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Learning Goals

• How you can determine the amount of charge within a
closed surface by examining the electric field on the surface.

• What is meant by electric flux, and how to calculate it.

• How Gauss’s law relates the electric flux through a closed
surface to the charge enclosed by the surface.

• How to use Gauss’s law to calculate the electric field due to
a symmetric charge distribution.

• Where the charge is located on a charged conductor.



Maxwell’s Equations
• Gauss’ law ∮

~E · d~A =
Qenc

ε0

• Faraday’s law ∮
~E · d~l = − d

dt

∫
~B · d~A

• Gauss’s law for magnetism∮
~B · d~A = 0

• Generalized Ampere’s law∮
~B · d~l = µ0iC+µ0ε0

d

dt

∫
~E · d~A



Lorentz’s Force

Force acting on a charged particle given the ~E & ~B fields is

~F = q(~E + ~v × ~B)

where ~v is the velocity of the particle.



Recall: Coulomb’s law

• In Chapter 21 we asked the
question, “Given a charge
distribution, what is the electric
field produced by that
distribution at a point P?”

• We saw that the answer could be
found by representing the
distribution as an assembly of
point charges, each of which
produces an electric field ~E given
by

~E =
1

4πε0

q

r2
r̂

• The total field at a point is then
the vector sum of the fields due
to all the point charges.
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Summary: Gauss’ law

• In this chapter we ask the opposite, “If
the electric field pattern is known in a
given region, what can we determine
about the charge distribution in that
region?”

• This will lead to an alternative
relationship between charge
distributions and electric fields:∮

~E · d~A =
Qenc

ε0
, Gauss’ law

• Gauss’ law is a relationship between the
field at all the points on the surface and
the total charge enclosed within the
surface.
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Summary: Gauss’ law

• In this chapter we ask the opposite, “If
the electric field pattern is known in a
given region, what can we determine
about the charge distribution in that
region?”

• This will lead to an alternative
relationship between charge
distributions and electric fields:∮

~E · d~A =
Qenc

ε0
, Gauss’ law

• Gauss’ law is a relationship between the
field at all the points on the surface and
the total charge enclosed within the
surface.

• If the
electric-field
pattern is known
in a given region,
what can we
determine about
the charge
distribution in that
region?



Closed surface

• A closed surface (Gaussian
surface) is one enclosing a
volume.

• A sphere is a closed
surface.

• A cube is a closed surface.

• A circle is not a closed
surface.

• A square is not a closed
surface.

• An open semi-sphere

• An closed semi-sphere

• An open surface.

https://www.wikiwand.com/en/Gaussian_surface
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Convention

• Unit normal has two possible
directions for an open surface.

• For an open surface, we can use
either direction, as long as we are
consistent over the entire surface.

• The outward normal is used to
calculate the flux through a closed
surface.
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Charge and Electric Flux

• How can you determine
how much (if any) electric
charge lies within the box
(closed surface)?

• Assume the box is made of
a material that has no
effect on any electric fields
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Charge and Electric Flux

• A charge distribution
produces an electric field

• An electric field exerts a
force on a test charge

• Move a test charge q0

around the vicinity of the
box.

• By measuring the force ~F
experienced by the test
charge at different
positions, make a 3D map
of the ~E = ~F/q0 field.



Charge and Electric Flux

To determine the contents of
the box, we actually need to
measure ~E on only the surface
of the box.
A single positive point charge
inside the box.
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the box, we actually need to
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No charge in the box, no flux.
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the box, we actually need to
measure ~E on only the surface
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Zero net charge: inward flux
cancels outward flux.



Charge and Electric Flux

To determine the contents of
the box, we actually need to
measure ~E on only the surface
of the box.
No charge inside box: inward
flux cancels outward flux.

There is an electric field, but it
“flows into” the box on half of
its surface and “flows out of”
the box on the other half.
Hence no net electric flux into
or out of the box.



Electric Flux and Enclosed Charge

To determine the contents of the box measure ~E on the surface
of the box.

• If the enclosed charge is positive the electric field points
out of the box.

• If the enclosed charge is negative the electric field points
into the box.



Electric Flux and Enclosed Charge

Summary: The net electric flux through the surface of the box
is directly proportional to the magnitude of the net charge
enclosed by the box.
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Qualitative statement of Gauss’s law

1 Whether there is a net outward or inward electric flux
through a closed surface depends on the sign of the
enclosed charge.

2 Charges outside the surface do not give a net electric flux
through the surface.

3 The net electric flux is directly proportional to the net
amount of charge enclosed within the surface but is
otherwise independent of the size of the closed surface.



Calculating Electric Flux

• The net electric flux through a closed surface is directly
proportional to the net charge inside that surface.

• To be able to make full use of this law, we need to know
how to calculate the electric flux.

• We’ll again refer to analogy between an electric field ~E and
the field of velocity vectors ~v in a flowing fluid.



Flux: Fluid-Flow Analogy

When the area is
perpendicular to the flow
velocity ~v and the flow
velocity is the same at all
points in the fluid, the
volume flow rate dV/dt is
the area A multiplied by
the flow speed v:

dV

dt
= vA



Flux: Fluid-Flow Analogy

When the rectangle is tilted at
an angle φ so that its face is
not perpendicular to ~v, the
area that counts is the
silhouette area that we see
when we look in the direction of
~v. The projected area A⊥ is
equal to A cosφ:

dV

dt
= vA cosφ

Check: If φ = 90◦, dV/dt = 0;
the wire rectangle is edge-on to
the flow, and no fluid passes
through the rectangle.



Flux: Fluid-Flow Analogy

We can express the volume flow
rate more compactly by using
the concept of vector area ~A, a
vector quantity with magnitude
A and a direction perpendicular
to the plane of the area we are
describing.

dV

dt
= ~v · ~A



Flux of a Uniform Electric Field

• Let us replace the fluid
velocity ~v by the electric
field ~E.

• The electric flux through
the area is the product of
the field magnitude E and
the area A:

ΦE = EA

• The SI unit for ΦE is
N ·m2/C.



Flux of a Uniform Electric Field

• If the area A is flat but not
perpendicular to the field E, then
fewer field lines pass through it.

• In this case the area that counts is
the silhouette area that we see when
looking in the direction of ~E:

ΦE = EA cosφ = ~E·~A, (electric flux for uniform ~E, flat surface)



Flux of a Uniform Electric Field

If the area is edge-on to the
field, ~E and ~A are
perpendicular and the flux is
zero:

ΦE = 0



Exercise: Electric flux through a disk

A disk of radius 0.10 m is
oriented with its normal unit
vector n̂ at 30◦ to a uniform
electric field E of magnitude
2.0× 103 N/C.
(a) What is the electric flux
through the disk?
(b) What is the flux through
the disk if it is turned so that n̂
is perpendicular to ~E?
(c) What is the flux through
the disk if n̂ is parallel to ~E?



Exercise: Electric flux through a disk

a) The area is

A = πr2 = 3.14 (0.10 m)2

= 0.0314 m2

The flux is then

ΦE = EA cosφ

= (2.0× 103 N/C) (0.0314 m2) cos 30◦

= 54 N ·m2/C



Exercise: Electric flux through a disk

b) The normal to the disk is
now perpendicular to ~E, so
φ = 90◦, cosφ = 0, and ΦE = 0.



Exercise: Electric flux through a disk

c) The normal to the disk is
parallel to ~E, so φ = 0 and
cosφ = 1:

ΦE = (2.0× 103 N/C) (0.0314 m2)

= 63 N ·m2/C



Exercise: Electric flux through a cube

An imaginary cubical surface of side L
is in a region of uniform electric field ~E.
Find the electric flux through each face
of the cube and the total flux through
the cube when
(a) it is oriented with two of its faces
perpendicular to ~E
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is in a region of uniform electric field ~E.
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of the cube and the total flux through
the cube when
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and (b) the cube is turned by an angle θ
about a vertical axis.



Exercise: Electric flux through a cube

An imaginary cubical surface of side L
is in a region of uniform electric field ~E.
Find the electric flux through each face
of the cube and the total flux through
the cube when
(a) it is oriented with two of its faces
perpendicular to ~E
ΦE1 = EL2 cos 180◦ = −EL2

ΦE2 = EL2 cos 0 = +EL2

ΦE3 = ΦE4 = ΦE5 = ΦE6 = EL2 cos 90◦ = 0

The total flux through the cube is
Φtot = ΦE1+ΦE2+ΦE3+ΦE4+ΦE5+ΦE6

= −EL2 +EL2 + 0 + 0 + 0 + 0 = 0



Exercise: Electric flux through a cube

and (b) the cube is turned by an angle θ
about a vertical axis.
ΦE1 = EL2 cos(180◦ − θ) = −EL2 cos θ
ΦE2 = EL2 cos θ
ΦE3 = EL2 cos(90◦ + θ) = −EL2 sin θ
ΦE4 = EL2 cos(90◦ − θ) = +EL2 sin θ
ΦE5 = ΦE6 = EL2 cos 90◦

The total flux through the cube is

Φtot = ΦE1 + ΦE2 + ΦE3 + ΦE4 + ΦE5 + ΦE6

= 0



Flux of a Nonuniform Electric Field

• What happens if the ~E
isn’t uniform but varies
from point to point over
the area A?

• Or what if A is part of a
curved surface?

• Divide the surface into
many small elements dA
each of which has a unit
vector n̂ perpendicular to
it and a vector area
d~A = n̂dA.

• Calculate flux through
each element and integrate
the results to obtain the
total flux.

ΦE =

∫
~E · d~A



Exercise: Electric flux through a sphere

A point charge q = +3.0µC is
surrounded by an imaginary sphere of
radius r = 0.20 m centered on the
charge. Find the resulting electric flux
through the sphere.



Exercise: Electric flux through a sphere

The surface is not flat and the electric
field is not uniform, so to calculate
the electric flux (our target variable)
we must use the general definition

ΦE =

∫
~E · d~A



Exercise: Electric flux through a sphere

The surface is not flat and the electric
field is not uniform, so to calculate
the electric flux (our target variable)
we must use the general definition

ΦE =

∫
~E · d~A

Here, ~E and d~A at all points on the
surface are in the same direction
(cosφ = 1). Thus

ΦE =

∫
~E · d~A =

∫
E dA



Exercise: Electric flux through a sphere

Here, ~E and d~A at all points on the
surface are in the same direction
(cosφ = 1). Thus

ΦE =

∫
~E · d~A =

∫
E dA

Because of the symmetry, at any point
on the sphere of radius r the electric
field has the same magnitude
E = q

4πε0r2
hence we can take it

outside the integral

ΦE = E

∫
dA = EA



Exercise: Electric flux through a sphere

Because of the symmetry, at any point
on the sphere of radius r the electric
field has the same magnitude
E = q

4πε0r2
hence we can take it

outside the integral

ΦE = E

∫
dA = EA

As A = 4πr2 we obtain

ΦE = EA =
q

4πε0r2
4πr2 =

q

ε0



Exercise: Electric flux through a sphere

As A = 4πr2 we obtain

ΦE = EA =
q

4πε0r2
4πr2 =

q

ε0

Plugging in the numbers

ΦE =
q

ε0

=
+3.0µC

8.85× 10−12 C2/N ·m2

= 3.4× 105 N ·m2/C



Exercise

What is the total flux of the electric
field through the rectangular surface
shown in the figure?



Exercise

We will apply ΦE =
∫
~E · d~A where

~E = cy2k̂ and d~A = bdyk̂ and so

ΦE =

∫ a

0
cy2︸︷︷︸
E

bdy︸︷︷︸
dA

k̂ · k̂︸︷︷︸
=1



Exercise

We will apply ΦE =
∫
~E · d~A where

~E = cy2k̂ and d~A = bdyk̂ and so

ΦE =

∫ a

0
cy2︸︷︷︸
E

bdy︸︷︷︸
dA

k̂ · k̂︸︷︷︸
=1

= cb

∫ a

0
y2 dy



Exercise

We will apply ΦE =
∫
~E · d~A where

~E = cy2k̂ and d~A = bdyk̂ and so

ΦE =

∫ a

0
cy2︸︷︷︸
E

bdy︸︷︷︸
dA

k̂ · k̂︸︷︷︸
=1

=
1

3
a3bc



Carl Friedrich Gauss (1777-1855)

• one of the greatest
mathematicians

• helped develop several
branches of mathematics

• calculated the orbit of the
first asteroid to be
discovered

• also made state-of-the-art
investigations of the earths
magnetism

• CGS unit of magnetic field
named after him

https://www.wikiwand.com/en/List_of_things_named_after_Carl_Friedrich_Gauss
https://www.wikiwand.com/en/List_of_things_named_after_Carl_Friedrich_Gauss


Gauss’s Law

~E is the total field at the position of the surface area element

d~A.

ΦE =

∮
~E · d~A =

Qenc

ε0

The total electric flux ΦE through a closed surface is equal to
the total (net) electric charge inside the surface, divided by ε0.



Point Charge Inside a Spherical Surface

• E-field magnitude at radius
R: E(R) = 1

4πε0
q
R2

• Radial direction is normal
to spherical surface

• Surface area A = 4πR2

• Flux

ΦE = EA =
1

4πε0

q

R2
4πR2

⇒ ΦE =
q

ε0

Flux is independent of the
radius of the sphere.



Point Charge Inside a Nonspherical
Surface

E-field not in the
direction of the normal
to the surface:
If ~E makes an angle with
the normal, then

dΦE = EdA cosφ

For a closed surface enclosing the point charge q

ΦE =

∮
~E · d~A =

q

ε0



Point Charge Inside a Nonspherical
Surface

For a closed surface
enclosing no charge

ΦE =

∮
~E · d~A = 0



General Form of Gausss Law

ΦE =

∮
E cosφ dA =

∮
E⊥dA =

∮
~E · d~A =

Qenc

ε0

For a negative charge, the direction of the field is reversed.

The flux in (b) is negative, i.e. ΦE = −q/ε0 < 0.



Electric flux and enclosed charge

ΦA
E =?

ΦB
E =?

ΦC
E =?

ΦD
E =?



Electric flux and enclosed charge

ΦS1
E =?

ΦS2
E =?

ΦS3
E =?

ΦS4
E =?

ΦS5
E =?



Applications of Gauss’ Law

Gauss’ law can be used in two ways.

• If we know the charge distribution, and if it has enough
symmetry to let us evaluate the integral in Gauss’ law, we
can find the field.

• If we know the field, we can use Gauss’ law to find the
charge distribution, such as charges on conducting surfaces.



Charged conductor in equilibrium

When excess charge is placed on a solid conductor and is at
rest, it resides entirely on the surface, not in the interior of the
material.

When excess charge is placed on a solid
conductor and is at rest, it resides
entirely on the surface, not in the interior
of the material.



Charged conductor in equilibrium

When excess charge is placed on a solid conductor and is at
rest, it resides entirely on the surface, not in the interior of the
material.

Proof:

• In an electrostatic situation (with all charges at

rest) ~E at every point in the interior of a
conducting material is zero.

• If ~E were not zero, the excess charges would
move.

• Consider a Gaussian surface inside the
conductor, such as surface A. Because ~E = ~0
everywhere on this surface, Gauss’ law requires
that the net charge inside the surface is zero.

• Thus, there can be no excess charge at any
point within a solid conductor; any excess
charge must reside on the conductor’s surface.



Conducting sphere with charge q > 0

• conductor ⇒ charge on the
surface

• symmetry ⇒ ~E = E(r)r̂

• symmetry ⇒ choose a
spherical Gaussian surface

• Qenc = q for r > R and zero
otherwise

• Flux ΦE = E(r) 4πr2
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Conducting sphere with charge q > 0

• conductor ⇒ charge on the
surface

• symmetry ⇒ ~E = E(r)r̂

• symmetry ⇒ choose a
spherical Gaussian surface

• Qenc = q for r > R and zero
otherwise

• Flux ΦE = E(r) 4πr2

ΦE = Qenc/ε0

E(r) =

{
1

4πε0
q
r2
, r > R

0, r < R



Conducting sphere with charge q > 0

• conductor ⇒ charge on the
surface

• symmetry ⇒ ~E = E(r)r̂

• symmetry ⇒ choose a
spherical Gaussian surface

• Qenc = q for r > R and zero
otherwise

• Flux ΦE = E(r) 4πr2

ΦE = Qenc/ε0

E(r) =

{
1

4πε0
q
r2
, r > R

0, r < R

For r > R electric field same as a point charge q located at the
center.



an infinitely long, charged wire

• symmetry ⇒ ~E = E(r)r̂

• symmetry ⇒ choose a
cylindrical Gaussian surface

• Qenc = λl with linear charge
density λ

• Adjacent side of the cylinder:
2πrl

• Flux ΦE =
∮
~E · d~A =

2πrlE(r) + 0 + 0 (no flux from
the caps)
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an infinitely long, charged wire

• symmetry ⇒ ~E = E(r)r̂

• symmetry ⇒ choose a
cylindrical Gaussian surface

• Qenc = λl with linear charge
density λ

• Adjacent side of the cylinder:
2πrl

• Flux ΦE =
∮
~E · d~A =

2πrlE(r) + 0 + 0 (no flux from
the caps)

ΦE = Qenc/ε0

~E(r) =
1

2πε0

λ

r
r̂

Exercise: Check units of the E-field.
Recall: We found the same result last week by integrating the
field of a line of charge.



infinite sheet of charge

Choose coordinates such that the plane is at z = 0.

• surface charge density σ

• symmetry ⇒
~E = E(|z|)k̂ for z > 0 ,
~E = E(|z|)(−k̂) , z < 0 .

• choose a cylindrical
Gaussian surface

• Qenc = σA

• Flux ΦE =
∮
~E · d~A =

2AE(|z|) (no flux from
the adjacent side)
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infinite sheet of charge
Choose coordinates such that the plane is at z = 0.

• surface charge density σ

• symmetry ⇒
~E = E(|z|)k̂ for z > 0 ,
~E = E(|z|)(−k̂) , z < 0 .

• choose a cylindrical
Gaussian surface

• Qenc = σA

• Flux ΦE =
∮
~E · d~A =

2AE(|z|) (no flux from
the adjacent side)∮

~E · d~A = Qenc/ε0 → 2EA = σA/ε0 →

E =
σ

2ε0
~E =

σ

2ε0

z

|z|
k̂

The field magnitude is independent of z.
Note: Discontinuity in E-field crossing a charged surface
∆E = σ/ε0.
Recall: We found the same result last week by integrating the
field of disc charge.



oppositely charged parallel conducting
plates



oppositely charged parallel conducting
plates

• idealize as two infinite
sheets of charge

• use superposition
principle or Gauss’ law

• E-field in between

E = σ/ε0

• E-field outside

E = 0



uniformly charged sphere

• uniform charge density ρ

• ρ = Q/(4πR3/3)

• symmetry ⇒ ~E = E(r)r̂

• symmetry ⇒ choose a
spherical Gaussian surface

• Qenc = Q for r > R

• Qenc = 4πr3ρ/3 for r < R

• Flux ΦE = 4πr2E(r)

For r < R, E-field increases linearly with r

E(r) =
1

4πε0

4πr3ρ/3

r2
=

1

4πε0

Qr

R3
, r < R .

For r > R, E is the same as a point charge Q located at the
center.



Charges on conductors

• Apply Gauss’ law for any
closed surface inside the
conductor

• Since ~E = ~0 inside the
conductor, any volume inside
a conductor contains zero net
charge.

• ⇒ all the excess charge on the
conductor must be on its
surface

What if there is a cavity inside the conductor?
⇒ Again, no charge on the cavity surface.
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Charge inside a cavity in conductor

Consider charge q show in the figure. Assume charge qC on the
conductor.

• Apply Gauss’ law for any
closed surface enclosing the
cavity.

• Since ~E = ~0 inside the
conductor, cavity surface must
have charge −q.
• ⇒ charge q + qC must be on

the outer surface of the
conductor.



Example

• Q: How much charge is on
the inner and outer surface
of the conductor?

• Consider the Gaussian
surface shown with dashed
lines.

• Net charge inside must be
zero.

• ⇒ charge on the inner
surface is +5 nC.

• ⇒ charge on the outer
surface is
+7 nC− 5 nC = 2 nC.
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Testing Gauss’ Law

A charged metal sphere is lowered into a conducting container.



Testing Gauss’ Law
The charged sphere is enclosed in the conducting container.



Testing Gauss’ Law
The charged metal sphere touches the conducting container.



Van de Graaff electrostatic generator

• belt produces charge build up

• by Gauss’ law charge moves to the
outside

• large E-fields around the shell

• used as an accelerator of charged
particles and physics demos



Electrostatic shielding

• redistribution of the free electrons in the conductor

• redistribution causes an additional E-field such that the
total field at every point inside the box is zero

• also alters the shapes of the field lines near the box

• such a setup is often called a Faraday cage.



Field at the Surface of a Conductor

• Assume surface
charge density σ.

• Apply Gauss’ law:

ΦE = E⊥A = EA

and

Qenc = σA.

⇒ E =
σ

ε0
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