FIZ101E – Lecture 9 Dynamics of rotational motion

Alexandr Jonas

Department of Physics Engineering

Istanbul Technical University

What did we cover last week?

Angular position and displacement

The angle $\underline{\theta}$ from the +x-axis specifies the <u>angular position</u> of a rotating body Angular position is defined as angle measured in <u>radians</u>

Angular velocity

Angular velocity = rate of change of the angular position

Average angular velocity

$$\omega_{\text{av-z}} = \frac{\theta_2 - \theta_2}{t_2 - t_1} = \frac{\Delta \theta}{\Delta t}$$

Instantaneous angular velocity

$$\boldsymbol{\omega}_{z} = \lim_{\Delta t \to 0} \frac{\Delta \boldsymbol{\theta}}{\Delta t} = \frac{\mathrm{d}\boldsymbol{\theta}}{\mathrm{d}t}$$

SI units: rad/s

In general, angular velocity $\vec{\omega}$ is a vector directed along the axis of rotation $\rightarrow \omega_7$ is the angular velocity component along the z-axis

Angular acceleration

Angular acceleration = rate of change of the angular velocity

Average angular acceleration

$$\left| \boldsymbol{\alpha}_{\text{av-z}} = \frac{\boldsymbol{\omega}_{2z} - \boldsymbol{\omega}_{1z}}{t_2 - t_1} = \frac{\Delta \boldsymbol{\omega}_z}{\Delta t} \right|$$

Instantaneous angular acceleration

$$\alpha_{z} = \lim_{\Delta t \to 0} \frac{\Delta \omega_{z}}{\Delta t} = \frac{\mathrm{d}\omega_{z}}{\mathrm{d}t} = \frac{\mathrm{d}^{2}\theta}{\mathrm{d}t^{2}}$$

SI units: rad/s²

In general, angular acceleration $\vec{\alpha} = \frac{\mathrm{d}\vec{\omega}}{\mathrm{d}t}$ is a vector

 $\rightarrow \alpha_7$ is the angular acceleration component along the z-axis

Relating angular and linear motion

Consider an arbitrary point \underline{P} in a rotating rigid body located at a distance \underline{r} from the axis of rotation, moving on a circle of radius \underline{r}

<u>Linear velocity</u> of point *P*: $v = r\omega$

→ tangential to the circular path

<u>Linear acceleration</u> of point *P*:

$$\vec{a} = (a_{\tan}, a_{\mathrm{rad}})$$

with

$$a_{\tan} = \frac{\mathrm{d}v}{\mathrm{d}t} = r\frac{\mathrm{d}\boldsymbol{\omega}}{\mathrm{d}t} = r\boldsymbol{\alpha}$$
 \rightarrow tangential component

$$a_{\tan} = \frac{v^2}{r} = \omega^2 r$$
 > radial component

Moment of inertia and rotational kinetic energy

Moment of inertia:

$$I = m_1 r_1^2 + m_2 r_2^2 + m_3 r_3^2 + \dots = \sum_{i} m_i r_i^2 = \int_{\text{body}} dm \ r^2$$

→ describes rotational inertia of a system of particles/continuous body for a specified axis of rotation

Rotational kinetic energy:

$$K = \frac{1}{2}I\omega^2$$

 \Rightarrow kinetic energy of a system of particles / continuous body rotating about a specified axis with angular speed ω

Parallel-axis theorem

Consider rotation of a rigid body about two different parallel axes:

An axis through the center of mass \rightarrow moment of inertia I_{cm}

An axis through point \underline{P} at a distance \underline{d} from the first axis \rightarrow moment of inertia I_P

Parallel axis theorem

$$I_P = I_{cm} + Md^2$$

M... mass of the body

The smallest possible moment of inertia is about an axis through the center of mass

What will we cover today?

Lesson plan

- 1. Torque
- 2. Torque and angular acceleration
- 3. Rotation about a moving axis
- 4. Work and power in rotational motion
- 5. Angular momentum and its conservation