current

Time-varying conduction current i_c charging a capacitor is related to the electric flux between the capacitor plates:

$$i_C = \varepsilon_0 \frac{d\Phi_E}{dt}$$

We can define <u>displacement current</u> i_D that mediates continuity of current flow between the capacitor plates:

$$i_D \equiv i_C = \varepsilon_0 \frac{d\Phi_E}{dt}$$

Modified Ampere's law including total current:

$$\oint \vec{B} \cdot d\vec{l} = \mu_0 \left(i_C + i_D \right)_{encl}$$
closed

Maxwell's equations

Maxwell's equations summarize all of the relationships between electric and magnetic fields and their sources. In vacuum, they read as:

(1)
$$\oint \overrightarrow{E} \cdot d\overrightarrow{A} = \frac{Q_{encl}}{\varepsilon_0}$$

Gauss's law for E

$$(2) \quad \oint \overrightarrow{B} \cdot d\overrightarrow{A} = 0$$

Gauss's law for B

(1)
$$\oint \vec{E} \cdot d\vec{A} = \frac{Q_{encl}}{\varepsilon_0}$$
(2)
$$\oint \vec{B} \cdot d\vec{A} = 0$$
(3)
$$\oint \vec{B} \cdot d\vec{l} = \mu_0 \left(i_C + \varepsilon_0 \frac{d\Phi_E}{dt} \right)_{encl}$$
(4)
$$\oint \vec{E} \cdot d\vec{l} = -\frac{d\Phi_B}{dt}$$

Ampere's law

$$(4) \quad \oint \vec{E} \cdot d\vec{l} = -\frac{d\Phi_B}{dt}$$

Faraday's law

What will we cover today?

Mutual inductance, self-inductance, and inductors

Inductors and magnetic-field energy

The L-R-C circuits

