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Learning Goals

How you can determine the amount of charge within a
closed surface by examining the electric field on the surface.

What is meant by electric flux, and how to calculate it.

How Gauss’s law relates the electric flux through a closed
surface to the charge enclosed by the surface.

How to use Gauss’s law to calculate the electric field due to
a symmetric charge distribution.

Where the charge is located on a charged conductor.



Maxwell’s Equations

Gauss’ law

fﬁdxz
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Faraday’s law

fﬁﬁé—d/ﬁdﬁ
dt

Gauss’s law for magnetism
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Generalized Ampere’s law
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Lorentz’s Force

Force acting on a charged particle given the E & B fields is
F = ¢(E+V x B)

where V is the velocity of the particle.



Recall: Coulomb’s law

¢ In Chapter 21 we asked the
question, “Given a charge
distribution, what is the electric
field produced by that
distribution at a point P?”
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Recall:
¢ In Chapter 21 we asked the

question, “Given a charge
distribution, what is the electric
field produced by that
distribution at a point P?”

We saw that the answer could be
found by representing the
distribution as an assembly of
point charges, each of which
produces an electric field E given
by

E = Lif
4dmeq 12
The total field at a point is then
the vector sum of the fields due
to all the point charges.

Coulomb’s law




Summary: Gauss’ law

® In this chapter we ask the opposite, “If
the electric field pattern is known in a
given region, what can we determine
about the charge distribution in that
region?”
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Summary: Gauss’ law

® In this chapter we ask the opposite, “If
the electric field pattern is known in a
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Summary: Gauss’ law

® In this chapter we ask the opposite, “If
the electric field pattern is known in a
given region, what can we determine
about the charge distribution in that
region?”

E
e This will lead to an alternative -
relationship between charge ¢ @
distributions and electric fields:
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® Gauss’ law is a relationship between the
field at all the points on the surface and
the total charge enclosed within the @

surface.



Summary:

® In this chapter we ask the opposite, “If

the electric field pattern is known in a
given region, what can we determine
about the charge distribution in that
region?”

This will lead to an alternative
relationship between charge
distributions and electric fields:

fﬁdx&: Qenc’

€0

Gauss’ law

Gauss’ law is a relationship between the
field at all the points on the surface and
the total charge enclosed within the
surface.

Gauss’ law

E E
Gaussian Surface

©~— Point charge +q

® <~ Point charge -q

e If the
electric-field
pattern is known
in a given region,
what can we
determine about
the charge

distribution in thé:}
region?




Closed surface

® A closed surface (Gaussian
surface) is one enclosing a
volume.
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® A sphere is a closed
surface.

Closed surface
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® A cube is a closed surface.

Closed surface
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e A circle is not a closed
surface.

Closed surface


https://www.wikiwand.com/en/Gaussian_surface
https://www.wikiwand.com/en/Gaussian_surface

® A square is not a closed
surface.

Closed surface
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® An open semi-sphere

Closed surface
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Closed surface

® An closed semi-sphere
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Closed surface

® An open surface.
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e Unit normal has two possible
directions for an open surface.

Convention



e For an open surface, we can use
either direction, as long as we are
consistent over the entire surface.

Convention
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e For an open surface, we can use
either direction, as long as we are
consistent over the entire surface.
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e For an open surface, we can use
either direction, as long as we are
consistent over the entire surface.

Convention

Yes




® The outward normal is used to
calculate the flux through a closed
surface.

Convention
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Charge and Electric Flux

® How can you determine
how much (if any) electric
charge lies within the box
(closed surface)?

(a) A box containing an unknown amount of
charge

,,,,,,



Charge and Electric Flux

® How can you determine
how much (if any) electric
charge lies within the box
(closed surface)?

e Agssume the box is made of

a material that has no
effect on any electric fields

(a) A box containing an unknown amount of
charge

*****



Charge and Electric Flux

A charge distribution
produces an electric field

An electric field exerts a
force on a test charge

Move a test charge qg
around the vicinity of the
box.

By measuring the force F
experienced by the test
charge at different
positions, make a 3D map
of the E = F/qq field.

(b) Using a test charge outside the box to probe
the amount of charge inside the box

E

E
\ Test charge ¢,

| 7
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N \ R
E
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Charge and Electric Flux

To determine the contents of
the box, we actually need to
measure E on only the surface

of the box. PR S <8
A single positive point charge / S
inside the box. 7\\ N

o\ /

+q@ -
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Charge and Electric Flux

To determine the contents of
the box, we actually need to
measure E on only the surface
of the box.

There are two positive charges.




Charge and Electric Flux

E
W\
To determine the contents of ~ -/ /

the box, we actually need to .
measure E on only the surface —q@ o |  —
of the box. . RS

A single negative charge. //( ~ ‘\\\\‘\



Charge and Electric Flux

To determine the contents of
the box, we actually need to
measure E on only the surface
of the box.

Two negative charges.




Charge

To determine the contents of
the box, we actually need to
measure E on only the surface
of the box.

No charge in the box, no flux.

and Electric Flux



Charge and Electric Flux

7
To determine the contents of \ | /

the box, we actually need to +q@ : e
measure E on only the surface | P
of the box. —_—_— @—q

Zero net charge: inward flux ; < \ \\
cancels outward flux. \ -



Charge and Electric Flux

+0 — Uniformly
charged

RSN

To determine the contents of

the box, we actually need to __>\_~_‘ N
measure E on only the surface

of the box. __ S
No charge inside box: inward There is an electric field, but it

flux cancels outward flux. “Hows into” the box on half of

its surface and “flows out of”
the box on the other half.

Hence no net electric flux into
or out of the box.



Electric Flux and Enclosed Charge

(a) Positive charge inside box,  (b) Positive charges inside box, (c) Negative charge inside box,  (d) Negative charges inside box,

outward flux outward flux inward flux inward flux
E E
7 > N
i@ W l 4@ e O, =

S

T T

To determine the contents of the box measure E on the surface
of the box.

e [f the enclosed charge is positive the electric field points
out of the box.

e [f the enclosed charge is negative the electric field points
into the box.



Electric Flux and Enclosed Charge

(a) No charge inside box, (b) Zero net charge inside box, (c) No charge inside box,
zero flux inward flux cancels outward flux. inward flux cancels outward flux.
+0 — Uniformly
i charged
o sheet
E=0 A / AN
\+q ® 4 \
- — \
T @f‘l\ NUE

Summary: The net electric flux through the surface of the box
is directly proportional to the magnitude of the net charge
enclosed by the box.



Electric Flux and Enclosed Charge

(2) A box containing a charge




Electric Flux and Enclosed Charge

(b) Doubling the enclosed charge
doubles the flux.




Electric Flux and Enclosed Charge

(c) Doubling the box dimensions
does not change the flux.




Qualitative statement of Gauss’s law

® Whether there is a net outward or inward electric flux
through a closed surface depends on the sign of the
enclosed charge.

® Charges outside the surface do not give a net electric flux
through the surface.

® The net electric flux is directly proportional to the net
amount of charge enclosed within the surface but is
otherwise independent of the size of the closed surface.



Calculating Electric Flux

® The net electric flux through a closed surface is directly
proportional to the net charge inside that surface.

® To be able to make full use of this law, we need to know
how to calculate the electric flux.

e We'll again refer to analogy between an electric field E and
the field of velocity vectors v in a flowing fluid.



When the area is
perpendicular to the flow
velocity v and the flow
velocity is the same at all
points in the fluid, the
volume flow rate dV//dt is
the area A multiplied by
the flow speed v:

av _

A
a

Flux: Fluid-Flow Analogy

(a) A wire rectangle in a fluid

=1




Flux

When the rectangle is tilted at
an angle ¢ so that its face is
not perpendicular to v, the
area that counts is the
silhouette area that we see
when we look in the direction of
v. The projected area A is
equal to A cos ¢:

C(li—‘; = vAcos¢
Check: If ¢ =90°, dV/dt = 0;
the wire rectangle is edge-on to
the flow, and no fluid passes
through the rectangle.

: Fluid-Flow Analogy

(b) The wire rectangle tilted by an angle ¢

A, =Acosd A

7
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A

—

v
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Flux

We can express the volume flow
rate more compactly by using
the concept of vector area A, a
vector quantity with magnitude
A and a direction perpendicular
to the plane of the area we are
describing.

dv .
aad Y|
a

: Fluid-Flow Analogy

(b) The wire rectangle tilted by an angle ¢

A, =Acosd A

7

4

A

—

v
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Flux of a Uniform Electric Field

® Let us repla‘ce the fluid (a) Surface is face-on to electric field:
velocity v by the electric < E dndA are parallel (the angle between E
= and A is ¢ = 0).
field E. :

« The flux ®, = E-A = EA.

® The electric flux through
the area is the product of
the field magnitude £ and
the area A: 6=0

&y
)

o =FA

® The SI unit for g is
N-m?/C.




Flux of a Uniform Electric Field

(b) Surface is tilted from a face-on
orientation by an angle ¢:
« The angle between E and 4 is ¢.
« The flux &, = E-A = EAcos .

o [f the area A is flat but not

perpendicular to the field E, then A
-
fewer field lines pass through it. E—\ *
® In this case the area that counts is 1A X
P A
the silhouette area that we see when N -
looking in the direction of E:
®p=FEAcos¢ =E-A, (electric flux for uniform E, flat surface)



Flux of a Uniform Electric Field

(c) Surface is edge-on to electric field:
« E and A are perpendicular (the angle
between E and A;lSib = 90°).
e The flux &y = E+A = EA cos 90° = 0.
If the area is edge-on to the

field, E and A are A4
perpendicular and the flux is
Z€ro: I o - o
BT P i
A




Exercise: Electric flux through a disk

A disk of radius 0.10 m is
oriented with its normal unit
vector n at 30° to a uniform
electric field E of magnitude
2.0 x 103N/C.

(a) What is the electric flux
through the disk?

(b) What is the flux through
the disk if it is turned so that n
is perpendicular to E?

(¢c) What is the flux through
the disk if n is parallel to E?

r=0.10m

30°

=y



Exercise: Electric flux through a disk

a) The area is F=010m | .
A=mr? =3.14(0.10m)? ;; §30° P

= 0.0314 m?

The flux is then

by = FAcoso
= (2.0 x 10> N/C) (0.0314m?) cos 30°
= 54N -m?/C




Exercise: Electric flux through a disk

b) The normal to the disk is r=010m (N
now perpendicular to E, so |

¢ =90° cos¢p =0, and P = 0. W

&y




Exercise: Electric flux through a disk

¢) The normal to the disk is r=010m (N
parallel to E, so ¢ = 0 and ‘
cos ¢ = 1: W

dp = (2.0 x 10> N/C) (0.0314 m?)
= 63N -m?/C

ST




Exercise: Electric flux through a cube

An imaginary cubical surface of side L
is in a region of uniform electric field E.
Find the electric flux through each face
of the cube and the total flux through
the cube when

(a) it is oriented with two of its faces
perpendicular to E

(@)
ns
n -
L —
R
B
— |



Exercise: Electric flux through a cube

An imaginary cubical surface of side L (b)
is in a region of uniform electric field E.
Find the electric flux through each face
of the cube and the total flux through
the cube when

(a) it is oriented with two of its faces
perpendicular to E

and (b) the cube is turned by an angle ¢
about a vertical axis.




Exercise: Electric flux through a cube

An imaginary cubical surface of side L

is in a region of uniform electric field E.

Find the electric flux through each face

of the cube and the total flux through

the cube when

(a) it is oriented with two of its faces

perpendicular to E

g = EL? cos 180° = —EL?

gy = EL? cos0 = +EL?

Opg =Py =Py = Ppg = FL? cos90° =

The total flux through the cube is

Piot = Pp1+Pp2+Pp3+Prs+Pps5+Prs
=KL+ FEL*+0+0+04+0=0

(@)
’%5



Exercise: Electric flux through a cube

and (b) the cube is turned by an angle (b)
about a vertical axis.

Oy = EL%cos(180° — 0) = —EL?cos 6
&y = EL? cosd

®p3 = EL?*cos(90° + 0) = —EL?sin
®py = EL%cos(90° — 0) = +EL?sin
Ops = Ppg = EL? cos90°

The total flux through the cube is

Dot = Pp1 + Pr2 + Pp3 + Py + Pps + Pre
=0




Flux of a Nonuniform Electric Field

e
e What happens if the E P h ¥
isn’t uniform but varies

from point to point over
the area A7

® Or what if A is part of a
curved surface?

e (Calculate flux through
each element and integrate
the results to obtain the
total flux.

® Divide the surface into
many small elements dA
each of which has a unit
vector n perpendicular to
it and a vector area

dA = hdA. ‘I)EZ/E'dA



Exercise: Electric flux through a sphere

A point charge g = +3.0 uC is
surrounded by an imaginary sphere of
radius 7 = 0.20 m centered on the
charge. Find the resulting electric flux
through the sphere.




Exercise: Electric flux through a sphere

The surface is not flat and the electric
field is not uniform, so to calculate
the electric flux (our target variable)
we must use the general definition

@E:/E.dx

&)

dA



Exercise: Electric flux through a sphere

The surface is not flat and the electric
field is not uniform, so to calculate
the electric flux (our target variable)
we must use the general definition

@E:/ﬁ.dg

Here, E and dA at all points on the
surface are in the same direction
(cos¢ = 1). Thus

@E:/E-dA:/EdA

o1

dA



Exercise: Electric flux through a sphere

Here, E and dA at all points on the dA
surface are in the same direction
(cos¢ = 1). Thus

@E:/E-dA:/EdA .,

1]

Because of the symmetry, at any point
on the sphere of radius r the electric
field has the same magnitude

E = —1 hence we can take it

4dmeqr?
outside the integral

@E:E/dA:EA



Exercise: Electric flux through a sphere

Because of the symmetry, at any point dA
on the sphere of radius r the electric
field has the same magnitude

E = —1— hence we can take it
TEQT
outside the integral ®\

@E:E/dA:EA

As A = 47r? we obtain




Exercise: Electric flux through a sphere

As A = 47r? we obtain dA
Op=FEA= -1 4m2=4
Amegr? €0
Plugging in the numbers ?\r P
q
q) = Vum -
E 0 7
+3.0 uC

~ 8.85 x 10-12C2/N - m?
=3.4x10°N.-m?/C




What is the total flux of the electric
field through the rectangular surface
shown in the figure?

Exercise




We will apply @ E= i E - dA where
= cy2k and dA = bdyk and so

a
Dy — cy? bdyk-k
E /oy y~1,
dA —

Exercise




We will apply @ = [ E - dA where
= cy2k and dA = bdyk and so

Exercise




We will apply @ E= i E - dA where
= cy2k and dA = bdyk and so

a
@E:/ ey’ bdyk-k
0~~~ ~~
E

Exercise




Carl Friedrich Gauss (1777-1855)

® one of the greatest
mathematicians

® helped develop several
branches of mathematics

® calculated the orbit of the
first asteroid to be
discovered

® also made state-of-the-art
investigations of the earths
magnetism

® CGS unit of magnetic field

named after him
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Gauss’s Law

E is the total field at the position of the surface area element
dA.
Qenc

€0

@E:fﬁ.dxz

The total electric flux ®g through a closed surface is equal to

the total (net) electric charge inside the surface, divided by ep.



Point Charge Inside a Spherical Surface

The same number of field lines and the same
flux pass through both of these area elements.

e E-field magnitude at radius
R: E(R)= =%
e Radial direction is normal

to spherical surface
e Surface area A = 47 R?

® Flux

I q 2
iq)E=€—qO

Flux is independent of the
radius of the sphere.

[m] [ =

22)C (62



Point Charge Inside a Nonspherical
Surface

(a) The outward normal to the ®) E—ﬁeld not in the
surface makes an angle ¢ 4\ n .
with the direction of E. direction of the normal
to the surface:
If E makes an angle with
the normal, then

o

The projection of the
area element dA onto

ey ™ d®r = EdAcos ¢

For a closed surface enclosing the point charge ¢

@E:fﬁ.dgzi
€0




Point Charge Inside a Nonspherical

Surface

tyy

For a closed surface

enclosing no charge

Op = j{ E-dA =0
Field line
entering surface Same field line

leaving surface




General Form of Gausss Law

@E:j[Ecosq’)dA:]{ELdA:]{E-dK:

(a) Gaussian surface around positive charge:
positive (outward) flux

Qenc
.

€0
For a negative charge, the direction of the field is reversed.

(b) Gaussian surface around negative charge:
negative (inward) flux

The flux in (b) is negative, i.e. Py = —¢/ep < 0.




Electric flux and enclosed charge

A _
o4 =2

‘\%ﬂg\l}, - o5 =?

D
;’/’

(4
o¢ =7

D|_
oD =7




Electric flux and enclosed charge

o3 =7
o3 =7
B33 =7
oot =7

S5 _
oy =7




Applications of Gauss’ Law

Gauss’ law can be used in two ways.

o [f we know the charge distribution, and if it has enough
symmetry to let us evaluate the integral in Gauss’ law, we
can find the field.

o [f we know the field, we can use Gauss’ law to find the

charge distribution, such as charges on conducting surfaces.



Charged conductor in equilibrium

When excess charge is placed on a solid conductor and is at
rest, it resides entirely on the surface, not in the interior of the
material.

Gaussian surface A

inside conductor Conductor
(shown in (shown in
cross section) cross section)

When excess charge is placed on a solid
conductor and is at rest, it resides

j entirely on the surface, not in the interior
of the material.

Charge on surface
of conductor



Charged conductor in equilibrium

When ezcess charge is placed on a solid conductor and is at
rest, it resides entirely on the surface, not in the interior of the
material.

Proof:
Gaussian surface A ® In an electrostatic situation (with all charges at
e . Conductor - o o 0 g
inside conductor et rest) E at every point in the interior of a
(shown in (shown in ¢ ’ ]
cross section) cross section) conducting material is zero.

.
® [f E were not zero, the excess charges would
move.

® Consider a Gaussian surface inside the
conductor, such as surface A. Because E=0
everywhere on this surface, Gauss’ law requires
that the net charge inside the surface is zero.

Charge on surface
of conductor

® Thus, there can be no excess charge at any
point within a solid conductor; any excess
charge must reside on the conductor’s surface.



Conducting sphere with charge ¢ > 0

® conductor = charge on the

£ Gaussian surfaces
& 2 atr =2Randr = 3R Surfa.ce
+ — ]
+ +

+ +

I

|

|

i

Outside the sphere, the magnitude
.-of the electric field decreases with
" the square of the radial distance
from the 4"Mm,’r of the sphere:
q

1
E= 5
dmey r?

electric field is zero: | |
E=0.
E(R)j+ |

|

+
E
L g
E(R) = e
&) dmey R?
Inside the sphere, th
ER)]9




Conducting sphere with charge ¢ > 0

® conductor = charge on the

P Gaussian surfaces
v P atr=2Randr = 3R Surface
+  —R—>
+ + [ = A
gt ! ® symmetry = E = E(r)r
£ |

|
|

| i
| Outside the sphere, the magnitude
-of the electric field decreases with
" the square of the radial distance
from the 4“Mzmr of rhr sphere:

dmey 12

L g
ER)=—— -5 |-+
&) dmey R?

Inside the sphere, the
electric field is zero!
E=0.
ER)4 |-
ER)]9




Conducting sphere with charge ¢ > 0

® conductor = charge on the

s Gaussian surfaces
v P atr=2Randr = 3R Surface
[——
+ +] — A
. 4 ¢ symmetry = E = E(r)r
£
! Outside the sphere, the magnitude [ ]
E(R) = L L of :he el;cch field :\e \ Symmetry =7 ChOOSG a

+" the square of the radial di
from the center of the sphere:

spherical Gaussian surface

Inside the sphere, the

L\
|
! 1 g
electric field is zero? | E= 5
o I dmey 1
. ER)fA |- +
E(R)9 oy
E .
0 R 2R 3R !




Conducting sphere

[}
P Gaussian surfaces
i I atr=2Randr = 3R
+ — ]
+ +
+ + L]
+ |
|
E I
g | Outside the sphere, the magnitude [ ]
ER) = —m 17 -of the electric field decreases with
€ \ " the square of the radial distance
Inside the sphere, the } from the center of the sphere:
* sphere, the, 1 g
electric field is zero: | | E= 7’
E=0. ! e
E(R)j4 + L4
ER)]9 bt
A .
0 R 2R 3R

with charge ¢ > 0

conductor = charge on the
surface

symmetry = E = E(r)f
symmetry = choose a
spherical Gaussian surface

Qenc = q for r > R and zero
otherwise



Conducting sphere

[}
P Gaussian surfaces
i I atr=2Randr = 3R
+ — ]
+ +
+ + L]
+ |
|
E I
g | Outside the sphere, the magnitude [ ]
ER) = —m 17 -of the electric field decreases with
€0 \ " the square of the radial distance
Inside the sphere, the } from the center of the sphere:
* sphere, the, 1 g
electric field is zero: | | E= 7’
E=0. ! e
E(R)j4 + L4
ER)]9 bt
A .
0 R 2R 3R
[ J

with charge ¢ > 0

conductor = charge on the
surface

symmetry = E = E(r)f
symmetry = choose a
spherical Gaussian surface

Qenc = q for r > R and zero
otherwise

Flux ®p = E(r) 47r?



Conducting sphere

£ Gaussian surfaces
4 2 atr=2Randr = 3R
+ —R—>
+ +|
+ + + }
[
. 1 g | Outside the sphere, the magnitude
E(R) = s of the electric field d s with

~" the square of the radial distance
from the center of the sphere:
- q

Inside the sphere, the
. E=

electric field is zero
E=0.

ER)j4

ER)[9

’

dmeq 12

o
4dmeg 127

0,

with charge ¢ > 0

conductor = charge on the
surface

symmetry = E = E(r)f
symmetry = choose a
spherical Gaussian surface

Qenc = q for r > R and zero
otherwise

Flux &g = E(r) 4nr?

r>R

r<R



Conducting sphere with charge ¢ > 0

® conductor = charge on the

& i Gaussian surfaces

++ *R; atr=2Rand r = 3R SU.I'faCG
+ + = A
b ® symmetry = E = E(r)f
E |
! utside the sphere, the magnitude [ ]
E(R) = 41 % { ‘_.((»)\’lhuiulclclrvrlﬁcm(1'L‘Lruu:u\ x\nlh Symmetry = ChOOSG a
e -

C oo o hesphene spherical Gaussian surface
L g

Inside the sphere, the
electric field is zero: |

E0 ey 1? ® Qenc = q for r > R and zero
“RV‘;‘ H s S otherwise
® Flux ®p = E(r) 4mr?
Op = Qenc/eo
E(r) = ﬁ%, r>R
0, <R

For » > R electric field same as a point charge ¢ located at the
center.



an infinitely long, charged wire

Gaussian

o symmetry = E = E(r)i
/surface

22)C (62



an infinitely long, charged wire

o symmetry = E = E(r)i
® symmetry = choose a

cylindrical Gaussian surface




an infinitely long, charged wire

o symmetry = E = E(r)i
® symmetry = choose a
E =E Gaussian cylindrical Gaussian surface

® Qenc = Al with linear charge
density A




an infinitely long, charged wire

o symmetry = E = E(r)i
® symmetry = choose a
cylindrical Gaussian surface

® Qenc = Al with linear charge
density A

2mrl

® Adjacent side of the cylinder:



an infinitely long, charged wire

o symmetry = E = E(r)i
® symmetry = choose a
E =E Gaussian cylindrical Gaussian surface

A surf:
- o /su[fdce
i \

® (Qenc = Al with linear charge
ey density A

® Adjacent side of the cylinder:
2mrl

e Flux @E:fﬁ'dx&:
27rlE(r) + 0+ 0 (no flux from

the caps)



an infinitely long, charged wire
e symmetry = E = E(r)i

® symmetry = choose a
EL=E Gaussian cylindrical Gaussian surface

A
» L /sul‘face
i Y

® Qenc = Al with linear charge

t
i
Il
(=]

\ﬂ == density A
”*\”’V}gj/ \ j ® Adjacent side of the cylinder:
\\‘ — 2mrl

° Flux@Ezfﬁ-dA:
217l E(r) 4+ 0+ 0 (no flux from

the caps)
(I)E = Qenc/ €0

= 1 A
E(r) = —T
(r) 2meg T L1

Exercise: Check units of the E-field.
Recall: We found the same result last week by integrating the

feld of a line of charce



infinite sheet of charge

Choose coordinates such that the plane is at z = 0.

e surface charge density o

Gaussian
surface
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Choose coordinates such that the plane is at z = 0.

o surface charge density o
L4 symmetry =

E E(|z))k for >0,

E = E(|z))(— ) z < 0 .

Gaussian
surface




infinite sheet of charge

Choose coordinates such that the plane is at z = 0.

o surface charge density o
L4 symmetry =
E E(|z))k for >0,
E = E(|z))(— ), z<0.
® choose a cylindrical
Gaussian surface

Gaussian
surface




infinite sheet of charge

Choose coordinates such that the plane is at z = 0.

surface charge density o
L4 symmetry =

E E(z)k for >0,

E = E(|z))(— ), z<0.

® choose a cylindrical
Gaussian surface

Qenc =cA

Gaussian
surface




infinite sheet of charge

Choose coordinates such that the plane is at z = 0.

Gaussian
surface

o surface charge density o

symmetry =
E E(|z))k for >0,

B = B(2)(-K), 2 < 0.

choose a cylindrical
Gaussian surface

Qenc = 0A

Flux @E:ff)-djg:
2AE(]z]) (no flux from
the adjacent side)



infinite sheet of charge
Choose coordinates such that the plane is at z = 0.

e surface charge density o
L symmetry =
E E(|z)k for >0,
E = E(|z))(— ) z2<0.

® choose a cylindrical
Gaussian surface

Qenc = A

Flux &p = § E - dA =
2AE(]z|) (no flux from
the adjacent side)

f]:j .dA = Qenc/€0 = 2EA =0A/€ey —

Gaussian
surface

g

L2 E:(TZA

——k
2¢q 2¢p |2|
The field magnitude is independent of z.

Note: Dicenntiniiity in Fofield craceine a chaveed ciirface



oppositely charged parallel conducting
plates

(a) Realistic drawing

Between the two kq@.-
N

plates the electric field,

is nearly uniform, ’ .
pointing from the \+
positive plate toward

the negative one.




oppositely charged parallel conducting
plates

® jdealize as two infinite

sheets of charge
(b) Idealized model 1 2

® yse superposition
<! principle or Gauss’ law

In the idealized case """ | H——————1 L] E—ﬁeld ln betWeen

we ignore “fringing” =
at the plate edges and —
treat the field between =
E =o0/¢

the plates as uniform.

Cylindrical Gaussian ——
surfaces (seen from S,
the side)

o F-field outside

E=0



uniformly charged sphere

e uniform charge density p
Gaussian p= Q/(47TR3/3)

surface

symmetry = E = E(r)f

symmetry = choose a
10 spherical Gaussian surface

imeor Qenc = Q forr > R
Qenc = 4mr3p/3 forr < R
r ® Flux ®p = 47r?E(r)

For r < R, E-field increases linearly with r

r<R.

E(r) 1 4mr3p/3 1 Qr
7)== — —=
dmeg 12 4dmeg R3’

For r > R, E is the same as a point charge @ located at the

center.



(@) Solid conductor with charge g

dc T
AT T TN
/[ . +)
+ E = 0 within
\ conductor ‘
+/
+ +

e g resides entirely on the surface of
the conductor. The situation is electrostatic, so
E = 0 within the conductor.

Charges on conductors

® Apply Gauss’ law for any
closed surface inside the
conductor

e Since E = 0 inside the
conductor, any volume inside
a conductor contains zero net
charge.

® = all the excess charge on the
conductor must be on its
surface



(b) The same conductor with an internal cavity

ac - —F +"""; ——__ Arbitrary
7% A Gaussian
(+ \“surtace A
\ |
+/
o /
N+ g

the electric field at all points on the Gaussian
surface must be zero.

= 0 at all points within the conductor,

Charges on conductors

® Apply Gauss’ law for any
closed surface inside the
conductor

e Since E = 0 inside the
conductor, any volume inside
a conductor contains zero net
charge.

® = all the excess charge on the
conductor must be on its
surface

What if there is a cavity inside the conductor?



(b) The same conductor with an internal cavity

__ Arbitrary
A GaL\lsslan
\surface A

e+ * FT——u
ye :

the electric field at all points on the Gaussian
surface must be zero.

= 0 at all points within the conductor,

Charges on conductors

® Apply Gauss’ law for any
closed surface inside the
conductor

e Since E = 0 inside the
conductor, any volume inside
a conductor contains zero net
charge.

® = all the excess charge on the

conductor must be on its
surface

What if there is a cavity inside the conductor?
= Again, no charge on the cavity surface.



Charge inside a cavity in conductor

Consider charge ¢ show in the figure. Assume charge go on the
conductor.

e Apply Gauss’ law for any
closed surface enclosing the
cavity.

e Since E = 0 inside the
conductor, cavity surface must
have charge —gq.

(c) An isolated charge ¢ placed in the cavity

For E 1o be zero at all points on the Gaussian
surface, the surface of the cavity must have a o — Charge q + QC must be on
total charge —q.

the outer surface of the
conductor.



Net chorﬁe =+ 71 nC

+5 nCon
ccxw‘rj wall

Gowussian
surfoce

+2 nCon

outer su rface

Example

® Q: How much charge is on
the inner and outer surface
of the conductor?



Net chorﬁe =+ 71 nC

Gowussian
surfoce

+5 nCon +2 nCon
cavity wall outer surfoce

Example

® Q: How much charge is on
the inner and outer surface
of the conductor?

e Consider the Gaussian
surface shown with dashed
lines.



Example

® Q: How much charge is on
Net charge = + 7 nC the inner and outer surface

Goaussion of the conductor?
surtace

e Consider the Gaussian
surface shown with dashed
lines.

® Net charge inside must be
Z€ro.

+5 nCon +2 nCon
cavity wall outer surfoce



Example

Q: How much charge is on
Net charge = + 7 nC the inner and outer surface

Goaussion of the conductor?
surtace

e Consider the Gaussian
surface shown with dashed
lines.

® Net charge inside must be
Z€ro.

® = charge on the inner

surface is +5nC.
+5 nCon +2 nCon
ccwi‘rj wall outer surfoce



Example

Q: How much charge is on
Net charge = + 7 nC the inner and outer surface

Goaussion of the conductor?
surtace

e Consider the Gaussian
surface shown with dashed
lines.

® Net charge inside must be
Z€ro.

® = charge on the inner

S e surface is +5nC.
+5 nCon +4 nCon
cavity wall outer surfoce ® — charge on the outer

surface is

4£7nC — 5nC = 2nC.



Testing Gauss’ Law

A charged metal sphere is lowered into a conducting container.

(@) Insulating —

thread o Charged
*., conducting
ball
/
Metal
container Insulating
stand

1




Testing Gauss’ Law

The charged sphere is enclosed in the conducting container.

(b)

Metal lid

Charged ball induces charges on the
interior and exterior of the container.



Testing Gauss’ Law

The charged metal sphere touches the conducting container.

(9

Metal lid

Once the ball touches the container, it
is part of the interior surface; all the
charge moves to the container’s exterior.



Van de Graaff electrostatic generator

® belt produces charge build up

® by Gauss’ law charge moves to the
outside

® large E-fields around the shell

® used as an accelerator of charged
particles and physics demos

for belt




Electrostatic shielding

(a)

Field pushes electrons ~ Net positive charge
toward left side. remains on right side.

{

’
|

[
I
—_
E

L, |
—
N

/IIIII|I

t
f

Field perpendicular to conductor surface

redistribution of the free electrons in the conductor

redistribution causes an additional E-field such that the
total field at every point inside the box is zero

also alters the shapes of the field lines near the box

such a setup is often called a Faraday cage.



Field at the Surface of a Conductor

e Assume surface

OuFer ‘ charge density o.
Sl;rtacedot A e Apply Gauss’ law:
charge E =F

conductor + dp=EFE A=FEA

and

Qenc =0A.

Gaussian
surface

A :>E:2
€0
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