FIZ101E – Lecture 7 Momentum, impulse, and collisions

Alexandr Jonas

Department of Physics Engineering

Istanbul Technical University

What did we cover last week?

Gravitational potential energy

The work W_{grav} done on a particle of mass m by a constant gravitational force $F_{\text{grav}} = -mg$ while moving the particle from height y_1 to y_2 above the surface of the earth:

$$egin{aligned} W_{\mathsf{grav}} &= m g y_1 - m g y_2 \ &= U_{\mathsf{grav},1} - U_{\mathsf{grav},2} = - \Delta U_{\mathsf{grav}} \end{aligned}$$

Change in the gravitational potential energy

$$U_{\mathsf{grav}} = mgy$$

$$y_1 > y_2 \implies \Delta U_{\rm grav} < 0 \implies W_{\rm grav} > 0$$

Gravitational potential energy is a shared property of the particle and the earth.

Elastic potential energy

The work W_{el} done by an elastic force $F_{el} = -kx$ of a linear spring with force constant k while stretching or compressing the spring from initial deformation x_1 to final deformation x_2 :

 $egin{aligned} W_{ ext{el}} &= rac{1}{2} k x_1^2 - rac{1}{2} k x_2^2 \ &= U_{ ext{el},1} - U_{ ext{el},2} = - \Delta U_{ ext{el}} \end{aligned}$

Change in the elastic potential energy

$$U_{\rm el} = \frac{1}{2}kx^2$$

$$\left| x_1 > x_2 \right| \Rightarrow \Delta U_{\mathsf{el}} < 0 \Rightarrow W_{\mathsf{el}} > 0$$

Conservation of total mechanical energy

The total <u>potential</u> energy *U* is the sum of the gravitational and elastic potential energy:

$$\left|oldsymbol{U} = oldsymbol{U}_{\mathsf{grav}} + oldsymbol{U}_{\mathsf{el}}
ight|$$

The total <u>mechanical</u> energy *E* is the sum of the kinetic and total potential energy:

$$E = K + U$$

If no forces other than the gravitational and elastic forces do work on a particle, the sum of kinetic and total potential energy is conserved:

$$K_1 + U_1 = K_2 + U_2 \implies E_1 = E_2$$

Conservation of total mechanical energy

Example:

projectile motion with the same initial speed and different launching angles

At a given height *h* above the surface, the speed of the projectile *v* is <u>independent</u> of the launching angle

When total mechanical energy is not conserved

When forces other than the gravitational and elastic forces do work on a particle, the work W_{other} done by these forces equals the change in total mechanical energy:

$$K_1 + U_1 + W_{\text{other}} = K_2 + U_2 \implies W_{\text{other}} = E_2 - E_1$$

Conservative and non-conservative forces

Conservative forces (e.g. gravity, elastic force)

- total mechanical energy E = K + U is conserved
- work can be expressed through a potential-energy function

Non-conservative forces (e.g. friction, push or pull)

- total mechanical energy E = K + U changes
- no associated potential-energy function

Friction increases <u>internal</u> energy U_{int} of the bodies

The <u>total system energy</u> $K + U + U_{int}$ is conserved:

$$\Delta K + \Delta U + \Delta U_{\rm int} = 0$$

Determining force from potential energy

Conservative force in one dimension:

$$F_x(x) = -\frac{\mathsf{d}U(x)}{\mathsf{d}x}$$

Conservative force in three dimensions:

$$F_{x} = -\frac{\partial U(x, y, z)}{\partial x}, F_{y} = -\frac{\partial U(x, y, z)}{\partial y}, F_{z} = -\frac{\partial U(x, y, z)}{\partial z}$$

$$|\vec{F}| = -\operatorname{\mathsf{grad}} U(x,y,z)$$

force = -(gradient of potential energy)

Conservative force always pushes the particle to the minimum of potential energy

What will we cover today?

Lesson plan

- 1. Momentum and impulse
- 2. Conservation of momentum
- 3. Collisions
- 4. Center of mass