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Taylor series expansion

A function f (x) can be expanded into a Taylor series as

f (x) = f (0) + f ′(0)x + f ′′(0)
x2

2!
+ f ′′′(0)

x3

3!
+ · · · (1)

Ex: It can be shown that

ex = 1 + x +
x2

2!
+

x3

3!
+ · · · (2)

(show it).



Exponential function
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See that as terms are added to the series it becomes a better
representation of the function

ex = 1 + x +
x2

2!
+

x3

3!
+ · · ·



sinus function

It can be shown that

sin(x) = x− x3

3!
+

x5

5!
− x7

7!
+ · · · (3)

(show it).



sinus function
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See that as terms are added to the series it becomes a better
representation of the function

sin(x) = x− x3

3!
+

x5

5!
− x7

7!
+ · · ·



cosinus function

It can be shown that

cos(x) = 1− x2

2!
+

x4

4!
− x6

6!
+ · · · (4)

(show it).
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See that as terms are added to the series it becomes a better
representation of the function

cos(x) = 1− x2
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+ · · ·



Attention!

• The series converge if |x| < 1.
• x is measured in radians, not degrees.



De Moivre’s formula

Recall: Eqn. (2):

ex = 1 + x +
x2

2!
+

x3

3!
+ · · ·

Plug x = iθ to this equation where i2 = −1 to show that

eiθ = cos θ + i sin θ (5)

(show it).



ln(1 + x)

Just another expansion we will need is

ln(1 + x) = x− 1
2

x2 +
1
3

x3 − 1
4

x4 · · · (6)

(show it).



ln(1 + x)
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See that as terms are added to the series it becomes a better
representation of the function

ln(1 + x) = x− 1
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Binomial expansion

• As you well know (1 + x)2 ≡ 1 + 2x + x2

• and (1 + x)3 ≡ 1 + 3x + 3x2 + x3

• What is the expansion for (1 + x)n? Can we have an expansion
for non-integer n?
• By using Taylor series given in Eqn. (1) we obtain

(1 + x)n = 1 + nx +
n(n− 1)

2!
x2 +

n(n− 1)(n− 2)

3!
x3 + · · · (7)

• Interestingly, the expansion is valid even when n is non-integer,
but it has infinite terms then.
• Here x can be negative or positive but the series converges if
|x| < 1.



(1 + x)−1/2
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See that as terms are added to the series it becomes a better
representation of the function
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Small x approximation
If x� 1 then higher order terms in the series are even smaller and can be neglected:
• Eqn. (2) implies

ex ' 1 + x, (x� 1); (8)

• Eqn. (3) implies
sin(x) ' x, (x� 1); (9)

• Eqn. (4) implies

cos(x) ' 1− x2

2
, (x� 1); (10)

• Eqn. (6) implies
ln(1 + x) ' x, (x� 1); (11)

• Eqn. (7) implies
(1 + x)n ' 1 + nx, (x� 1); (12)

Check the figures again that these approximations are sufficient for x� 1.



Ex: Kinetic energy

Of course, (1 + x)n under the condition that x� 1 is a number very
close to 1. But sometimes we need a better approximation than that.
This is where we use the approximations above.
In Einstein’s special relativity the kinetic energy of a particle of mass
m is

EK = (γ − 1)mc2, γ ≡ 1√
1− v2

c2

(13)

Here c = 3× 108 m/s is the speed of light. In Newtonian mechanics
the kinetic energy is

ENR
K =

1
2

mv2 (14)



Ex: Kinetic energy

How are these theories related then?
• Experiment tells us that Newton’s theory breaks down at speeds

close to the speed of light whereas Einstein’s theory remains
valid.
• Remembering that the industrial revolution relied on Newton’s

theory, we know it should be valid at small speeds.
• So we expect that Einstein’s theory should reduce to Newton’s

theory for small speeds; otherwise we would have two theories
for this regime.
• Of course both equations give EK = 0 for v = 0, but this is

trivial. Let us show by series expansion that the Einstein’s theory
reduce to Newtonian theory for v� c.



Ex: Kinetic energy

Expanding γ ≡ 1√
1− v2

c2

into series

γ ' 1 +
1
2

v2

c2 +
3
8

v4

c4 + · · · (15)

and plugging into Eqn. (13), EK = (γ − 1)mc2, we obtain

EK '
1
2

mv2 +
3
8

m
v4

c2 + · · · (16)

This explains why Newton’s formula given in Eqn. (14) produces
correct results at small speeds.



Ex: Kinetic energy

In order to simplify the comparison we define dimensionless
quantities ε ≡ EK

mc2 and β ≡ v
c . Accordingly EK = (γ − 1)mc2

becomes
ε =

1√
1− β2

− 1 (17)

and EK = 1
2 mv2 becomes

ε =
1
2
β2 (18)

And the Taylor expansion becomes

ε =
1
2
β2 +

3
8
β4 · · · (19)
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All three curves coincide at small speeds (β � 1) as expected. At
speeds close to the speed of light they differ and we have to refer to
the experiment to see which model is correct. Experiments verify
Einstein’s formula and rejects Newton’s formula at high speeds. Yet
Newton’s mechanics, as a theory with known limits, is still a good
theory that we have to learn.



Exercises:

Expand these up to 3 terms
• 1

(1+ε)2

• 1
(1+ε)3/2

• 1
(1+ε)1/2

• 1
(1+ε)1/2 − 1

(1−ε)1/2

• (For r > a) (r2 + a2 − 2ar cos θ)−1/2



Geometrical concepts

You most likely know the material presented in here from your high
school education. But you should be fluent with them so that you can
focus on the new concepts rather than being hindered.
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Circumference and surface area of a circle

The circumference of a circle with radius a is

C = 2πa (20)

The area of the same circle is

A = πa2 (21)

Note that circumference is proportional to the radius (C ∝ a) while
area is proportional to the square of radius (A ∝ a2).



Arc length

The arc length of a segment with angle θ has length s = aθ.
Note here that the angle is measured in radians, and so one obtains the
circumference for θ = 2π.



The surface area and volume of a sphere

The surface area of a sphere of radius a is

A = 4πa2 (22)

The volume of the same sphere is

V =
4
3
πa3 (23)

Note are goes with the square of radius (A ∝ a2), and volume with
cube of radius (V ∝ a3).



Volume and surface area of a cylinder

The volume of a cylinder is base area A multiplied by height h. If the
base of the cylinder is a circle with radius a, the base area is A = πa2.
The volume is then

V = πa2h (24)

If the cylinder is unfolded it is seen that the adjacent side is a
rectangle with sides 2πa and h. Accordingly the area of the adjacent
side is A = 2πah.
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Area of a hollow circle

The area of a hollow circle with inner radius a and outer radius b is to
found by subtracting the area of the smaller circle from the larger:

A = π(b2 − a2) (25)

Note that the area in question is not π(b− a)2!



Area of a circular strip
Consider a circular strip of inner radius r and
outer radius r + ∆r. Accordingly the area of the
strip is

∆A = π
[
(r + ∆r)2 − r2]

Arranging this expression we get

∆A = π

[
r2
(

1 +
∆r
r

)2

− r2

]
= πr2

[(
1 +

∆r
r

)2

− 1

]
(26)

If the strip is very narrow (ε ≡ ∆r/r � 1) we can use
(1 + ε)2 ' 1 + 2ε to obtain

∆A ' πr2
[(

1 + 2
∆r
r

)
− 1
]

= πr2
(

2
∆r
r

)
= 2πr∆r (27)



The area of an infinitely thin circular strip

Recall
∆A ' 2πr∆r

For infinitely thin strip this becomes, by ∆r → dr and ∆A→ dA,

dA = 2πr dr (28)

Note that this is the area of a rectangle with sides 2πr and dr.
Obviously we do not get exactly a rectangle when we unfold the strip,
but a trapezoid. The area of the trapezoid is larger than the rectangle
by 1

2 · dr · 2πdr. But this difference which scales as dr2 is infinitely
smaller than the area of the rectangle and so is neglected. The series
expansion we used becomes an exact expression at the limit of
infinitely small.



Check:

Let us check the result above, that the area of an infinitely narrow
strip is dA = 2πr dr: As we can consider the circle as composed of
infinite number of such circles which we can add up by integration:

A =

∫ a

0
2πr dr = πa2. (29)



The volume of a cylindrical shell

A cylindrical shell with inner radius a outer radius b height h has the
volume

V = π
(
b2 − a2) h (30)



The volume of an infinitely thin cylindrical
shell:

The volume would be found by multiplying the
base area (dA = 2πr dr) with the height L

dV = 2πrdr L (31)



Volume of a spherical shell:

The volume of a spherical shell with inner radius a
outer radius b is found by subtracting the volume of the smaller
sphere from the larger

V =
4
3
π
(
b3 − a3) (32)

Note that the volume in question is not π(b− a)3!



Volume of an infinitely thin spherical shell:
Consider a spherical shell with inner radius r and outer radius r + ∆r.
The volume would be found by using Eqn. (32)

∆V =
4
3
π
[
(r + ∆r)3 − r3]

Arranging this expression we obtain

∆V =
4
3
π

[
r3
(

1 +
∆r
r

)3

− r3

]
=

4
3
πr3

[(
1 +

∆r
r

)3

− 1

]
(33)

If the shell is very thin ∆r/r � 1 is valid and we can use the
approximation (1 + ε)3 ' 1 + 3ε to obtain

∆V ' 4
3
πr3

[(
1 + 3

∆r
r

)
− 1
]

=
4
3
πr3

(
3

∆r
r

)
= 4πr2 ∆r (34)

If the shell is infinitely thin ∆r → dr and ∆V → dV:

dV = 4πr2 dr (35)



Check:

We can check the result by considering that a solid sphere is made up
of shells of thickness dV = 4πr2 dr and by integration:

V =

∫ a

0
4πr2 dr =

4
3
πa3. (36)



Density and mass

Later on we will refer to concepts of electric charge and electric
charge density. Here I discuss similar concepts, mass and mass
density, because they are more intuitive.



Average density

The Earth has mass M = 6× 1024 kg and radius a = 6300 km.
Accordingly the average density of the Earth is

ρ̄ =
M
V

=
M

4
3πa3

= 5.7× 103 kg/m3 (37)

Obviously, the central density of the Earth is larger than this value,
and the density of matter at the surface (mostly water of density
1.0× 103 kg/m3) is smaller. Surely somewhere inside the Earth there
is a location with the same density as the average density of the Earth.



Volume element

If we know the density distribution we can find
the mass of each volume element (dV) by
dm = ρdV and summation of all these mass
elements over the volume gives the total mass

M =

∫
V
ρ dV (38)

In case the mass is uniformly distributed we can take ρ outside the
integral and write M = ρ

∫
V dV = ρV .



Volume average

Using ρ̄ = M
V and M =

∫
V ρ dV we write the average density as

ρ̄ =
1
V

∫
V
ρ dV (39)

This is the volume averaged density: Note that we obtain it by
integrating the quantity (ρ) over the volume and dividing by the total
volume. So the average density is the answer for the question “what
should be the density of a uniform object be so that it has the same
mass and radius?” If the object is uniform ρ = M/4

3πa3 = ρ̄.

Attention!
The usually known ρ = M

V only gives the average density. It would
give the density only if the object is uniform.



Ex: Average pressure

If we wanted to find the average of any other quantity (say pressure)
over the volume we would do it by

P̄ =
1
V

∫
V

P dV (40)



Spherical symmetry

For a spherically symmetric density distribution the density depends
only on the radial distance from the center:

ρ = ρ(r) (Spherically symmetric distribution). (41)

We can assume the Earth to be spherically symmetric. In general
density also depends on longitude and latitude and the Earth is not
eactly spherically symmetric.
In the less symmetric axial symmetry case that quantities like density
depend on radial distance and latitude but not on longitude. A rapidly
rotating sphere loses its spherical symmetry, but may still be axially
symmetric.



Spherical symmetry

• In a spherically symmetric object points at the same radial
distance r has the same density.
• In this case a spherical shell of radius r and thickness dr has mass

dm = ρ dV = ρ(r)4πr2 dr

• Adding the masses of all those spherical shells up to the radius a
we obtain the total mass:

M =

∫ a

0
ρ(r)4πr2 dr (42)



Ex: A linearly decreasing mass distribution

Consider a sphere with total mass
M, radius a. We are given that the
density is distributed as

ρ = ρc

(
1− r

a

)
within the sphere.

0

ρ̄

ρc

0 a
ρ

r

Question:
a) What is the central density ρc?
b) What is the mass within radial distance r?



Solution
The volume of a spherical shell with radius r′ and thickness dr′ is dV = 4πr′2 dr′.
Adding up the masses of such shells up to r:

m(r) =

∫ r

0
ρ(r′)4πr′2 dr′ = 4πρc

∫ r

0

(
1− r′

a

)
r′2 dr′

Evaluating this integral we get

m(r) = 4πρc

∫ r

0

(
r′2 − r′3

a

)
dr′ = 4πρc

(
1
3

r3 − r4

4a

)
According to the givens (M and a) and using m(a) = M

M = 4πρca3
(

1
3
− 1

4

)
⇒ ρc =

3M
πa3

is obtained.
Average density: total mass divided by total volume ρ̄ = M

4
3πa3

Notice for this problem that ρc = 4ρ̄. Plugging this value we get

m(r) = 4M
( r

a

)3
(

1− 3r
4a

)
Check that this expression yields M when r → a.
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Time average

How can we find the average value of a function varying in time? In a
time period from T1 to T2 the area under the function f (t) is∫ T2

T1
f (t) dt. The average value of the function f̄ is chosen such that the

rectangle f̄ (T2 − T1) has the same area. Thus

f̄ =
1

T2 − T1

∫ T2

T1

f (t) dt (43)



Ex: f (t) = fmax sin
2 ωt

According to the definition above
the average value of the function
f (t) = fmax sin2 ωt in range
(0,T = 2π/ω) is

f̄ =
1
T

∫ T

0
fmax sin2 ωt dt =

fmax

2

fmax/2

fmax

0.5 π 1.0 π 1.5 π 2.0 π

f
t

Hint!
To evaluate this integral refer to the trigonometrical identity sin2 x ≡ 1−cos 2x

2
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Effective value

Consider a function with average about zero: I(t). For example,

I(t) = Imax sinωt (44)

has zero average value. We know that the current provided in houses
is of this form. Even then we get a bill at the end of the month! The
electric providing company does not ask only for the positive part and
return back the negative part. We need a quantity different than zero
but still meaningful.



Effective value

We first need no get rid of the negative part. For this we can take the
square of the value. Certainly what we find is a positive-definite
quantity with a positive-definite average value, but has the dimension
of not I but I2. For finding a quantity of the dimension of I we need to
take the square root. The value we find in this way—by taking the
square and averaging and square rooting— is called the effective
value:

Ieff ≡

√
1
T

∫ T

0
I2 dt (45)



Ex:

For the sinusoidal function I(t) = Imax sinωt we obtain

Ieff ≡

√
1
T

∫ T

0
I2
max sin2 ωt dt = Imax

√
1
T

∫ T

0
sin2 ωt dt (46)

by using the result given in Eqn. (50) we get Ī2 = I2
max/2

Ieff =
Imax√

2
(47)

The effective value of the sinusoidally changing current is obtained by
dividing the maximum value by

√
2 ' 1.41. Similar is true for the

electric potential. A potential with effective value of Veff = 110 V has
the amplitude Vmax =

√
2 110 V.



Another application or RMS

What is the average speed of molecules in a vessel? The answer is O
because the velocity vectors of every molecule which are moving
randomly, by the law of large numbers, would be zero as there are
almost equal number of particle moving in each direction and
opposite. Yet zero is not a satisfactory answer; we do know that
molecules move randomly and there should be typical velocity of
particles independent of direction. In order to get rid of the
cancellation of the vectors in opposite directions we can take the
square of the vectors. We will have a finite value when we take the
average now. Finally we can take the square root of this to find the
root mean square value of the speed of molecules.



Linear mass density

We have a string of length L = 100 m. The mass of the string is
M = 1 kg. The mass of a unit length string, i.e. the linear mass
density, is λ̄ = M/L = 0.01 kg/m. The mass M and linear mass
density λ in general are related as

M =

∫
l
λ dl (48)

For a homogeneous string λ does not depend on x and can be taken
outside the integral yielding M = λL. But if λ depends on x Eqn. (48)
should be integrated.



Surface mass density

We have a sheet of area A = 10 m2 and
mass M = 2 kg. The mass per unit area,
i.e. surface mass density is then
σ̄ = M/A = 5 kg/m2. In general mass M
and surface mass density σ are related as

M =

∫
A
σ dA (49)



Vector fields

In this section we are going to overview vector calculus concepts
needed to understand Maxwell’s equations.



Field

Field
The concept of field arises when a quantity is attributed to every point
of space in describing continuous media. The quantity also could
depend on time.

Scalar field
If the quantity in question is a scalar then we talk about a scalar field.
Density and temperature are scalar fields: ρ = ρ(x, y, z),
T = T(x, y, z, t)

Vector fields
If the quantity in question is a vector then we talk about a vector field.
Ex. velocity field of a fluid, electric and magnetic fields:
~v = ~v(x, y, z), ~E = ~E(x, y, z), ~B = ~B(x, y, z)



Velocity vector field



Electric vector field

for a positive charge.
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Flux

Imagine that, in order to quantify the amount
of fluid flowing in a river, we submerge an
imaginary rectangular frame the presence of
which does not perturb the flow. Let us
assume the velocity is uniform at all points
on the surface: ~v. If the normal of the surface
n̂ is parallel then the flux of fluid through the
imaginary surface is

Φ = vA .

Ex: If the velocity in the river is v = 2 m/s
and the surface area is A = 3 m2 then the flux
is Φ = 6 m3/s.



Flux

Imagine that, in order to quantify the amount
of fluid flowing in a river, we submerge an
imaginary rectangular frame the presence of
which does not perturb the flow. Let us
assume the velocity is uniform at all points
on the surface: ~v. If the normal of the surface
n̂ is parallel then the flux of fluid through the
imaginary surface is

Φ = vA .

Ex: If the velocity in the river is v = 2 m/s
and the surface area is A = 3 m2 then the flux
is Φ = 6 m3/s.



Flux

• If the angle between the normal of the
surface and velocity is θ then the flux
would be reduced to

Φ = vA cos θ

.
• If we represent the surface with the

vector ~A ≡ An̂ the flux can be written as
a scalar product:

Φ = ~v · ~A



Flux

• If the angle between the normal of the
surface and velocity is θ then the flux
would be reduced to

Φ = vA cos θ

.
• If we represent the surface with the

vector ~A ≡ An̂ the flux can be written as
a scalar product:

Φ = ~v · ~A



Flux

If the imaginary surface submerged in the
fluid is not planar but curved, or if the
velocity vector field is not uniform we
consider flux through infinitesimally small
surface elements d~A and calculate the flux
through each of them dΦ = ~v · d~A. To find
the total flux we finally integrate these over
the surface:

Φ =

∫
~v · d~A (50)



Ex: Flux through semi-sphere

What is the flux through a semi-sphere of radius R?



Ex: Flux through semi-sphere

• Area of the strip
∆A = 2π(R sinα)R∆α

• All points on the strip make the
angle α with the velocity vector ~v.
• The flux through the strip

∆Φ = v2π(R sinα)R∆α cosα

• Flux through the semi-sphere

Φ = 2πR2v
∫ π/2

0
sinα cosα dα = πR2v

u ≡ sinα, du = cosα dα



Ex: Flux through semi-sphere

• Area of the strip
∆A = 2π(R sinα)R∆α

• All points on the strip make the
angle α with the velocity vector ~v.
• The flux through the strip

∆Φ = v2π(R sinα)R∆α cosα

• Flux through the semi-sphere

Φ = 2πR2v
∫ π/2

0
sinα cosα dα = πR2v

u ≡ sinα, du = cosα dα
Notice that this is exactly the flux that would pass though the base of
the semi-sphere.



Ex: Flux through a closed semi-sphere

• Definition: What we mean by a
closed surface is one enclosing a
volume.
• Convention: For a closed surface the

normal vectors are always pointing
outwards at all points.
• We have already shown the flux

through the curved surface is
Φsemi−sph = πR2v.
• The flux through the planar base is:

Φcircle = πR2v cosπ = −πR2v
Total net flux:
Φ =

∮
~v · d~A = Φsemi−sph + Φcircle = πR2v− πR2v = 0!



Flux through a closed cube

• Φ =
∮
~v · d~A =

∑
i Φi =

∑
i

∫
i~v · d~A

• Φi =
∫

i~v · d~A = vA cos(π/2) = 0

• Φii =
∫

ii~v · d~A = vA cos(0) = vA

• Φiii =
∫

iii~v · d~A = vA cos(π/2) = 0

• Φiv =
∫

iv~v · d~A = vA cos(π/2) = 0

• Φv =
∫

v~v · d~A = vA cos(π) = −vA

• Φvi =
∫

vi~v · d~A = vA cos(π/2) = 0
• Φ = 0 + vA + 0 + 0− vA + 0 = 0



Conservation

• The net flux through a closed surface is independent of the shape
of the surface.
• It is then a wise idea to write the laws in terms of closed surfaces.
• We have found the flux through a closed surface to be zero as the

amount of fluid entering and leaving are the same.
• Under what condition would it be that the flux through a closed

surface is non-zero?



Source

• If the closed surface encloses the
source of the vector field the net flux
is equal to the source:

Φ =

∮
~v · d~A = sources (51)

• Ex: If the source provides 15 m3 of
water then the net flux through the
surface is 15 m3.



Sinks

• If the closed surface encloses a sink
rather than source then the net flux
would be negative.
• In general

Φ =

∮
~v · d~A = sources− sinks

(52)

• Whatever the source of the vector
field we write it on the right hand
side.



Gauss’ law
In general we found that

Φ =

∮
~v · d~A = sources− sinks

Accordingly Gauss’ law

ΦE =

∮
~E · d~A = Qenclosed/ε0 (53)

simply means that positive (negative) electric charges are the sources
(sinks) of electric fields.
Gauss’ law magnetic fields

ΦB =

∮
~B · d~A = 0 (54)

then simply means there is no magnetic charge, if there was we would
put it on the right hand side.
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Circulation

Just like “flux” we are familiar to the concept of “circulation” from
fluid mechanics. It is measure of the “circulation/rotation/curl” of that
fluid flow. How can we quantify this?



Circulation

• First consider an imaginary (that
does not disturb the flow) pipe.
• Imagine all the fluid except the part

in the pipe is frozen
• Circulation is a measure of the fluid

to move along the pipe.



Circulation
• Only the component of the velocity

along the pipe will be significant for
moving the fluid along the pipe.
• If the angle that the velocity vector ~v

makes with the element of the pipe
at a certain point, d~l is θ then the
projection of ~v onto d~l will give
(vdl cos θ = ~v · d~l) contribution to
circulation in the element of the
pipe.
• The flow through the whole pipe is

then obtained by integrating the all
contributions ∫

~v · d~l



Circulation

Going back to the basic question whether
the flow rotates: For this we need to
integrate the same thing for a closed loop.
Then the circulation of a vector field ~v is
defined as

C ≡
∮
~v · d~l (55)

The whole purpose of choosing a closed
loop is that the result is independent of
the shape of the pipe!



Ex:

What is the circulation in the river

• Consider a rectangular pipe
• dl is an element tangential to the pipe
• Evaluating the integral C ≡

∮
~v · d~l

for each segment we get

C = vL cos 0 + 0 + vL cosπ + 0 = 0

• I knew this result, but now found it
mathematically.



Ex:

What is the circulation in the river with uniform flow?

• Pick up a circular loop
• dl = adθ and

C =

∮
~v · d~l =

∫ 2π

0
v cos θadθ = 0

• We again find C = 0, this result is
independent of the shape of the loop.
• The circulation through a closed

loop is independent of the path, it is
a property of the flow.



Conservation

If the circulation over a closed loop is zero the integral
∫
~v · d~l

between two points is independent of path. Such a vector field is said
to be conservative.
In fact the circulation is a local quantity changing from point to point.
In order to have an idea of the circulation at a certain point I should
keep the size of the loop as small as possible.
The practical way to understand the presence of circulation at a point
is to float a cork with toothpicks pointing out radially at that point; if
it starts to rotate, then you placed it at a point of nonzero circulation.
A whirlpool would be a region of large circulation.



Ex: Circulation

• Consider the flow with obvious
circulation and calculate it.
• To do this I pick a circular pipe with

radius a. In this case I obtain

C =

∮
~v · d~l = 2πav

.
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.
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Helmholtz’ theorem

According to Helmholtz’ theorem in order to define a vector field ~V it
is sufficient to give its flux over closed surface Φ ≡

∮
~V · d~A and

circulation over a closed loop C ≡
∮
~V · d~l.



Maxwell’s Equations
• Gauss’s law ∮

~E · d~A =
Qenc

ε0

• Faraday’s law ∮
~E · d~l = − d

dt

∫
~B · d~A

• Gauss’s law for magnetism∮
~B · d~A = 0

• Generalized Ampere’s law∮
~B · d~l = µ0iC+µ0ε0

d
dt

∫
~E · d~A



From a long view of the history of mankind - seen from,
say, ten thousand years from now - there can be little doubt
that the most significant event of the 19th century will be
judged as Maxwell’s discovery of the laws of electrodynam-
ics.

Richard Feynman
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