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Learning Goals

e How to calculate the electric potential energy of a
collection of charges.

e The meaning and significance of electric potential.

e How to calculate the electric potential that a collection of
charges produces at a point in space.

e How to use equipotential surfaces to visualize how the
electric potential varies in space.

e How to use electric potential to calculate the electric field.



Maxwell’s Equations and the Lorentz Force

Gauss’ law Gauss’ law for magnetism
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Faraday’s law Generalized Ampere’s law
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Lorentz force on a particle with charge ¢ and velocity v
moving in E & B fields
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Introduction

e When a charged particle moves in an electric field, the field
exerts a force that can do work on the particle.

e This work can be expressed in terms of electric potential
energy.

e Just as gravitational potential energy depends on the
height of a mass above the earth’s surface, electric
potential energy depends on the position of the charged
particle in the electric field.

o We'll use a new concept called electric potential, or simply
potential to describe electric potential energy.

e In circuits, a difference in potential from one point to
another is often called voltage.



Electric potential energy



Review

e In mechanics work, potential energy, and conservation of

energy were extremely useful.

e these concepts are just as useful for understanding and

analyzing electrical interactions.

e When a force F acts on a particle that moves from point a
to point b, the work W, _,; done by the force is given by a

line integral:

b b
WH,:/ F-dl:/ F cos ¢ dl

where dI is an infinitesimal displacement along the

particles path and ¢ is the angle between F and dI at each
point along the path.



Review

o If Fis conservative, the work done
by F can always be expressed in
terms of a potential energy U.

e When the particle moves from a
point where U is U, to a point where
it is Uy, the change in potential
energy is AU = U, — U, and

Woarsy = Us—Up = —(Upy—U,) = —AU

e When W, >0, U, > U, AU <0,

and U decreases. 9



Review

Object moving in a uniform gravitational field
RN

e The baseball falls from a high point

Ay Ll
(a) tO a lOWer jpolIlt (b) under the fv‘=nf‘ ‘!, The work done by
influence of the earth’s gravity; the o i\ :.'“i gravitational
FN \ orce 18 \h& same for

5 Adln L h Vg ath from a to b
force of gravity does positive work, / ' S, N

. . . 1 i
and the gravitational potential s
energy decreases b

e When a tossed ball is moving
upward, the gravitational force does
negative work during the ascent, and

the potential energy increases.



Review

e The work-energy theorem says that the change in kinetic
energy AK = Kp — K, during a displacement equals the
total work done on the particle.

e If only conservative forces do work, then W,_,, = U, — U
gives the total work, and K — K, = —(Up — Uy).

e We usually write this as

K,+U,=Ky,+ U,

conserved under these circumstances.

e The total mechanical energy (kinetic plus potential) is

10



Electric Potential Energy in a Uniform Field

Point charge moving in .
a uniform electric field -

A pair of large, charged, parallel metal
plates sets up a uniform, downward E.
e F exerts a downward force with
magnitude F' = qoFE on a positive test
charge qq.

e As the go moves downward a distance d = ;

J The work done by the electric force

from a to b7 F on qo 1S constant and is the same for any path from a to b:
W, AU = gyEd

asbh =

independent of its location.
e The work done by FE is

Wosp = Fd = qoFEd

11

e This work is +, since F' is in the same

direction as the net displacement of ¢q.



Electric Potential Energy in a Uniform Field

Point charge moving in
! a uniform electric field
e The y-component of the electric force,
F, = —qoF, is constant, and there is no
x- or z-component.
e This is exactly analogous to the

gravitational force on a mass m near the

earth’s surface; for this force, there is a - i

The work done by the electric force

constant y-COmpOnent F, = —mg and is the same for any path from a to b:
W AU = goEd

asbh =

the x- and z-components are zero.
e Because of this analogy, we can conclude
that the force exerted on gg by the

uniform electric field is conservative, just

as is the gravitational force. @

11



Electric Potential Energy in a Uniform Field

Point charge moving in

a uniform electric field -

e This means that the work W,_,; done by (
the field is independent of the path the

particle takes from a to b.

-

e We can represent this work with a

potential-energy function U.

e The potential energy for the = i
. . The work done by the electric force
gravltatlonal force F, = —mg was is the same for any path from a to b:
W, = ~AU = qoEd

U = mgy; hence the potential energy for
the electric force Fyy = —qoF is

U=qkFy

11



Electric Potential Energy in a Uniform Field

e When the test charge moves from height
1a to height v, the work done on the
charge by the field is given by

Weoso = —AU = qE(ya — ¥p)

Point charge moving in

a uniform electric field -

The work done by the electric force
is the same for any path from a to b:

W, = —AU = gEd

11



Electric Potential Energy in a Uniform Field

(a) Positive charge moves in the direction of E:
* Field does positive work on charge.

e Udecreases. y
e When y, > v, the + test T 3 7 7 =
charge qyp moves downward, JV?
in the same direction as E; _ o @
F=qFE

1

|

I
Ya v

b
| o
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Electric Potential Energy in a Uniform Field

(a) Positive charge moves in the direction of E:
* Field does positive work on charge.

o Udecreases. y
e When y, > v, the + test T 3 7 7 =
charge qop moves downwarfl, JV?
in the same direction as E; _ o @
e The displacement is in the F=aF
same direction as the force :
F= qol:j, so the field does Vo \i,
positive work and U b
decreases. ’ib o

12



Electric Potential Energy in a Uniform Field

(b) Positive charge moves opposite E:
* Field does negative work on charge.

* Uincreases. Y
e When y, < yp, the positive ’|’ it ar i i
test charge gy moves P

upward, in the opposite - b

direction to E. 1\

1

|

)

Vb :

}i“ F= CI()E

13



Electric Potential Energy in a Uniform Field

(b) Positive charge moves opposite E:
* Field does negative work on charge.
* Uincreases. y

e When y, < yp, the positive it ar i i

test charge gy moves

&y —+

upward, in the opposite -

direction to E.

4

e the displacement is A:\
opposite the force, the field :

1

does negative work, and U

increases.

13



Electric Potential Energy in a Uniform Field

If the test charge gp < 0

e [ increases when it moves
with the field and

(a) Negative charge moves in the direction of E:
* Field does negative work on charge.

e Uincreases.

y
+ + + +
|
E F= qoﬁ
a
1
1
1
1
Ya Y
T b
)ib

14



Electric Potential Energy in a Uniform Field

s
(b) Negative charge moves opposite E:
* Field does positive work on charge.

e U decreases. y
+ + + + +
|
If the test charge ¢p < 0 E
— b
A
|
|
e U decreases when it moves :
against the field. Vb F=gqFE
T
yll
|

14



Electric Potential Energy in a Uniform Field

oy . >
(b) Positive charge moves opposite E:
* Field does negative work on charge.

e Uincreases. ¥
Whether the test charge is + or —, —r—F
the following general rules apply: E
e U increases if gy moves in the ’ A
directi_())n opp_?site the electrical i\
force F = qoE ¥ E
Y. .
>| F=gqFE

15



Electric Potential Energy in a Uniform Field

r . _ =
(a) Negative charge moves in the direction of £:
 Field does negative work on charge.

Whether the test charge is + or —, : :,”“W: +y T
the following general rules apply: }L F=qF
e U increases if gy moves in the 7 ’ )
direction opposite the electrical ‘?’
force F = qof) Ya . v
T
-

15



Electric Potential Energy in a Uniform Field

Whether the test charge is + or —,
the following general rules apply:

e U decreases if gy moves in the

same direction as F = goE

(a) Positive charge moves in the direction of E:

« Field does positive work on charge.

e Udecreases.

y

¥ E =
\
E
— a (&
F=qFE
i
i
Ya Y
b
7
b
r
qgo >0

15



Electric Potential Energy in a Uniform Field

(b) Negative charge moves opposite E:
« Field does positive work on charge.

* U decreases. y
Whether the test charge is + or —, | E—
the following general rules apply: E
— b
A
1
1
1
Vb $ﬁ= qOE
e U decreases if gy moves in the L
— — Ya
same direction as F = goE | ‘

15



Electric Potential Energy in a Uniform Field

Whether the test charge is + or —,
the following general rules apply:

This is the same behavior as for gravitational potential energy
which increases if a mass m moves upward (opposite the
direction of the gravitational force) and decreases if m moves

downward (in the same direction as the gravitational force).

15



Electric Potential Energy of Two Point Charges

e The idea of electric potential energy isn’t restricted to the
special case of a uniform E.

e We can apply this concept to a point charge in any E
caused by a static charge distribution.

e Recall: we can represent any charge distribution as a

collection of point charges.

e Therefore it’s useful to calculate the work done on a test
charge gop moving in the electric field caused by a single,

stationary point charge q.

16



Electric Potential Energy of Two Point Charges

&)

e First consider a displacement &
along the radial line. Test charge gymoves;’

from a to b along ,/

a radial line 4

Coulomb’s law, and its radial from g. &

e The force on ¢q is given by

component is 90 &

1 qqo
Ho=
" dweg 12

17



Electric Potential Energy of Two Point Charges

E
e The force is not constant during ”/
. /
the displacement, and we must Test charge gy moves,”
integrate to calculate the work from a to b along
. a radial line 4'
W,_sp done on gg by this force as from g. 7

qo moves from a to b:

Ty Ty
440 dr
Waﬁb:/ Fdr =+ / —
r 7€) Jp, T

_ 499 (1 1
dmeg \Tq T

e The work done by the electric

qo &

force for this path depends on
only the endpoints.

17



Electric Potential Energy of Two Point Charges

Test charge g,

e Now consider a more general e aid
displacement in which a and b do
not lie on the same radial line.

e From W,_,, = ff F - dI the work ~
done on gy during this i

displacement is given by

Th
Wasp = / Fcos¢gdl
qqo / " cos ¢ dl

4d7eg 72

Ta

18



Electric Potential Energy of Two Point Charges

e But Fig. shows that
cospdl = dr.
e The work done during a small
displacement dl depends only dr
e Thus

qqo (1 1
W, = —— —
a=>p 4eg (ra rb)

is valid even for this more
general displacement.
e The work done on g by E
produced by ¢ depends only on
the endpoints r, and r, not on
the details of the path.
18



Electric Potential Energy of Two Point Charges

Test charge g,

e Also, if gy returns to its starting moves from a0 b

along an arbitrary path.

point a by a different path, the

total work done in the round-trip ’
displacement is zero.

e These are the needed -
characteristics for a conservative
force.

e Thus the force on ¢q is a

conservative force.

18



Electric Potential Energy of Two Point Charges

e We see that W,_;, = —AU and

1 1
Wa—)b = 440 ( T )

4’/T€0 Ta Ty

are consistent if we define the
potential energy to be

Ua = qqo/(4megry) when g is a
distance r, to ¢, and to be

Up = qqo/(4dmegry) when qp is a
distance 1y to q.

18



Electric Potential Energy of Two Point Charges

e Thus

1
g L oan
dmey T

is valid no matter what the

signs of the charges ¢ and

q0-

19



Electric Potential Energy of Two Point Charges

e Thus (@) ¢ and ¢ have the same sign.
U L 4w 7
 dmeg T q 90 q 490
® ®-rQ@ 9
is valid no matter what the —r—>{ K—r—>f
signs of the charges ¢ and e U>0
qo- e Asr— 0, U — +oo.

e Asr— oo, U— 0.

e The potential energy is

positive if the charges ¢

and gy have the same sign.

19



Electric Potential Energy of Two Point Charges

e Thus (b) g and ¢ have opposite signs.
1
g L aw %
dmey T
[0) r

is valid no matter what the

signs of the charges ¢ and

q 90 q 90
w ® 99 ®
—r—>4 —r—>{

e Asr—0,U — —oo,
*Asr— oo, U—0.
e and negative if they have

opposite signs

19



Electric Potential Energy of Two Point Charges

e Potential energy is always defined relative to some
reference point where U = 0.

20



Electric Potential Energy of Two Point Charges

e Potential energy is always defined relative to some

reference point where U = 0.

e InU = 47360 40 U is zero when ¢ and qq are infinitely far

apart (r — 00).

20



Electric Potential Energy of Two Point Charges

e Potential energy is always defined relative to some

reference point where U = 0.

e InU = 47360 40 U is zero when ¢ and qq are infinitely far
apart (r — 00).

e Therefore U represents the work that would be done on the
test charge gg by the field of ¢ if gy moved from an initial

distance r to infinity.

20



Electric Potential Energy of Two Point Charges

(a) ¢ and g have the same sign.
e If ¢ and gy have the same sign, U

the interaction is repulsive,
Wap > 0 and U > 0 at any finite
separation.

q 40 q 40
® -9 @
—r— k—r—>|

*Asr— 0, U— +oo,
eAsr— oo, U— 0.

21



Electric Potential Energy of Two Point Charges

(b) ¢ and g, have opposite signs.
U

o r

q 40 q 90
e If ¢ and gy have the opposite Gl-)ers? o @leree-l)

signs, the interaction is
attractive, W,_,; < 0 and U < 0.

*Asr—0,U— —,
*Asr— o, U—0.

21



Electric Potential Energy of Two Point Charges

The potential energy U given by

_ 1w
dmeg T
is a shared property of the two charges.

e [f the distance between ¢ and qq is changed from r, to rp,
the change in potential energy is the same whether ¢ is held
fixed and ¢y is moved or qq is held fixed and ¢ is moved.

e For this reason, we never say “the electric potential energy
of a point charge.”

o Likewise, if a mass m is at a height h above the earth’s
surface, the gravitational potential energy is a shared
property of the mass m and the earth.

22



Electric Potential Energy of Two Point Charges

e The equation
1
o L aw
dreg 1

also holds if the charge ¢q is outside a spherically
symmetric charge distribution with total charge g; the

distance r is from gy to the center of the distribution.

e This is because Gauss’ law tells us that the electric field
outside such a distribution is the same as if all of its charge
q were concentrated at its center.

23



Example: Conservation of energy with electric forces

A positron (the electron’s antiparticle) has mass 9.11 x 1073 kg
and charge gy = +e = +1.60 x 10719 C. Suppose a positron moves
in the vicinity of an « (alpha) particle, which has charge

g =+42e =320 x 10719 C and mass 6.64 x 1072 kg. The a
particle’s mass is more than 7000 times that of the positron, so we
assume that the a particle remains at rest. When the positron is
1.00 x 107 19m from the « particle, it is moving directly away from
the « particle at 3.00 x 105 m/s.

(a) What is the positron’s speed when the particles are
2.00 x 10719 m apart?

(b) What is the positron’s speed when it is very far from the «

particle?

(c) Suppose the initial conditions are the same but the moving
particle is an electron (with the same mass as the positron but
charge qo = —e). Describe the subsequent motion.

24



Example: Conservation of energy with electric forces

IDENTIFY and SET UP

e The electric force between a positron (or an electron) and an

a particle is conservative, so the total mechanical energy

‘I‘IO
47r€

(kinetic plus potential) is conserved. U = gives the
potential energy U at any separation r.

e We are given the positron speed 3.00 x 10m/s when the
separation between the particles is 74 = 1.00 x 1071%m

o In parts (a) and (b) we use K, + U, = Kp + Uy and
U = 47r€0 490 40 find the speed for r = 7, = 2.00 x 107'm and
r = r. — 00, respectively.

e In part (c) we replace the positron with an electron and

reconsider the problem.

24



Example: Conservation of energy with electric forces

Question (a): What is the positron’s speed when the particles
are 2.00 x 10719m apart?
Solution (a):

e Both particles have positive charge, so the positron speeds up
as it moves away from the « particle.

e From the energy-conservation equation K, + U, = K; + U,
Ky = %mv? =K, 4+ Uz —Up.

e Here K, = $mv2 = 2(9.11 x 10731 kg)(3.00 x 10°m/s)? =

4.10 x 10718 7.
3. =19 ¢)(1.6 —19¢C
o Uy = 47:60% =(9x 10°N- mQ/CQ)(g 20X101.00x;§)1753rxnlo L =
461 x 107187
o Up= 7 =330 x 10718

e Hence Ky =K, +U, — U, =

410x10718J4+4.61x10718J—-3.30x10718J =6.41 x 1018 J.
e From this follows
2(6.41x10-18J
vp = /2 = [2OAA0 TN — 3.8 % 10°m/s

m

24



Example: Conservation of energy with electric forces

Question (b): What is the positron’s speed when it is very far
from the a particle?
Solution (b):

e When the positron and « particle are very far apart so that
r = r. — 00, the final potential energy U, approaches zero.

e Again from energy conservation, the final kinetic energy is
K =K,+U,—U.=410x 107 J +4.61 x 10718 J -0 =
8.71 x 10718J

e and speed of the positron is

_ J2K. _  [2(8.71x10-18J) 6
UC_\/;_ \/%—4.4x 10°m/s

24



Example: Conservation of energy with electric forces

Question (c¢): Suppose the initial conditions are the same but the
moving particle is an electron (with the same mass as the positron
but charge gy = —e). Describe the subsequent motion.

Solution (c):

e The electron and « particle have opposite charges, so the force
is attractive and the electron slows down as it moves away.

e Changing the moving particle’s sign from +e to —e means
that the initial potential energy is now U, = —4.61 x 10718 ],
which makes the total mechanical energy negative:

Ko+ U, =410 x 10718 —4.61 x 10718 = —0.51 x 10718 ]

e The total mechanical energy would have to be positive for the
electron to move infinitely far away from the « particle.

e Like a rock thrown upward at low speed from the earths
surface, it will reach a maximum separation r = ry from the «
particle before reversing direction.

e At this point its speed and its kinetic energy Ky are zero
0
Uj=Ko+U, — Kj=—051 x 10718]

24



Example: Conservation of energy with electric forces

Question (c): Suppose the initial conditions are the same but the
moving particle is an electron (with the same mass as the positron
but charge gg = —e). Describe the subsequent motion.

Solution (c):

o Uj= 7 = 051 x 1078 J 574 =9.0x 107°m

e For 1, = 2.00 x 107 m we have U, = 3.30 x 10718 J so the
electron kinetic energy and speed at this point are
Ky=Ko+ U, —Up= (410 x 10718 J) 4 (—4.61 x 1078 ]) —

( 2.30 x 10718J) = 1.79 x 10718 J

_ /2K 2(1.79x10-18]) 6
= /20 = ﬁ 2.0 % 105 m/s

24



Electric Potential Energy with Several Point Charges

q1
e Suppose the electric field E in

which charge ggp moves is caused =
by several point charges .y /Q
q1,92,qs3, - -+ at distances r %
r1,72,73, " from q0 r}/@

e The total electric field at each ”qo

point is the vector sum of the
fields due to the individual
charges, and

e the total work done on gy during
any displacement is the sum of
the contributions from the

individual charges. ot



Electric Potential Energy with Several Point Charges

‘11
e The potential energy associated

with the test charge gy at point a
is the algebraic sum: . /Q
"2 q3
4qo qa | q ~
U= = e ]
47[' 60 (7’1 T2 ) r /O
p— 4i qo
47reo Z 7 ‘

25



Electric Potential Energy with Several Point Charges

e When ¢ is at a different point b, the potential energy is
given by the same expression, but r1, 9, - -+ are the
distances from ¢, g2, - - - to point b.

e The work done on charge gp when it moves from a to b
along any path is equal to the difference U, — U, between
the potential energies when qq is at a and at b.

g 4

471'60 —T;
%

26



Electric Potential Energy with Several Point Charges

e We can represent any charge distribution as a collection of
point charges.

e The equation

o qi
47‘(‘60 Z rz

shows that we can always find a potential-energy function
for any static electric field.

e It follows that for every electric field due to a static
charge distribution, the force exerted by that field

is conservative.

27



Electric Potential Energy with Several Point Charges

W and U = 72", L define U to be

47r50 T 4dmeo
zero when distances r{, 9, - -+ are mﬁnlte.

e Equations U =

e As with any potential-energy function, the point where
U = 0 is arbitrary; we can always add a constant to make

U equal zero at any point we choose.

e In electrostatics problems it’s usually simplest to choose
this point to be at infinity.

e When we analyze electric circuits in other choices will be

more convenient.

28



Electric Potential Energy with Several Point Charges

e Equations U = 47T60 Y % gives the potential energy

associated with the presence of the test charge qg in the F
field produced by q¢1, q2, g3, - - - .

e But there is also potential energy involved in assembling
these charges.

o If we start with charges q1, g2, q3, - - - all separated from
each other by infinite distances and then bring them
together so that the distance between g¢; and g; is 75, the
total potential energy U is the sum of the potential
energies of interaction for each pair of charges:

Z 995
47’[‘60 ! Tij

29




Electric Potential Energy with Several Point Charges

e The potential energies of interaction for each pair of
charges:
U— ; 1 qiq;
TEQ i Tij

e This sum extends over all pairs of charges; we don’t let
=17
e We include only terms with ¢ < j to make sure that we

count each pair only once.

29



Electric Potential Energy with Several Point Charges

e For 2 particles (1 term)

30



Electric Potential Energy with Several Point Charges

e For 2 particles (1 term)

e For 3 particles (3 terms)

1
_ <Q1Q2 n 91493 n Q2Q3>
dmeg \ T12 713 793

30



Electric Potential Energy with Several Point Charges

e For 2 particles (1 term)

e For 3 particles (3 terms)

1
_ <Q1Q2 n 91493 n Q2Q3>
dmeg \ T12 713 793

e For 4 particles (6 terms)

1
_ <Q1Q2 + q143 + q1494 4 4243 + q244 I Q3Q4>
4deg

12 13 14 23 24 T34

30



Electric Potential Energy with Several Point Charges

e For 2 particles (1 term)

e For 3 particles (3 terms)

1
_ <Q1Q2 n 91493 n Q2Q3>
dmeg \ T12 713 793

e For 4 particles (6 terms)

1
_ <Q1Q2 + q143 + q1494 4 4243 + q244 I Q3Q4>
4deg

Ti2 T3z T4 T3 T4 T34
e For N particles N(N — 1)/2 terms

30



Interpreting Electric Potential Energy

e There are two viewpoints on electric potential energy.

e We have defined it in terms of the work done by the
electric field on a charged particle moving in the field.

e When a particle moves from point a to point b, the work
done on it by the electric field is W,_, = U, — Uy,

31



Interpreting Electric Potential Energy

e An alternative but equivalent viewpoint is to consider how

“raise” a particle from

much work we would have to do to
a point b where the potential energy is Uj to a point a
where it has a greater value U,.
e To move the particle slowly (so as not to give it any kinetic
energy), we need to exert an additional external force Foxt
that is equal and opposite to the electric-field force and
does positive work.
e The potential-energy difference U, — Uy, is then defined as
the work that must be done by an external force to move
the particle slowly from b to a against the electric force.
e Because ﬁext is the negative of the electric-field force and
the displacement is in the opposite direction, this definition
of the potential difference U, — Uy, is equivalent to that

. 31
given above.



Example: A system of point charges

Question:
e Two point charges are at fixed
positions on the x-axis, g1 = —e

at x =0 and g2 = +e at z = a.

(a) Find the work that must be qi=—e qi=+e q=+e
) ()
done by an external force to o 2.

bring a third point charge

g3 = +e from infinity to x = 2a.
(b) Find the total potential
energy of the system of three

charges.

32



Example: A system of point charges

Solution a:

e We need to find the work W that
must be done on g3 by an
external force f‘ext to bring q3 in
from infinity to x = 2a. We do
this by using U = 4%0 > % to

find the potential energy

associated with g3 in the presence i g_;ie qz;% qa;% N
of 7 and g2 x=0 X=a X=2a
dmeg \r13 T3
+e (—e | +e
- 9 + —=
dmeg \ 2a a
o2

= 32
8mega



Example: A system of point charges

Solution b:

e In part (b) we use
U= 7>, 2 [the

T dmeg 1<J Tij
expression for the potential

energy of a collection of point
charges, to find the total

potential energy of the system. qi=-¢ qi=+e q=+e
e S + X
e This becomes =0 x=a  x=2a
1
U= <CJ1CJ2 + q143 4 CJ2CJ3)
dmeg \ 12 13 T23

1 <(—6)(6) (=e)(e) (6)(6)>

= 4meg a + 2a + a
2

T 8rega
0 32



Exercise: Energy required to assemble a sphere of uniform

charge

Question:

e Consider a sphere of radius a and total charge @ distributed
uniformly over its volume.
e What is the potential energy associated with this assembly of

charges?
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Exercise: Energy required to assemble a sphere of uniform

charge

Solution:

e The density of charge is p = Q/%mﬁ
The charge of a sphere with radius r < a is ¢ = Q(r/a)?

°
e The charge of a spherical shell with radius r thickness dr is
dq = pdmr? dr

e Consider the potential energy of a sphere of radius r < a and
the surrounding spherical shell of thichness dr:

1
agl 11 849
dmweg T

To find the total potential energy associated with this
assembly of charges add up the potential energy of each
sphere+shell pair
1 dg 3 1 @
U= / ade— @

T dre . r  54me a
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Electric potential




Electric potential

e Potential is potential energy per unit
charge.

STy

Point b SR
V= 1.5 volts D
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Electric potential

e Potential is potential energy per unit
charge.

e The SI unit is volt: 1V =1J/C

LONGER LASTING P

U'S PATENO 3663301 370438
e

/
Point b
l 5 volts

ub
it ©2008 Pesrson
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Electric potential

e Potential is potential energy per unit
charge.
e The SI unit is volt: 1V =1J/C

e Work done by the electric force:
Wa%b =|—AU = q0<Va - va)

LONGER LASTING P

PATINO 3663301 376438
s

/
Point b
l 5 volts

ub -
it ©2008 Pesrson
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Electric potential

e Potential is potential energy per unit

charge.
e The SI unit is volt: 1V =1J/C

e Work done by the electric force:
Wa%b =|—AU = q0<Va - va)
o V=V, —V, the potential of a wrt to b

LONGER LASTING P

PATINO 3663301 376438
s

/
Point b
l 5 volts

ub -
it ©2008 Pesrson
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Electric potential

e Potential is potential energy per unit
charge.

e The SI unit is volt: 1V =1J/C
e Work done by the electric force:
Warsp = =AU = qo(Vo — Vi)
o V,p, = Vo — V, the potential of a wrt to b

o Alternatively, V,; equals the work that

must be done to move a unit charge .
. . LONGER LASTING P
slowly from b to a against the electric *
force. /
Point b
V= 1.5 volts

Copyright ©2008 P
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Electric potential

e Potential is potential energy per unit
charge.

e The SI unit is volt: 1V =1J/C
e Work done by the electric force:
Warsp = =AU = qo(Vo — Vi)
o V,p, = Vo — V, the potential of a wrt to b

o Alternatively, V,; equals the work that
must be done to move a unit charge
slowly from b to a against the electric

force.

/
Point b

e measured by a voltmeter. V,, = 15 volts
ab - .

Copyright ©2008 P
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Electric potential

Potential is potential energy per unit
charge.

The ST unit is volt: 1V =1J/C

Work done by the electric force:

Warsp = =AU = qo(Vo — Vi)

Vap = Vg — V3 the potential of a wrt to b
Alternatively, V; equals the work that

must be done to move a unit charge .
slowly from b to a against the electric —
force. = 7 ]
Point b
measured by a voltmeter. V,, = 15 volts

Copyright ©2008 P

V is a scalar field.
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Calculating Electric Potential

Potential due to a single point charge

_ 1 gq
_47T€()7’

where r is the distance from charge q.

Potential due to a collection of charges

X

47T€0 —T;
7

where r; is the distance from charge g;.
For a continuous distribution of charge
T dg
 drwe r

where r is the distance from charge dgq.
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Finding Electric Potential from Electric Field

e the work done by the electric force as the test charge moves

b b
Wa_,b:/ F-dl:/ qoE - dl

from a to b

e Recall W, = —AU = —(Uy, — U,)
e The potential difference is —AU/qy = —AV = —(V}, = V,)

b
Vb—Va:—/ E.dl

e The value of AV is independent of the path taken from a
to b, just as the value of W,_y; is independent of the path.
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Finding Electric Potential from Electric Field

e Consider a positive point charge.

e The electric field is directed away
from the charge, and V' = q/4megr (a) Apositive point charge

. o). . . Viincreases Vdecreases
is positive at any finite distance as you move as you move
inward. outward.

from the charge.

e [f you move away from the charge, ~E x

in the direction of I:j, you move

toward lower values of V;

e if you move toward the charge, in
the direction opposite E, you move
toward greater values of V.

37



Finding Electric Potential from Electric Field

e Consider a negative point charge.

e The electric field is directed toward
the charge, and V' = q/4mepr is

(b) A negative point charge
negative at any finite distance from I Vioomaess
as )'()Ll move

the Ch&rge. inward.

as you move
outward.

e [f you move toward the charge, in
the direction of f], you move toward

lower (more negative) values of V;

e Moving away from the charge, in
the direction opposite E, moves you

toward increasing (less negative)
values of V.
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Finding Electric Potential from Electric Field

(a) A positive point charge

Vincreases V decreases
as )Ull move as )()ll move
inward. outward.

The general rule, valid for any electric
. ~E- o
field, is:
e Moving with the direction of E
means moving in the direction of
deCT’@CLS’I;TLgS V (b) A negative point charge
- V decreases Vincreases
e Moving against the direction of E a5/yOU move S8 you move
inward. outward.
means moving in the direction of
3 g —F- —
increasing V.
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Finding Electric Potential from Electric Field

A positive test charge qq
experiences an electric force in the
direction of f}, toward lower values

of V;

a negative test charge experiences a
force opposite ]:j, toward higher
values of V.

Thus a positive charge tends to
“fall” from a high-potential region
to a lower-potential region.

The opposite is true for a negative
charge.

(a) A positive point charge

Vincreases V decreases
as )()ll move
outward.

as you move
inward.

(b) A negative point charge

Vdecreases Vincreases
as you move as you move

inward. outward.
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Potential difference

The equation
b
V-V, =— / E-.dl
a

is interpreted as follows:

To move a unit charge slowly against the electric force, we must
apply an external force per unit charge equal to —E, equal and
opposite to the electric force per unit charge E. It says that

Vi — Vo = Vi, the potential of b with respect to a, equals the

work done per unit charge by this external force to move a unit

charge from a to b.
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Unit of electric field-again

The equation
b
V=V, =— / E.dl
a
show that the unit of electric field is

1V/m=1N/C

In practice, the volt per meter is the usual unit of electric-field
magnitude.
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Electron Volts

When a particle with charge g moves from a point where
the potential is V, to a point where it is V}, the change in
the potential energy is

Up—Us = q(Vs = Vo) = ¢Vha

If charge ¢ equals the magnitude e of the electron charge,
1.602 x 10719 C, and the potential difference is

Voe =1V =1J/C, the change in energy is

Uy — U, = (1.602 x 107 C)(1J/C) = 1.602 x 107197
This quantity of energy is defined to be 1electron volt:
leV =1.602x10719]

Useful in many calculations with atomic and nuclear

systems.
The multiples meV, keV, MeV, GeV, and TeV are often

used.
40



Electron Volts

e the electron volt is a unit of energy, not a unit of potential
or potential difference!

e When a particle with charge e moves through a potential
difference of 1volt, the change in potential energy is 1eV.

e Although we defined the electron volt in terms of potential
energy, we can use it for any form of energy, such as the

kinetic energy of a moving particle.

e Ex: The Large Hadron Collider near Geneva, Switzerland,
is designed to accelerate protons to a kinetic energy of

7TeV (ie. 7 x 1012eV).
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Question

A proton (charge +e = 1.602 x 107! C) moves a distance

d =0.50m in a straight line between points a and b in a linear
accelerator. The electric field is uniform along this line, with
magnitude E = 1.5 x 10" V/m = 1.5 x 107 N/C in the direction
from a to b. Determine

(a) the force on the proton;

(b) the work done on it by the field;

(c) the potential difference V, — V},.
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Question

A proton (charge +e = 1.602 x 10719 C) moves a distance

d = 0.50m in a straight line between points ¢ and b in a linear
accelerator. The electric field is uniform along this line, with
magnitude £ = 1.5 x 107 V/m = 1.5 x 10" N/C in the direction
from a to b. Determine

(a) the force on the proton;

(b) the work done on it by the field;

(c) the potential difference V, — V},.

Answer (a):

The force on the proton is in the same direction as the E field
F =qE = (1.602 x 10719 C)(1.5 x 10"N/C) = 2.4 x 10712N
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Question

A proton (charge +e = 1.602 x 1071? C) moves a distance

d =0.50m in a straight line between points a and b in a linear
accelerator. The electric field is uniform along this line, with
magnitude £ = 1.5 x 107 V/m = 1.5 x 10’ N/C in the direction
from a to b. Determine

(a) the force on the proton;

(b) the work done on it by the field;

(c) the potential difference V, — V},.

Answer (b):
The force is constant and in the same direction as the displace-

ment, so the work done on the proton is
Wap = Fd = (24x1072N)(0.50m) = 1.2x 1072 J = 7.5 MeV
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Question

A proton (charge +e = 1.602 x 1071? C) moves a distance

d =0.50m in a straight line between points a and b in a linear
accelerator. The electric field is uniform along this line, with
magnitude £ = 1.5 x 107 V/m = 1.5 x 10’ N/C in the direction
from a to b. Determine

(a) the force on the proton;

(b) the work done on it by the field;

(c) the potential difference V, — V},.

Answer (c):

the potential difference is the work per unit charge

Waos . 1.2x10712J 6
Vo = Vo = =22* = T50ax10- 190_75X10V

This could also be found by V, — V}, = f Edli=E f dl = Ed =
(1.5 x 10" N/C)(0.50 m) = 7.5 x 10 eV 42




Key concepts-summary

e The potential difference V,;, between point a and point b,
equal to the difference V, — V; of the potentials V at the
two points, is the amount of work the electric force does on
a unit charge as it moves from a to b.

e If you move in the direction of the electric field, V'
decreases (Vg is positive);

e if you move opposite to the direction of the electric field, V'
increases (Vg is negative).
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Potential due to two point charges

What is V,, V, and V.7

1 i I ¢ 1 @
V p— _— = —_— P sl
" Are XZ: ri  4dmwegry * 4meg o

Vo = (9.0 x 10° Nm?/C?) x
<12nC o —IQHC)
6.0cm  4.0cm
= 1800 Nm/C + (—2700Nm/C)
=-900V

Similarly, V, = 1930V and V. = 0.
FEvaluate: Does V, > V, make sense? How about V. = 07
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Finding potential by integration

Choose the potential to be zero
at an infinite distance from the

charge ¢
va—o—/ E-dl

The most convenient path is a

radial line as shown

mi

To point b at infinity

Evaluate: Check sign for (:t)ve

charge.
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Moving through a potential difference

Mass m = 5.0 x 107 kg = 5.0 ug with charge go = 2.0nC starts

from rest and moves in a straight line from point a to point b.
Particle

3.0nC ~3.0nC
What is its speed v at point b? - >3
e in?
Use energy conservation K, + U, = K + U, with K, = 0 and
Ky = mv?/2

1 2q0(Ve — V4
O+q0vzimvz+q0‘/b:>'l): QO(n’Lb)

Calculating V' = q/4megr gives V, = 1350V and V;, = —1350'V.

2(2.0 x 10-9 C)(2700 V)
= =4
v \/ 5.0 x 109 kg i
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Calculating electric potential




A charged conducting sphere

has radius R and total charge q.

e Take V = 0 at infinity

e the potential at a point
outside the sphere is the
same as that due to a point
charge ¢ at the center

T4
C Admeyr

o Voirfade = Q/47T€0R
e Inside E =0
e Inside V = ‘/surface

48



Ionization and Corona Discharge

e The max. V to which a conductor
in air can be raised is limited since
air molecules become ionized.

e Air becomes conductor at
En ~ 3 x 10°V/m (dielectric
strength of air).

e Max. V a spherical conductor can
be raised: Vi, = RE,

e Van de Graaff generators use

spherical terminals with very large

radii
Corona discharge: Even small V' applied to sharp points with a
very small radius of curvature, produce sufficiently high F to

ionize the surrounding air. 49



Oppositely charged parallel plates

e The electric potential
energy U for
a test charge qg at y:

&y
§
|
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Oppositely charged parallel plates

e The electric potential
energy U for
a test charge qg at y:

e U=qkFLy

&y
§
|

50



Oppositely charged parallel plates

e The electric potential
energy U for
a test charge qg at y:
o U=qkFEy
e The potential is

50



Oppositely charged parallel plates

e The electric potential
energy U for
a test charge qg at y:

o U=qly
e The potential is a
E 90Q -
Uly
V(y) = ) _ By

e Using V, — V, = Ed:

Vab
E=—
d

50



Ex: Potential of a uniformly charged sphere

Question:

Consider an non-conducting sphere with radius @ and total
charge ). The charge is distributed uniformly in the volume.

Assuming the potential at infinity to be zero

(a) What is the potential at a radial distance r outside the
sphere?

(b) What is the potential on the surface of the sphere?

(c) What is the potential at a radial distance r inside the

sphere?
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Ex: Potential of a uniformly charged sphere

% T _— Spherical insulator
A «
Recall that the electric field is + S a
found by the Gauss’ law and it e 7 Gaussian
- surface
1S E |
|
1 Q0 |
ER® = ——5F---
4 2
Q. =T forr <a €0 & ! -
F — ! 4meoa \-E = =
T ol or. | 4meg r?
Tregr? forr > a pr !
|
|
|
|
| r
0 a
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Ex: Potential of a uniformly charged sphere

Answer (a):

e Outside the sphere (r > a) the the electric field is

T Admegr?
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Ex: Potential of a uniformly charged sphere

Answer (a):

e Outside the sphere (r > a) the the electric field is

= Zdmeor?
e Weuse Vy -V, = —fiff)-dfassuming f— oo and i is at
any radial distance r > a.

J%VQV(T‘):—/OOE(T/)dT/:—/oo Q/er’
1 1g =

dmegr

S ol iy 1o
, 4meg r dmegr

dmeg 71
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Ex: Potential of a uniformly charged sphere

Answer (a):

e Outside the sphere (r > a) the the electric field is
= Zdmeor?
e Weuse Vy -V, = —fiff)-dfassuming f— oo and i is at

any radial distance r > a.

dmegr

_Q (y_1\__2@Q
dreg 1 |, 4meg r dmegr

e This gives
V() =

=0 , forr > a
TeEQT

J%VQV(T‘):—/OOE(T/)dT/:—/oo @ /er’
Q —1]7

same as the potential of a point charge as expected. 53



Ex: Potential of a uniformly charged sphere

Answer (b):

e Given that the potential outside is

Q

"~ Aweor

Vi(r)
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Ex: Potential of a uniformly charged sphere

Answer (b):

e Given that the potential outside is

Q

"~ Aweor

Vi(r)

e ...the potential at the surface must be

V(a) = —=

 dwega
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Ex: Potential of a uniformly charged sphere

Answer (c):

e The electric field inside is E = —¢

4megad I
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Ex: Potential of a uniformly charged sphere

Answer (c):

e The electric field inside is E = —¢

4megad I
e The potential difference between a point in the sphere and
the potential at the surface (V(a) = %) is

T dwega

= 3
dmega’ J,

2&

r
dmegad 2

Via) =V (r)=— /a E(r)dr’ = @ ar' dr’
Q /

Q 2 o
" Smega’ (=17

T
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Ex: Potential of a uniformly charged sphere

Answer (c):
e The electric field inside is F = %Oa;;r
e The potential difference between a point in the sphere and
the potential at the surface (V(a) = %) is

T dwega
Via) =V (r)=— /a E(r)dr' = - @ ar' dr’
; drega’ J,
—— Q L,2 — Q (QQ — 7,2)
4dmegad 2 8mega’
e Using V(a) = 4720@ from (b)
Q Q r? Q r?
Vir) = 1 3 T ) [

(r) 4dmega T 8mega a? 8mega w2 T <



Ex: Potential of a uniformly charged sphere

e We have found

8mepa

Q

4megr

V=

Q (3_

2
T—) forr <a

forr > a
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Ex: Potential of a uniformly charged sphere

e We have found

Q |2
V= | s ( a2> forr <a
47207, forr > a

e The potential at the center is
then e f
3@ 02 -

Ie —
8mega 7 s ! s T

which is not very trivial from the
beginning.
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An infinite line charge or charged conducting cylinder

(a) 15 (b) 1
v E,

,
'S + o2
X + . r+
e ‘ + &
P T EEEEEEE LA | |+ 12 - b
T T Vo—Vy=— [ Edr
e a
Fo of charge and r > r¢ For the cylinder » > R
_ a1
= ET T 2meg T
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An infinite line charge or charged conducting cylinder

(a) 15 (b) 1
v E,

,
'S + o2
X + . r+
e ‘ + &
P T EEEEEEE LA | |+ 12 - b
T T Vo—Vy=— [ Edr
e a
Fo of charge and r > r¢ For the cylinder » > R
_ a1
= ET T 2meg T

e Take V,, =0 at r = rg
(different from the usual

reference at oo!)

57



An infinite line charge or charged conducting cylinder

(a) 15 (b) 1
v E,

r I
e -
\ R+ <
e : i v
T XXX ‘ P R b
IS Vo—Vo=— [ Eydr
I a
For inf. line of charge and r > ro For the cylinder » > R
_ a1
* By = 2mep T

e Take V,, =0 at r = rg
(different from the usual

reference at oo!)
_0= 2> (bdr _ A ro
oV 0= 2meq fa r ~ 2meo In T

57




An infinite line charge or charged conducting cylinder

(a) 15 (b) 1
v E,

r I
' o+ " +
\ *lx [+
R : i v
PR EEEEEE ‘ PCE AR b
IS Vo—Vo=— [ Eydr
I a
For inf| line of charge and ¢ > rg For the cylinder r > R
= 2 _ A1
o F, = 2meq T o F. = by

e Take V,, =0 at r = rg
(different from the usual

reference at oo!)
_0= 2> (bdr _ A ro
oV 0= 2meq fa r ~ 2meo In T

57




An infinite line charge or charged conducting cylinder

(a) 15 (b) 1
v E,

-
+ g + [ T
R |+
[ + +
e 7 ‘ | + |7 S — b

FEEE

of charge and r > rg For the cylinder r > R
A
.ETZQWEo% .ET: 21

e Take V, =0 at r = rg e Take V=0atr=R
(different from the usual

reference at oo!)
_0= 2> (bdr _ A ro
oV 0= 2meQ fa r ~ 27eg In P

57

Fo




An infinite line charge or charged conducting cylinder

(a) 15 (b) 1
v E,

-
+ g + [ T
R |+
[ + +
p e e O 7 O T ‘ | + |7 S — b

FEEES

of charge and r > rg For the cylinder r > R
.E_Qﬂ'Eo% .Er:)\l

e Take V, =0 at r = rg oTake%antr:R
(different from the usual o 1/ -

Fo

5 ln i
71'50
reference at oo!)

bdr _ ) )
o V-0= 27reo fa r T 2meo hl?

57




An infinite line charge or charged conducting cylinder

(a) 115 (b) 1
v E,

r
/ + s + [ T
R +
e 9 21T T 7 [ + o i
p o 7 O X \ - — b

2 9 3

of charge and r > rg For the cylinder r > R
.E_Qﬂ'Eo% .Er:)\l

e Take V, =0 at r = rg oTake%antr:R
(different from the usual o 1/ -

Fo

5 ln i
7TEO
reference at oo!)

o \ E201n81de=>V:O
ar o J
e V-0= 27reo fa r ~ 27eg In P inside.
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A ring of charge

Divide the ring into

infinitesimal segments.

e distance of dq to P:

r = \/x2 + a?

\\i§
~
~
\‘P
0 X



A ring of charge

Divide the ring into

infinitesimal segments.

e distance of dq to P:

r = \/x2 + a? Vs
\\l/kx

e potential due to dg: a = 2
dV = dq/(4meor) ~




A ring of charge

Divide the ring into

infinitesimal segments.

e distance of dq to P:

r = \/x2 + a? Vs
o ~ \éx

e potential due to dg: a ~ >

dV = dq/(4meor) ~
e sum all the potentials: 0 X

Ll 1
V= e Vv Em [ dq
Note that the distance 7 is

independent of the position Q

of dg on the ring. o N




A ring of charge

Divide the ring into

infinitesimal segments.

e distance of dq to P:

r = \/x2 + a? Vs
5 \\l/kx

e potential due to dg: a = 2
dV = dq/(4meor) ~

e sum all the potentiaIS' 0 X

V= 47r60 \/m f q
Note that the distance 7 is
independent of the position Q
of dg on the ring. o N
® SO that we get:
V= Q
47T €0 vaZ4z?




A line of charge

Problem:

Positive electric charge @ is distributed
uniformly along a line of length 2a lying along
the y-axis between y = —a and y = +a. Find the
electric potential at a point P on the z-axis at a

distance x from the origin.
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A line of charge

Solution:

e The element of charge d@ corresponding to
an element of length dy on the rod is
dQ = (Q/2a) dy.

e The distance from dQ to P is v/22 + 32, so
the contribution dV that the charge element
makes to the potential at P is

1 Q@ dy

dV = ==
dmeg 2a (/22 + o2
e Integrating this from y = —a to +a we get

1 Ql Va2 +22+a
 4meg 2a VaZz+z2 —a



Equipotential surfaces




Equipotential surfaces

e By analogy to contour lines on a
topographic map, an

equipotential surface is a 3-D
surface on which V is the same at

every point.

e the electric potential energy gV
of a charge gy remains constant

when moved on an equipotential — ~

surface. Contour lines on a topographic
e No point can be at two different NanEare Pl ClgnSLAN
- : L elevation and hence of constant
potentials, so equipotential i |
surfaces for different potentials otlnati v jp o energ

can never touch or intersect.
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Equipotential Surfaces and Field Lines

(a) A single positive charge

e Field lines and equipotential
surfaces are always mutually
perpendicular. Why?

e In the figures on the right,
equipotentials are drawn so that
there are equal potential
differences between adjacent
surfaces. In regions where the

magnitude of E is large. Why? V=170V

e E need not be constant over an —— Electric field lines

Cross sections of equipotential surfaces)’sé

W/

equipotential surface
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Equipotential Surfaces and Field Lines

e Field lines and equipotential

surfaces are always mutually
perpendicular. Why?

In the figures on the right,
equipotentials are drawn so that
there are equal potential
differences between adjacent
surfaces. In regions where the
magnitude of E is large. Why?

E need not be constant over an

equipotential surface

(b) An electric dipole

V=-70V V=+70V

—— Electric field lines
Cross sections of equipotential surfaces

61



Equipotential Surfaces and Field Lines

(c) Two equal positive charges
e Field lines and equipotential

surfaces are always mutually
perpendicular. Why?

e In the figures on the right,
equipotentials are drawn so that
there are equal potential
differences between adjacent

surfaces. In regions where the
magnitude of E is large. Why? V=430V V=450V V=470V

e E need not be constant over an —— Electric field lines
—— Cross sections of equipotential surfaces

equipotential surface
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Equipotentials and Conductors

When all charges are at rest,
e the surface of a conductor is always an
equipotential surface,

e the electric field just outside a
conductor must be perpendicular to the
surface at every point,

e the entire solid volume of a conductor is

at the same potential_ —— Cross sections of equipotential surfaces

—=— Electric field lines
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Equipotentials and Conductors

When all Charges are at rest, An impossible electric field
. If the electric field just outside a conductor
e the surface of a conductor is always an . ! .

had a tangential component E|, a charge
could move in a loop with net work done.

equipotential surface,

o the electric field just outside a A veewm

conductor must be perpendicular to the

surface at every point, """ F o  Conductor

e the entire solid volume of a conductor is

at the same potential.
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Equipotentials and Conductors

If a conductor contains a cavity and if no Cross section of equipotential
surface through P

charge is present inside the cavity, o

GZIUSSIZII'I surface

(in cross section)

e then there can be no net charge

N\ Surface

anywhere on the surface of the cavity.
of cavit
Every point in the cavity is at the same ) ’
potential. The electric field inside the ~— N
Conductor

cavity is zero everywhere.
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Potential gradient




Potential gradient

e Electric field and electric potential are closely related.
b
Vo — V= / E-dl
a

If we know E at various points, we can use this equation to
calculate potential differences.

o if we know V/(F), can we use it to determine E(F)?

e Yes! The components of E are related to the partial
derivatives of V' with respect to x, y, and z.

o Using Vo, — V= [/dV = — fab dV we can write

AV =E.dl

This remind us that moving in the direction of f), the

electric potential V' decreases most rapidly.
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Potential gradient

In Cartesian coordinates
—AV = E-dl = (E,i + E,j + E.k) - (dzi + dyj + dzk)

oV

y7z

and similarly for the y- and z-components.

If E has a radial component F, with respect to a point or an

axis and r is the distance from the point or axis, the

1°)%
==
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relationship is



Electric field of a point charge from electric potential

Given V(r) = q/(4mepr) we can calculate

oV q 1 _ q T
_— = — E = E rP= —
Or  4megr? rf 4dmreq 12

E, = -

Since r = \/x2 + y2 + 22

| _ a4

By l= _ 4|z
3
ox " dmeg T

and similarly calculating 8V and £ BV give

, 1+y)+ 2k ¥
Fo 4 attyitzk ¢t

4d7eq 3 ATeg T

f

69



	Electric potential energy
	Electric Potential Energy in a Uniform Field
	Electric Potential Energy of Two Point Charges
	Electric Potential Energy with Several Point Charges
	Interpreting Electric Potential Energy

	Electric potential
	Calculating Electric Potential
	Finding Electric Potential from Electric Field
	Electron Volts

	Calculating electric potential
	Ionization and Corona Discharge

	Equipotential surfaces
	Equipotential Surfaces and Field Lines
	Equipotential Surfaces and Conductors

	Potential gradient

