
Electric potential

FIZ102E: Electricity & Magnetism

Yavuz Ekşi

İTÜ, Fizik Müh. Böl.

1



Outline

Electric potential energy

Electric Potential Energy in a Uniform Field

Electric Potential Energy of Two Point Charges

Electric Potential Energy with Several Point Charges

Interpreting Electric Potential Energy

Electric potential

Calculating Electric Potential

Finding Electric Potential from Electric Field

Electron Volts

Calculating electric potential

Ionization and Corona Discharge

Equipotential surfaces

Equipotential Surfaces and Field Lines

Equipotential Surfaces and Conductors

Potential gradient

2



Learning Goals

• How to calculate the electric potential energy of a

collection of charges.

• The meaning and significance of electric potential.

• How to calculate the electric potential that a collection of

charges produces at a point in space.

• How to use equipotential surfaces to visualize how the

electric potential varies in space.

• How to use electric potential to calculate the electric field.
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Maxwell’s Equations and the Lorentz Force

Gauss’ law∮
~E · d~A =

Qenc

ε0

Gauss’ law for magnetism∮
~B · d~A = 0

Faraday’s law∮
~E · d~l = − d

dt

∫
~B · d~A

Generalized Ampere’s law∮
~B · d~l = µ0iC+µ0ε0

d

dt

∫
~E · d~A

Lorentz force on a particle with charge q and velocity ~v

moving in ~E & ~B fields

~F = q
(
~E + ~v × ~B

)
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Introduction

• When a charged particle moves in an electric field, the field

exerts a force that can do work on the particle.

• This work can be expressed in terms of electric potential

energy.

• Just as gravitational potential energy depends on the

height of a mass above the earth’s surface, electric

potential energy depends on the position of the charged

particle in the electric field.

• We’ll use a new concept called electric potential, or simply

potential to describe electric potential energy.

• In circuits, a difference in potential from one point to

another is often called voltage.
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Electric potential energy



Review

• In mechanics work, potential energy, and conservation of

energy were extremely useful.

• these concepts are just as useful for understanding and

analyzing electrical interactions.

• When a force ~F acts on a particle that moves from point a

to point b, the work Wa→b done by the force is given by a

line integral:

Wa→b =

∫ b

a

~F · d~l =

∫ b

a
F cosφ dl

where d~l is an infinitesimal displacement along the

particles path and φ is the angle between ~F and d~l at each

point along the path.
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Review

• If ~F is conservative, the work done

by ~F can always be expressed in

terms of a potential energy U .

• When the particle moves from a

point where U is Ua to a point where

it is Ub, the change in potential

energy is ∆U = Ub − Ua and

Wa→b = Ua−Ub = −(Ub−Ua) = −∆U

• When Wa→b > 0, Ua > Ub, ∆U < 0,

and U decreases. 9



Review

• The baseball falls from a high point

(a) to a lower point (b) under the

influence of the earth’s gravity; the

force of gravity does positive work,

and the gravitational potential

energy decreases

• When a tossed ball is moving

upward, the gravitational force does

negative work during the ascent, and

the potential energy increases.
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Review

• The work-energy theorem says that the change in kinetic

energy ∆K = Kb −Ka during a displacement equals the

total work done on the particle.

• If only conservative forces do work, then Wa→b = Ua − Ub
gives the total work, and Kb −Ka = −(Ub − Ua).
• We usually write this as

Ka + Ua = Kb + Ub

• The total mechanical energy (kinetic plus potential) is

conserved under these circumstances.
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Electric Potential Energy in a Uniform Field

• A pair of large, charged, parallel metal

plates sets up a uniform, downward E.

• E exerts a downward force with

magnitude F = q0E on a positive test

charge q0.

• As the q0 moves downward a distance d

from a to b, F on q0 is constant and

independent of its location.

• The work done by E is

Wa→b = Fd = q0Ed

• This work is +, since F is in the same

direction as the net displacement of q0.
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Electric Potential Energy in a Uniform Field

• The y-component of the electric force,

Fy = −q0E, is constant, and there is no

x- or z-component.

• This is exactly analogous to the

gravitational force on a mass m near the

earth’s surface; for this force, there is a

constant y-component Fy = −mg and

the x- and z-components are zero.

• Because of this analogy, we can conclude

that the force exerted on q0 by the

uniform electric field is conservative, just

as is the gravitational force.
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Electric Potential Energy in a Uniform Field

• This means that the work Wa→b done by

the field is independent of the path the

particle takes from a to b.

• We can represent this work with a

potential-energy function U .

• The potential energy for the

gravitational force Fy = −mg was

U = mgy; hence the potential energy for

the electric force Fy = −q0E is

U = q0Ey
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Electric Potential Energy in a Uniform Field

• When the test charge moves from height

ya to height yb, the work done on the

charge by the field is given by

Wa→b = −∆U = qE(ya − yb)
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Electric Potential Energy in a Uniform Field

• When ya > yb, the + test

charge q0 moves downward,

in the same direction as ~E;

• The displacement is in the

same direction as the force
~F = q0~E, so the field does

positive work and U

decreases.
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Electric Potential Energy in a Uniform Field

• When ya < yb, the positive

test charge q0 moves

upward, in the opposite

direction to ~E.

• the displacement is

opposite the force, the field

does negative work, and U

increases.
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Electric Potential Energy in a Uniform Field

• When ya < yb, the positive

test charge q0 moves

upward, in the opposite

direction to ~E.

• the displacement is

opposite the force, the field

does negative work, and U

increases.
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Electric Potential Energy in a Uniform Field

If the test charge q0 < 0

• U increases when it moves

with the field and

• U decreases when it moves

against the field.
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Electric Potential Energy in a Uniform Field

If the test charge q0 < 0

• U increases when it moves

with the field and

• U decreases when it moves

against the field.
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Electric Potential Energy in a Uniform Field

Whether the test charge is + or −,

the following general rules apply:

• U increases if q0 moves in the

direction opposite the electrical

force ~F = q0~E

• U decreases if q0 moves in the

same direction as ~F = q0~E

q0 > 0
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Electric Potential Energy in a Uniform Field

Whether the test charge is + or −,

the following general rules apply:

• U increases if q0 moves in the

direction opposite the electrical

force ~F = q0~E

• U decreases if q0 moves in the

same direction as ~F = q0~E

This is the same behavior as for gravitational potential energy

which increases if a mass m moves upward (opposite the

direction of the gravitational force) and decreases if m moves

downward (in the same direction as the gravitational force).
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Electric Potential Energy of Two Point Charges

• The idea of electric potential energy isn’t restricted to the

special case of a uniform ~E.

• We can apply this concept to a point charge in any ~E

caused by a static charge distribution.

• Recall: we can represent any charge distribution as a

collection of point charges.

• Therefore it’s useful to calculate the work done on a test

charge q0 moving in the electric field caused by a single,

stationary point charge q.
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Electric Potential Energy of Two Point Charges

• First consider a displacement

along the radial line.

• The force on q0 is given by

Coulomb’s law, and its radial

component is

Fr =
1

4πε0

qq0
r2
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Electric Potential Energy of Two Point Charges

• The force is not constant during

the displacement, and we must

integrate to calculate the work

Wa→b done on q0 by this force as

q0 moves from a to b:

Wa→b =

∫ rb

ra

Fr dr =
qq0

4πε0

∫ rb

ra

dr

r2

=
qq0

4πε0

(
1

ra
− 1

rb

)

• The work done by the electric

force for this path depends on

only the endpoints. 17



Electric Potential Energy of Two Point Charges

• Now consider a more general

displacement in which a and b do

not lie on the same radial line.

• From Wa→b =
∫ b
a
~F · d~l the work

done on q0 during this

displacement is given by

Wa→b =

∫ rb

ra

F cosφ dl

=
qq0

4πε0

∫ rb

ra

cosφ dl

r2
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Electric Potential Energy of Two Point Charges

• But Fig. shows that

cosφ dl = dr.

• The work done during a small

displacement d~l depends only dr

• Thus

Wa→b =
qq0

4πε0

(
1

ra
− 1

rb

)
is valid even for this more

general displacement.

• The work done on q0 by ~E

produced by q depends only on

the endpoints ra and rb, not on

the details of the path.
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Electric Potential Energy of Two Point Charges

• Also, if q0 returns to its starting

point a by a different path, the

total work done in the round-trip

displacement is zero.

• These are the needed

characteristics for a conservative

force.

• Thus the force on q0 is a

conservative force.
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Electric Potential Energy of Two Point Charges

• We see that Wa→b = −∆U and

Wa→b =
qq0

4πε0

(
1

ra
− 1

rb

)
are consistent if we define the

potential energy to be

Ua = qq0/(4πε0ra) when q0 is a

distance ra to q, and to be

Ub = qq0/(4πε0rb) when q0 is a

distance rb to q.
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Electric Potential Energy of Two Point Charges

• Thus

U =
1

4πε0

qq0
r

is valid no matter what the

signs of the charges q and

q0.

• The potential energy is

positive if the charges q

and q0 have the same sign.

• and negative if they have

opposite signs
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Electric Potential Energy of Two Point Charges

• Potential energy is always defined relative to some

reference point where U = 0.

• In U = 1
4πε0

qq0
r , U is zero when q and q0 are infinitely far

apart (r →∞).

• Therefore U represents the work that would be done on the

test charge q0 by the field of q if q0 moved from an initial

distance r to infinity.
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Electric Potential Energy of Two Point Charges

• If q and q0 have the same sign,

the interaction is repulsive,

Wa→b > 0 and U > 0 at any finite

separation.

• If q and q0 have the opposite

signs, the interaction is

attractive, Wa→b < 0 and U < 0.
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Electric Potential Energy of Two Point Charges

• The potential energy U given by

U =
1

4πε0

qq0
r

is a shared property of the two charges.

• If the distance between q and q0 is changed from ra to rb,

the change in potential energy is the same whether q is held

fixed and q0 is moved or q0 is held fixed and q is moved.

• For this reason, we never say “the electric potential energy

of a point charge.”

• Likewise, if a mass m is at a height h above the earth’s

surface, the gravitational potential energy is a shared

property of the mass m and the earth.
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Electric Potential Energy of Two Point Charges

• The equation

U =
1

4πε0

qq0
r

also holds if the charge q0 is outside a spherically

symmetric charge distribution with total charge q; the

distance r is from q0 to the center of the distribution.

• This is because Gauss’ law tells us that the electric field

outside such a distribution is the same as if all of its charge

q were concentrated at its center.

23



Example: Conservation of energy with electric forces

A positron (the electron’s antiparticle) has mass 9.11× 10−31 kg

and charge q0 = +e = +1.60× 10−19 C. Suppose a positron moves

in the vicinity of an α (alpha) particle, which has charge

q = +2e = 3.20× 10−19 C and mass 6.64× 10−27 kg. The α

particle’s mass is more than 7000 times that of the positron, so we

assume that the α particle remains at rest. When the positron is

1.00× 10−10 m from the α particle, it is moving directly away from

the α particle at 3.00× 106 m/s.

(a) What is the positron’s speed when the particles are

2.00× 10−10 m apart?

(b) What is the positron’s speed when it is very far from the α

particle?

(c) Suppose the initial conditions are the same but the moving

particle is an electron (with the same mass as the positron but

charge q0 = −e). Describe the subsequent motion.
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Example: Conservation of energy with electric forces

IDENTIFY and SET UP

• The electric force between a positron (or an electron) and an

α particle is conservative, so the total mechanical energy

(kinetic plus potential) is conserved. U = 1
4πε0

qq0
r gives the

potential energy U at any separation r.

• We are given the positron speed 3.00× 106 m/s when the

separation between the particles is ra = 1.00× 10−10 m.

• In parts (a) and (b) we use Ka + Ua = Kb + Ub and

U = 1
4πε0

qq0
r to find the speed for r = rb = 2.00× 10−10 m and

r = rc →∞, respectively.

• In part (c) we replace the positron with an electron and

reconsider the problem.
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Example: Conservation of energy with electric forces

Question (a): What is the positron’s speed when the particles

are 2.00× 10−10 m apart?

Solution (a):

• Both particles have positive charge, so the positron speeds up

as it moves away from the α particle.

• From the energy-conservation equation Ka + Ua = Kb + Ub

Kb = 1
2mv

2
b = Ka + Ua − Ub.

• Here Ka = 1
2mv

2
a = 1

2(9.11× 10−31 kg)(3.00× 106 m/s)2 =

4.10× 10−18 J.

• Ua = 1
4πε0

qq0
ra

= (9× 109 N ·m2/C2) (3.20×10
−19 C)(1.60×10−19 C)
1.00×10−10 m

=

4.61× 10−18 J

• Ub = 1
4πε0

qq0
rb

= 3.30× 10−18 J

• Hence Kb = Ka + Ua − Ub =

4.10×10−18 J+4.61×10−18 J−3.30×10−18 J = 6.41×10−18 J.

• From this follows

vb =
√

2Kb
m =

√
2(6.41×10−18 J)
(9.11×10−31 kg)

= 3.8× 106 m/s
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Example: Conservation of energy with electric forces

Question (b): What is the positron’s speed when it is very far

from the α particle?

Solution (b):

• When the positron and α particle are very far apart so that

r = rc →∞, the final potential energy Uc approaches zero.

• Again from energy conservation, the final kinetic energy is

Kc = Ka + Ua − Uc = 4.10× 10−18 J + 4.61× 10−18 J− 0 =

8.71× 10−18 J

• and speed of the positron is

vc =
√

2Kc
m =

√
2(8.71×10−18 J)
(9.11×10−31 kg)

= 4.4× 106 m/s
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Example: Conservation of energy with electric forces

Question (c): Suppose the initial conditions are the same but the

moving particle is an electron (with the same mass as the positron

but charge q0 = −e). Describe the subsequent motion.

Solution (c):

• The electron and α particle have opposite charges, so the force

is attractive and the electron slows down as it moves away.

• Changing the moving particle’s sign from +e to −e means

that the initial potential energy is now Ua = −4.61× 10−18 J,

which makes the total mechanical energy negative:

Ka + Ua = 4.10× 10−18 J− 4.61× 10−18 J = −0.51× 10−18 J

• The total mechanical energy would have to be positive for the

electron to move infinitely far away from the α particle.

• Like a rock thrown upward at low speed from the earths

surface, it will reach a maximum separation r = rd from the α

particle before reversing direction.

• At this point its speed and its kinetic energy Kd are zero

Ud = Ka + Ua −��>
0

Kd = −0.51× 10−18 J
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Example: Conservation of energy with electric forces

Question (c): Suppose the initial conditions are the same but the

moving particle is an electron (with the same mass as the positron

but charge q0 = −e). Describe the subsequent motion.

Solution (c):

• Ud = 1
4πε0

qq0
rd

= −0.51× 10−18 J→ rd = 9.0× 10−10 m.

• For rb = 2.00× 10−10 m we have Ub = 3.30× 10−18 J so the

electron kinetic energy and speed at this point are

Kb = Ka + Ua − Ub = (4.10× 10−18 J) + (−4.61× 10−18 J)−
(−2.30× 10−18 J) = 1.79× 10−18 J

• vb =
√

2Kb
m =

√
2(1.79×10−18 J)
(9.11×10−31 kg)

= 2.0× 106 m/s
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Electric Potential Energy with Several Point Charges

• Suppose the electric field ~E in

which charge q0 moves is caused

by several point charges

q1, q2, q3, · · · at distances

r1, r2, r3, · · · from q0

• The total electric field at each

point is the vector sum of the

fields due to the individual

charges, and

• the total work done on q0 during

any displacement is the sum of

the contributions from the

individual charges.
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Electric Potential Energy with Several Point Charges

• The potential energy associated

with the test charge q0 at point a

is the algebraic sum:

U =
q0

4πε0

(
q1
r1

+
q2
r2

+ · · ·
)

=
q0

4πε0

∑
i

qi
ri
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Electric Potential Energy with Several Point Charges

• When q0 is at a different point b, the potential energy is

given by the same expression, but r1, r2, · · · are the

distances from q1, q2, · · · to point b.

• The work done on charge q0 when it moves from a to b

along any path is equal to the difference Ua − Ub between

the potential energies when q0 is at a and at b.

U =
q0

4πε0

∑
i

qi
ri
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Electric Potential Energy with Several Point Charges

• We can represent any charge distribution as a collection of

point charges.

• The equation

U =
q0

4πε0

∑
i

qi
ri

shows that we can always find a potential-energy function

for any static electric field.

• It follows that for every electric field due to a static

charge distribution, the force exerted by that field

is conservative.
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Electric Potential Energy with Several Point Charges

• Equations U = 1
4πε0

qq0
r and U = q0

4πε0

∑
i
qi
ri

define U to be

zero when distances r1, r2, · · · are infinite.

• As with any potential-energy function, the point where

U = 0 is arbitrary; we can always add a constant to make

U equal zero at any point we choose.

• In electrostatics problems it’s usually simplest to choose

this point to be at infinity.

• When we analyze electric circuits in other choices will be

more convenient.
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Electric Potential Energy with Several Point Charges

• Equations U = q0
4πε0

∑
i
qi
ri

gives the potential energy

associated with the presence of the test charge q0 in the E

field produced by q1, q2, q3, · · · .
• But there is also potential energy involved in assembling

these charges.

• If we start with charges q1, q2, q3, · · · all separated from

each other by infinite distances and then bring them

together so that the distance between qi and qj is rij , the

total potential energy U is the sum of the potential

energies of interaction for each pair of charges:

U =
1

4πε0

∑
i<j

qiqj
rij
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Electric Potential Energy with Several Point Charges

• The potential energies of interaction for each pair of

charges:

U =
1

4πε0

∑
i<j

qiqj
rij

• This sum extends over all pairs of charges; we don’t let

i = j

• We include only terms with i < j to make sure that we

count each pair only once.
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Electric Potential Energy with Several Point Charges

• For 2 particles (1 term)

U =
1

4πε0

(
q1q2
r12

)

• For 3 particles (3 terms)

U =
1

4πε0

(
q1q2
r12

+
q1q3
r13

+
q2q3
r23

)

• For 4 particles (6 terms)

U =
1

4πε0

(
q1q2
r12

+
q1q3
r13

+
q1q4
r14

+
q2q3
r23

+
q2q4
r24

+
q3q4
r34

)

• For N particles N(N − 1)/2 terms
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Interpreting Electric Potential Energy

• There are two viewpoints on electric potential energy.

• We have defined it in terms of the work done by the

electric field on a charged particle moving in the field.

• When a particle moves from point a to point b, the work

done on it by the electric field is Wa→b = Ua − Ub.
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Interpreting Electric Potential Energy

• An alternative but equivalent viewpoint is to consider how

much work we would have to do to “raise” a particle from

a point b where the potential energy is Ub to a point a

where it has a greater value Ua.

• To move the particle slowly (so as not to give it any kinetic

energy), we need to exert an additional external force ~Fext

that is equal and opposite to the electric-field force and

does positive work.

• The potential-energy difference Ua − Ub is then defined as

the work that must be done by an external force to move

the particle slowly from b to a against the electric force.

• Because ~Fext is the negative of the electric-field force and

the displacement is in the opposite direction, this definition

of the potential difference Ua − Ub is equivalent to that

given above.
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Example: A system of point charges

Question:

• Two point charges are at fixed

positions on the x-axis, q1 = −e
at x = 0 and q2 = +e at x = a.

(a) Find the work that must be

done by an external force to

bring a third point charge

q3 = +e from infinity to x = 2a.

(b) Find the total potential

energy of the system of three

charges.
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Example: A system of point charges

Solution a:

• We need to find the work W that

must be done on q3 by an

external force ~Fext to bring q3 in

from infinity to x = 2a. We do

this by using U = q0
4πε0

∑
i
qi
ri

to

find the potential energy

associated with q3 in the presence

of q1 and q2:

W = U =
q3

4πε0

(
q1
r13

+
q2
r23

)
=

+e

4πε0

(
−e
2a

+
+e

a

)
=

e2

8πε0a
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Example: A system of point charges

Solution b:

• In part (b) we use

U = 1
4πε0

∑
i<j

qiqj
rij
, the

expression for the potential

energy of a collection of point

charges, to find the total

potential energy of the system.

• This becomes

U =
1

4πε0

(
q1q2
r12

+
q1q3
r13

+
q2q3
r23

)
=

1

4πε0

(
(−e)(e)

a
+

(−e)(e)
2a

+
(e)(e)

a

)
= − e2

8πε0a
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Exercise: Energy required to assemble a sphere of uniform

charge

Question:

• Consider a sphere of radius a and total charge Q distributed

uniformly over its volume.

• What is the potential energy associated with this assembly of

charges?
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Exercise: Energy required to assemble a sphere of uniform

charge

Solution:

• The density of charge is ρ = Q/43πa
3

• The charge of a sphere with radius r < a is q = Q(r/a)3

• The charge of a spherical shell with radius r thickness dr is

dq = ρ4πr2 dr

• Consider the potential energy of a sphere of radius r < a and

the surrounding spherical shell of thichness dr:

dU =
1

4πε0

q dq

r

• To find the total potential energy associated with this

assembly of charges add up the potential energy of each

sphere+shell pair

U =
1

4πε0

∫
q dq

r
=

3

5

1

4πε0

Q2

a
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Electric potential



Electric potential

• Potential is potential energy per unit

charge.

• The SI unit is volt: 1 V = 1 J/C

• Work done by the electric force:

Wa→b = −∆U = q0(Va − Vb)
• Vab = Va − Vb the potential of a wrt to b

• Alternatively, Vab equals the work that

must be done to move a unit charge

slowly from b to a against the electric

force.

• measured by a voltmeter.

• V is a scalar field.
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Calculating Electric Potential

Potential due to a single point charge

V =
1

4πε0

q

r

where r is the distance from charge q.

Potential due to a collection of charges

V =
1

4πε0

∑
i

qi
ri

where ri is the distance from charge qi.

For a continuous distribution of charge

V =
1

4πε0

∫
dq

r

where r is the distance from charge dq.
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Finding Electric Potential from Electric Field

• the work done by the electric force as the test charge moves

from a to b

Wa→b =

∫ b

a

~F · d~l =

∫ b

a
q0~E · d~l

• Recall Wa→b = −∆U = −(Ub − Ua)
• The potential difference is −∆U/q0 = −∆V = −(Vb − Va)

Vb − Va = −
∫ b

a

~E · d~l

• The value of ∆V is independent of the path taken from a

to b, just as the value of Wa→b is independent of the path.
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Finding Electric Potential from Electric Field

• Consider a positive point charge.

• The electric field is directed away

from the charge, and V = q/4πε0r

is positive at any finite distance

from the charge.

• If you move away from the charge,

in the direction of ~E, you move

toward lower values of V ;

• if you move toward the charge, in

the direction opposite ~E, you move

toward greater values of V .
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Finding Electric Potential from Electric Field

• Consider a negative point charge.

• The electric field is directed toward

the charge, and V = q/4πε0r is

negative at any finite distance from

the charge.

• If you move toward the charge, in

the direction of ~E, you move toward

lower (more negative) values of V ;

• Moving away from the charge, in

the direction opposite ~E, moves you

toward increasing (less negative)

values of V .
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Finding Electric Potential from Electric Field

The general rule, valid for any electric

field, is:

• Moving with the direction of ~E

means moving in the direction of

decreasings V .

• Moving against the direction of ~E

means moving in the direction of

increasing V .
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Finding Electric Potential from Electric Field

• A positive test charge q0

experiences an electric force in the

direction of ~E, toward lower values

of V ;

• a negative test charge experiences a

force opposite ~E, toward higher

values of V .

• Thus a positive charge tends to

“fall” from a high-potential region

to a lower-potential region.

• The opposite is true for a negative

charge.
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Potential difference

The equation

Vb − Va = −
∫ b

a

~E · d~l

is interpreted as follows:

To move a unit charge slowly against the electric force, we must

apply an external force per unit charge equal to −~E, equal and

opposite to the electric force per unit charge ~E. It says that

Vb − Va = Vba, the potential of b with respect to a, equals the

work done per unit charge by this external force to move a unit

charge from a to b.
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Unit of electric field-again

The equation

Vb − Va = −
∫ b

a

~E · d~l

show that the unit of electric field is

1 V/m = 1 N/C

In practice, the volt per meter is the usual unit of electric-field

magnitude.
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Electron Volts

• When a particle with charge q moves from a point where

the potential is Va to a point where it is Vb, the change in

the potential energy is

Ub − Ua = q(Vb − Va) = qVba

• If charge q equals the magnitude e of the electron charge,

1.602× 10−19 C, and the potential difference is

Vba = 1 V = 1 J/C, the change in energy is

Ub − Ua = (1.602× 10−19 C)(1 J/C) = 1.602× 10−19 J

• This quantity of energy is defined to be 1 electron volt:

1 eV = 1.602× 10−19 J

• Useful in many calculations with atomic and nuclear

systems.

• The multiples meV, keV, MeV, GeV, and TeV are often

used.
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Electron Volts

• the electron volt is a unit of energy, not a unit of potential

or potential difference!

• When a particle with charge e moves through a potential

difference of 1 volt, the change in potential energy is 1 eV.

• Although we defined the electron volt in terms of potential

energy, we can use it for any form of energy, such as the

kinetic energy of a moving particle.

• Ex: The Large Hadron Collider near Geneva, Switzerland,

is designed to accelerate protons to a kinetic energy of

7 TeV (i.e. 7× 1012 eV).
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Example:

Question

A proton (charge +e = 1.602× 10−19 C) moves a distance

d = 0.50 m in a straight line between points a and b in a linear

accelerator. The electric field is uniform along this line, with

magnitude E = 1.5× 107 V/m = 1.5× 107 N/C in the direction

from a to b. Determine

(a) the force on the proton;

(b) the work done on it by the field;

(c) the potential difference Va − Vb.
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Example:

Question

A proton (charge +e = 1.602× 10−19 C) moves a distance

d = 0.50 m in a straight line between points a and b in a linear

accelerator. The electric field is uniform along this line, with

magnitude E = 1.5× 107 V/m = 1.5× 107 N/C in the direction

from a to b. Determine

(a) the force on the proton;

(b) the work done on it by the field;

(c) the potential difference Va − Vb.

Answer (a):

The force on the proton is in the same direction as the E field

F = qE = (1.602× 10−19 C)(1.5× 107 N/C) = 2.4× 10−12 N
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Example:

Question

A proton (charge +e = 1.602× 10−19 C) moves a distance

d = 0.50 m in a straight line between points a and b in a linear

accelerator. The electric field is uniform along this line, with

magnitude E = 1.5× 107 V/m = 1.5× 107 N/C in the direction

from a to b. Determine

(a) the force on the proton;

(b) the work done on it by the field;

(c) the potential difference Va − Vb.

Answer (b):

The force is constant and in the same direction as the displace-

ment, so the work done on the proton is

Wa→b = Fd = (2.4×10−12 N)(0.50 m) = 1.2×10−12 J = 7.5 MeV
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Example:

Question

A proton (charge +e = 1.602× 10−19 C) moves a distance

d = 0.50 m in a straight line between points a and b in a linear

accelerator. The electric field is uniform along this line, with

magnitude E = 1.5× 107 V/m = 1.5× 107 N/C in the direction

from a to b. Determine

(a) the force on the proton;

(b) the work done on it by the field;

(c) the potential difference Va − Vb.

Answer (c):

the potential difference is the work per unit charge

Va − Vb = Wa→b
q = 1.2×10−12 J

1.602×10−19 C
= 7.5× 106 V

This could also be found by Va − Vb =
∫ b
a E dl = E

∫ b
a dl = Ed =

(1.5× 107 N/C)(0.50 m) = 7.5× 106 eV 42



Key concepts-summary

• The potential difference Vab between point a and point b,

equal to the difference Va − Vb of the potentials V at the

two points, is the amount of work the electric force does on

a unit charge as it moves from a to b.

• If you move in the direction of the electric field, V

decreases (Vab is positive);

• if you move opposite to the direction of the electric field, V

increases (Vab is negative).
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Potential due to two point charges

What is Va, Vb and Vc?

Va =
1

4πε0

∑
i

qi
ri

=
1

4πε0

q1
r1

+
1

4πε0

q2
r2

Va = (9.0× 109 Nm2/C2)×(
12 nC

6.0 cm
+
−12 nC

4.0 cm

)
= 1800 Nm/C + (−2700 Nm/C)

= −900 V

Similarly, Vb = 1930 V and Vc = 0.

Evaluate: Does Vb > Va make sense? How about Vc = 0?
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Finding potential by integration

Choose the potential to be zero

at an infinite distance from the

charge q

Va − 0 =

∫ ∞
a

~E · d~l

The most convenient path is a

radial line as shown

∫ ∞
a

1

4πε0

q

r2
r̂ · r̂dr = − q

4πε0r

∣∣∣∣∞
a

⇒ Va =
q

4πε0a Evaluate: Check sign for (±)ve

charge.
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Moving through a potential difference

Mass m = 5.0× 10−9 kg = 5.0µg with charge q0 = 2.0 nC starts

from rest and moves in a straight line from point a to point b.

What is its speed v at point b?

Use energy conservation Ka + Ua = Kb + Ub with Ka = 0 and

Kb = mv2/2

0 + q0Va =
1

2
mv2 + q0Vb ⇒ v =

√
2q0(Va − Vb)

m

Calculating V = q/4πε0r gives Va = 1350 V and Vb = −1350 V.

v =

√
2(2.0× 10−9 C)(2700 V)

5.0× 10−9 kg
= 46 m/s
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Calculating electric potential



A charged conducting sphere

has radius R and total charge q.

• Take V = 0 at infinity

• the potential at a point

outside the sphere is the

same as that due to a point

charge q at the center

V =
1

4πε0

q

r

• Vsurface = q/4πε0R

• Inside ~E = ~0

• Inside V = Vsurface
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Ionization and Corona Discharge

• The max. V to which a conductor

in air can be raised is limited since

air molecules become ionized.

• Air becomes conductor at

Em ∼ 3× 106 V/m (dielectric

strength of air).

• Max. V a spherical conductor can

be raised: Vm = REm

• Van de Graaff generators use

spherical terminals with very large

radii

Corona discharge: Even small V applied to sharp points with a

very small radius of curvature, produce sufficiently high E to

ionize the surrounding air. 49



Oppositely charged parallel plates

• The electric potential

energy U for

a test charge q0 at y:

• U = q0Ey

• The potential is

V (y) =
U(y)

q0
= Ey

• Using Va − Vb = Ed:

E =
Vab
d
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Ex: Potential of a uniformly charged sphere

Question:

Consider an non-conducting sphere with radius a and total

charge Q. The charge is distributed uniformly in the volume.

Assuming the potential at infinity to be zero

(a) What is the potential at a radial distance r outside the

sphere?

(b) What is the potential on the surface of the sphere?

(c) What is the potential at a radial distance r inside the

sphere?

51



Ex: Potential of a uniformly charged sphere

Recall that the electric field is

found by the Gauss’ law and it

is

E =


Q

4πε0a3
r for r < a

Q
4πε0r2

for r > a
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Ex: Potential of a uniformly charged sphere

Answer (a):

• Outside the sphere (r > a) the the electric field is

E = Q
4πε0r2

• We use Vf − Vi = −
∫ f
i
~E · d~l assuming f →∞ and i is at

any radial distance r > a.

��
�*0

V∞ − V (r) = −
∫ ∞
r

E(r′) dr′ = −
∫ ∞
r

Q

4πε0r′
2 dr′

= − Q

4πε0

−1

r

∣∣∣∣∞
r

=
Q

4πε0

(
0− 1

r

)
= − Q

4πε0r

• This gives

V (r) =
Q

4πε0r
, for r > a

same as the potential of a point charge as expected. 53
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Ex: Potential of a uniformly charged sphere
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Ex: Potential of a uniformly charged sphere

Answer (b):

• Given that the potential outside is

V (r) =
Q

4πε0r

• ...the potential at the surface must be

V (a) =
Q

4πε0a
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Ex: Potential of a uniformly charged sphere

Answer (b):

• Given that the potential outside is

V (r) =
Q

4πε0r

• ...the potential at the surface must be

V (a) =
Q

4πε0a
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Ex: Potential of a uniformly charged sphere

Answer (c):

• The electric field inside is E = Q
4πε0a3

r

• The potential difference between a point in the sphere and

the potential at the surface (V (a) = Q
4πε0a

) is

V (a)− V (r) = −
∫ a

r
E(r′) dr′ = − Q

4πε0a3

∫ a

r
r′ dr′

= − Q

4πε0a3
r′2

2

∣∣∣∣∣
a

r

= − Q

8πε0a3
(a2 − r2)

• Using V (a) = Q
4πε0a

from (b)

V (r) =
Q

4πε0a
+

Q

8πε0a

(
1− r2

a2

)
=

Q

8πε0a

(
3− r2

a2

)
, for r < a
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Ex: Potential of a uniformly charged sphere

• We have found

V =


Q

8πε0a

(
3− r2

a2

)
for r < a

Q
4πε0r

for r > a

• The potential at the center is

then

Vc =
3Q

8πε0a

which is not very trivial from the

beginning.
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An infinite line charge or charged conducting cylinder

Va−Vb = −
∫
~E·d~l

Va−Vb = −
∫ b

a
Erdr

For inf. line of charge and r > r0

• Er = λ
2πε0

1
r

• Take Vb = 0 at r = r0

(different from the usual

reference at ∞!)

• V − 0 = λ
2πε0

∫ b
a

dr
r = λ

2πε0
ln r0

r

For the cylinder r > R

• Er = λ
2πε0

1
r

• Take Vb = 0 at r = R

• V = λ
2πε0

ln R
r

• ~E = ~0 inside ⇒ V = 0

inside.
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ln r0

r
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A ring of charge

Divide the ring into

infinitesimal segments.

• distance of dq to P:

r =
√
x2 + a2

• potential due to dq:

dV = dq/(4πε0r)

• sum all the potentials:

V = 1
4πε0

1√
a2+x2

∫
dq

Note that the distance r is

independent of the position

of dq on the ring.

• so that we get:

V = 1
4πε0

Q√
a2+x2
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A line of charge

Problem:

Positive electric charge Q is distributed

uniformly along a line of length 2a lying along

the y-axis between y = −a and y = +a. Find the

electric potential at a point P on the x-axis at a

distance x from the origin.
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A line of charge

Solution:

• The element of charge dQ corresponding to

an element of length dy on the rod is

dQ = (Q/2a) dy.

• The distance from dQ to P is
√
x2 + y2, so

the contribution dV that the charge element

makes to the potential at P is

dV =
1

4πε0

Q

2a

dy√
x2 + y2

• Integrating this from y = −a to +a we get

V =
1

4πε0

Q

2a
ln

(√
a2 + x2 + a√
a2 + x2 − a

)
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Equipotential surfaces

• By analogy to contour lines on a

topographic map, an

equipotential surface is a 3-D

surface on which V is the same at

every point.

• the electric potential energy q0V

of a charge q0 remains constant

when moved on an equipotential

surface.

• No point can be at two different

potentials, so equipotential

surfaces for different potentials

can never touch or intersect.

Contour lines on a topographic

map are curves of constant

elevation and hence of constant

gravitational potential energy.
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Equipotential Surfaces and Field Lines

• Field lines and equipotential

surfaces are always mutually

perpendicular. Why?

• In the figures on the right,

equipotentials are drawn so that

there are equal potential

differences between adjacent

surfaces. In regions where the

magnitude of ~E is large. Why?

• ~E need not be constant over an

equipotential surface
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Equipotentials and Conductors

When all charges are at rest,

• the surface of a conductor is always an

equipotential surface,

• the electric field just outside a

conductor must be perpendicular to the

surface at every point,

• the entire solid volume of a conductor is

at the same potential.
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Equipotentials and Conductors

If a conductor contains a cavity and if no

charge is present inside the cavity,

• then there can be no net charge

anywhere on the surface of the cavity.

Every point in the cavity is at the same

potential. The electric field inside the

cavity is zero everywhere.
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Potential gradient

• Electric field and electric potential are closely related.

Va − Vb =

∫ b

a

~E · d~l

If we know ~E at various points, we can use this equation to

calculate potential differences.

• if we know V (~r), can we use it to determine ~E(~r)?

• Yes! The components of ~E are related to the partial

derivatives of V with respect to x, y, and z.

• Using Va − Vb =
∫ a
b dV = −

∫ b
a dV we can write

−dV = ~E · d~l

This remind us that moving in the direction of ~E, the

electric potential V decreases most rapidly.
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Potential gradient

In Cartesian coordinates

−dV = ~E · d~l = (Ex̂i + Ey ĵ + Ezk̂) · (dx̂i + dŷj + dzk̂)

−dV = Exdx+ Eydy + Ezdz ⇒ Ex = − ∂V

∂x

∣∣∣∣
y,z

and similarly for the y- and z-components.

If ~E has a radial component Er with respect to a point or an

axis and r is the distance from the point or axis, the

relationship is

Er = −∂V
∂r
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Electric field of a point charge from electric potential

Given V (r) = q/(4πε0r) we can calculate

Er = −∂V
∂r

=
q

4πε0

1

r2
⇒ ~E = Err̂ =

q

4πε0

r̂

r2

Since r =
√
x2 + y2 + z2

Ex = − ∂V

∂x

∣∣∣∣
y,z

=
q

4πε0

x

r3

and similarly calculating ∂V
∂y and ∂V

∂z give

~E =
q

4πε0

x̂i + ŷj + zk̂

r3
=

q

4πε0

~r

r3
XXX
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