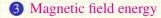
Inductance FIZ102E: Electricity & Magnetism

Yavuz Ekşi

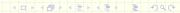
İTÜ, Fizik Müh. Böl.

Contents

2 Self-inductance and inductors



4 R-L circuit

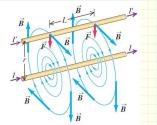


Learning outcomes

- How a time-varying current in one coil can induce an emf in a second, unconnected coil.
- How to relate the induced emf in a circuit to the rate of change of current in the same circuit.
- How to calculate the energy stored in a magnetic field.
- How to analyze circuits that include both a resistor and an inductor (coil).
- Why electrical oscillations occur in circuits that include both an inductor and a capacitor.
- Why oscillations decay in circuits with an inductor, a resistor, and a capacitor.

Introduction

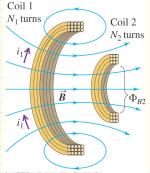
- A changing current in a coil induces an emf in an adjacent coil. The coupling between the coils is described by their *mutual inductance*.
- A changing current in a coil also induces an emf in that same coil.
- Such a coil is called an *inductor*,
- and the relationship of current to emf is described by the inductance (also called *self-inductance*) of the coil.



Copyright @ 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesle

- We have considered the magnetic interaction between two wires carrying steady currents.
- The current in one wire causes a magnetic field, which exerts a force on the current in the second wire.
- An additional interaction arises between two circuits when there is a *changing* current in one of the circuits.

Mutual inductance: If the current in coil 1 is changing, the changing flux through coil 2 induces an emf in coil 2.



Copyright @ 2008 Pleasion Education, Inc., publishing as Pearson Addison-Wesley.

- We use lowercase letters to represent quantities that vary with time (e.g. *i*).
- *i*₁ produces *B*, according to Biot-Savarts law:

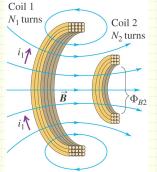
 $\vec{\mathbf{B}} = rac{\mu_0}{4\pi} \int rac{i_1 \mathrm{d}ec{\ell} imes \hat{\mathbf{r}}}{r^2} \Rightarrow B \propto i_1$

• Φ through the 2nd loop is proportional to *B*

$$\Phi_{B2} = \int ec{f B} \cdot {
m d}ec{f A} \Rightarrow \Phi_{B2} \propto B$$

• Thus $\Phi_{B2} \propto i_1$.

Mutual inductance: If the current in coil 1 is changing, the changing flux through coil 2 induces an emf in coil 2.



Copyright @ 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley

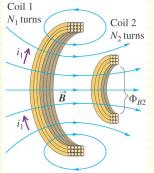
• We call the proportionality constant as the *mutual inductance*, *M*₂₁.

• If there are *N*₂ turns, the same flux passes through each loop, and

 $N_2 \Phi_{B2} = M_{21} i_1 \tag{1}$

defines M_{21} .

Mutual inductance: If the current in coil 1 is changing, the changing flux through coil 2 induces an emf in coil 2.



Copyright ID 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley

When i₁ changes, Φ_{B2} changes; this changing flux induces an emf ε₂ in coil 2, given by

$$\mathcal{E}_2 = -N_2 \frac{d\Phi_{B2}}{dt}$$

(1)

(2)

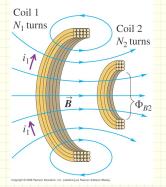
3

Using $N_2 \Phi_{B2} = M_{21} i_1$

$$\mathcal{E}_2 = -M_{21} \frac{di_1}{dt}$$

A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A

Mutual inductance: If the current in coil 1 is changing, the changing flux through coil 2 induces an emf in coil 2.



- We found $\Phi_{B2} \propto i_1$.
- Then the mutual inductance

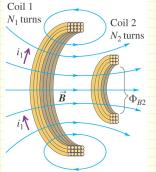
 $M_{21} = \frac{N_2 \Phi_{B2}}{i_1}$

is a constant that depends only on the geometry of the two coils (the size, shape, number of turns, and orientation of each coil and the separation between the coils).

• This is always valid if the coils are in vacuum.

A = A = A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A

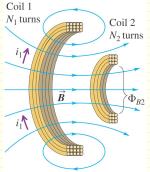
Mutual inductance: If the current in coil 1 is changing, the changing flux through coil 2 induces an emf in coil 2.



Copyright @ 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesle

- If a magnetic material is present, M_{21} also depends on the magnetic properties of the material.
- If the material has nonlinear magnetic properties-that is, if the relative permeability K_m is not constant and magnetization is not proportional to magnetic field-then Φ_{B2} is no longer directly proportional to i_1 .

Mutual inductance: If the current in coil 1 is changing, the changing flux through coil 2 induces an emf in coil 2.



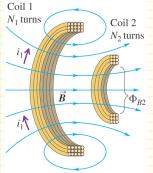
opyright @ 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesle

- A changing current i_2 in coil 2 causes a changing flux Φ_{B1} and an emf \mathcal{E}_1 in coil 1.
- The corresponding constant $M_{12} = M_{21}$ always, even though in general the two coils are not identical and Φ through them is not the same.

$$M = M_{21} = \frac{N_2 \Phi_{B2}}{i_1} = M_{12} = \frac{N_1 \Phi_{B1}}{i_2}$$
(1)

• Mutual inductance, *M*, characterizes completely the induced-emf interaction of two coils.

Mutual inductance: If the current in coil 1 is changing, the changing flux through coil 2 induces an emf in coil 2.



Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesle

Mutually induced emfs are then

 $\mathcal{E}_2 = -M \frac{di_1}{dt}, \quad \mathcal{E}_1 = -M \frac{di_2}{dt}$

A B A B A B A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

(1)

Unit of inductance

3

- The SI unit of mutual inductance is called the *henry* (1 H)¹
- One henry is equal to one weber per ampere $(M = N_2 \Phi_{B2}/i_1)$
- Other equivalent units

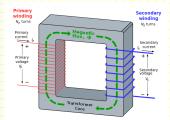
$$1 \mathbf{H} = 1 \mathbf{W}\mathbf{b}/\mathbf{A} = 1 \mathbf{V} \cdot \mathbf{s}/\mathbf{A} = 1 \Omega \cdot \mathbf{s} = 1 \mathbf{J}/\mathbf{A}^2$$
(2)

¹In honor of the American physicist Joseph Henry (1797-1878), one of the discoverers of electromagnetic induction.

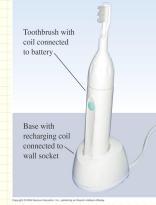
- Mutual inductance can be a nuisance in electric circuits, since variations in current in one circuit can induce unwanted emfs in other nearby circuits.
- To minimize these effects two coils would be placed far apart.
- Mutual inductance also has many useful applications:
- A transformer
- How do electric toothbrushes charge through plastic?

- Mutual inductance can be a nuisance in electric circuits, since variations in current in one circuit can induce unwanted emfs in other nearby circuits.
- To minimize these effects two coils would be placed far apart.
- Mutual inductance also has many useful applications:
- A transformer
- How do electric toothbrushes charge through plastic?

- Mutual inductance can be a nuisance in electric circuits, since variations in current in one circuit can induce unwanted emfs in other nearby circuits.
- To minimize these effects two coils would be placed far apart.
- Mutual inductance also has many useful applications:
- A transformer
- How do electric toothbrushes charge through plastic?



- Mutual inductance can be a nuisance in electric circuits, since variations in current in one circuit can induce unwanted emfs in other nearby circuits.
- To minimize these effects two coils would be placed far apart.
- Mutual inductance also has many useful applications:
- A transformer
- How do electric toothbrushes charge through plastic?



- Mutual inductance can be a nuisance in electric circuits, since variations in current in one circuit can induce unwanted emfs in other nearby circuits.
- To minimize these effects two coils would be placed far apart.
- Mutual inductance also has many useful applications:

- A transformer
- Electric toothbrush

- Mutual inductance can be a nuisance in electric circuits, since variations in current in one circuit can induce unwanted emfs in other nearby circuits.
- To minimize these effects two coils would be placed far apart.
- Mutual inductance also has many useful applications:
- A transformer
- How do electric toothbrushes charge through plastic?

Your electric toothbrush is charged through electromagnetic induction

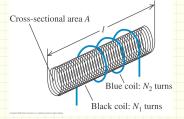
Charging contacts are inconvenient in an appliance that will be exposed to water. Instead, the charger works like a power transformer.

Electricity flows through a primary coil in the charger, creating a magnetic field.

> That magnetic field induces a current in a secondary coil inside the brush, which charges its battery.

GREGED COM

- Mutual inductance can be a nuisance in electric circuits, since variations in current in one circuit can induce unwanted emfs in other nearby circuits.
- To minimize these effects two coils would be placed far apart.
- Mutual inductance also has many useful applications:
- A transformer
- How do electric toothbrushes charge through plastic?

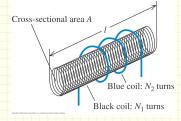


This is a form of Tesla coil (a high-voltage generator popular in science museums)

Question

A long solenoid with length l and cross-sectional area A is closely wound with N_1 turns of wire. A coil with N_2 turns surrounds it at its center. Find the mutual inductance M.

A B A B A B A
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A



This is a form of Tesla coil (a high-voltage generator popular in science museums)

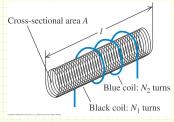
Solution

• B_1 at the center of the solenoid

$$B_1 = \mu_0 n_1 i_1 = rac{\mu_0 N_1 i}{l}$$

where $n_1 = N_1/l$.

- The flux through a cross section of the solenoid equals B_1A .
- This also equals the flux Φ_{B2} through each turn of the outer coil, independent of its cross-sectional area as there is almost no mag- netic field outside a very long solenoid.

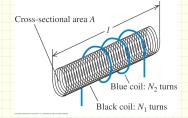


This is a form of Tesla coil (a high-voltage generator popular in science museums) • The mutual inductance is then

$$M = \frac{N_2 \Phi_{B2}}{i_1} = \frac{N_2 B_1 A}{i_1}$$
$$= \frac{\mu_0 N_1 N_2 A i_1}{l i_1} = \frac{\mu_0 N_1 N_2 A}{l}$$

- The mutual inductance M of any two coils is proportional to the product N_1N_2 of their numbers of turns.
- Notice that *M* depends only on the geometry of the two coils, not on the current.

A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B



This is a form of Tesla coil (a high-voltage generator popular in science museums) Numerical Suppose l = 0.50 m, A = 10 cm² = 1.0×10^{-3} m², $N_1 = 1000$ turns, and $N_2 = 10$ turns. The mutual inductance is then

$$M = \frac{\mu_0 N_1 N_2 A}{l}$$

= $\frac{4\pi \times 10^{-7} \text{Wb/A} \cdot \text{m} \times 1000 \times 10 \times 1.0 \times 10^{-3} \text{ m}^2}{0.50 \text{ m}}$
= $25 \times 10^{-6} \text{ H}$

< □ > < 四 > < □ > < □ > < □ > < □ >

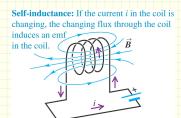
Self-inductance

Self-inductance: If the current *i* in the coil is changing, the changing flux through the coil induces an emf in the coil. \vec{B}

- A current in a circuit sets up a magnetic field that causes a magnetic flux through the *same* circuit;
- this flux changes when the current changes.
- Thus any circuit that carries a varying current has an emf induced in it by the variation in its own *B*. Such an emf is called a *self-induced emf*.

< □ > < 四 > < □ > < □ > < □ > < □ >

Self-inductance



- By *Lenz's law*, a self-induced emf opposes the change in *i* that caused the emf and so tends to make it more difficult for variations in *i* to occur.
- Self-induced emfs can occur in any circuit, since there is always some Φ_B through the closed loop of a current-carrying circuit.
- But the effect is greatly enhanced if the circuit includes a coil with *N* turns of wire.

< □ > < 四 > < □ > < □ > < □ > < □ >

Self-inductance: If the current *i* in the coil is changing, the changing flux through the coil induces an emf in the coil. \vec{B}

Self-inductance

• The self-inductance of the circuit is defined as

$$L = \frac{N\Phi_B}{i} \tag{3}$$

From Faraday's law $\mathcal{E} = -Nd\Phi_B/dt$

$$\mathcal{E} = -L\frac{\mathrm{d}i}{\mathrm{d}t} \tag{4}$$

• The – sign is a reflection of Lenz's law: the self-induced emf in a circuit opposes any change in the current in that circuit.

A = A = A = A = A
 A = A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A = A
 A
 A
 A = A
 A
 A
 A = A
 A
 A
 A = A
 A
 A
 A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Inductors as circuit elements

- A circuit device that is designed to have a particular inductance is called an inductor, or a choke.
- The usual circuit symbol for an inductor is 70000
- Their purpose is to oppose any variations in the current through the circuit.

Application

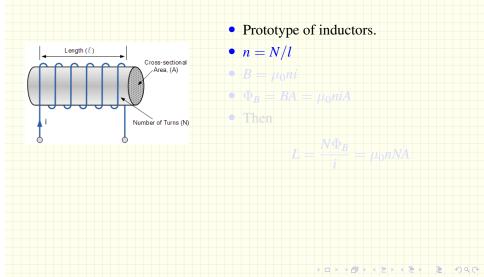
- If lightning strikes part of an electrical power transmission system, it causes a sudden spike in voltage that can damage the components of the system as well as anything connected to that system.
- To minimize these effects, large inductors are incorporated into the transmission system.
- An inductor opposes and suppresses any rapid changes in the current.

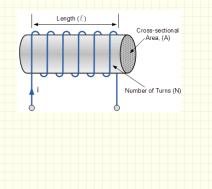
A B A B A B A
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- (00000000)
- Prototype of inductors.
- $B = \mu_0 n i$ • $\Phi_B = BA = \mu_0 n i A$

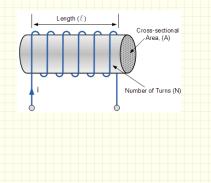
• Then

• n = N/l

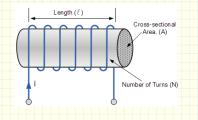




• Prototype of inductors. • n = N/l• $B = \mu_0 ni$ • $\Phi_B = BA = \mu_0 niA$ • Then $L = \frac{M\Phi_B}{i} = \mu$

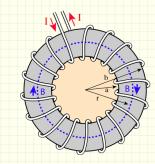


Prototype of inductors.
n = N/l
B = μ₀ni
Φ_B = BA = μ₀niA
Then



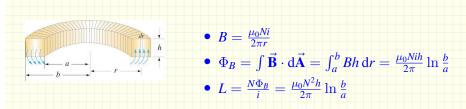
• Prototype of inductors. • n = N/l• $B = \mu_0 ni$ • $\Phi_B = BA = \mu_0 niA$ • Then $L = \frac{N\Phi_B}{i} = \mu_0 nNA$

• $B = \frac{\mu_0 Ni}{2\pi r}$ • $\Phi_B = \int \vec{\mathbf{B}} \cdot d\vec{\mathbf{A}} = \int_a^b Bh \, dr = \frac{\mu_0 Nih}{2\pi} \ln \frac{b}{a}$ • $L = \frac{N \Phi_B}{i} = \frac{\mu_0 N^2 h}{2\pi} \ln \frac{b}{a}$

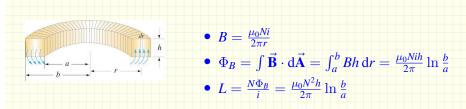


• $B = \frac{\mu_0 Ni}{2\pi r}$ • $\Phi_B = \int \vec{\mathbf{B}} \cdot d\vec{\mathbf{A}} = \int_a^b Bh \, dr = \frac{\mu_0 Nih}{2\pi} \ln \frac{b}{a}$ • $L = \frac{N\Phi_B}{T} = \frac{\mu_0 N^2 h}{2\pi} \ln \frac{b}{a}$

Self-inductance of a toroidal soleoid



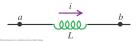
Self-inductance of a toroidal soleoid



Magnetic field energy

Resistor with current i: energy is dissipated.

Inductor with current i: energy is stored.

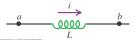


- An inductor carrying a current has energy stored in it.
- Establishing a current in an inductor requires an input of energy.

Energy Stored in an Inductor

Resistor with current i: energy is dissipated.

Inductor with current i: energy is stored.



- What is the total energy input *U* needed to establish a final current *I* in an inductor with inductance *L* if the initial current is zero.
- The rate *P* at which energy is being delivered to the inductor is

$$P = V_{ab}i = L\frac{\mathrm{d}i}{\mathrm{d}t}i$$

Energy Stored in an Inductor

• The energy dU supplied to the inductor during an infinitesimal time interval dt is dU = Pdt, so

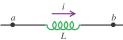
• The total energy *U* supplied while the current increases from zero to a final value *I* is

$$U = L \int_0^I i \, \mathrm{d}i = \frac{1}{2} L I^2$$

(a)

• Where is this energy stored?

Inductor with current i: energy is stored.



Magnetic energy density

• The magnetic energy density

Recall

 The electric energy density was defined as

 $u_E = \frac{1}{2}\epsilon_0 E^2$

- The energy given to a capacitor was stored in the electric field
- Ex: The magnetic energy density in an ideal solenoid is then
 u_B = (μ₀ni)²/_{2μ₀} = ½μ₀n²i²

 The energy in an ideal solenoid is

 $u_B = \frac{B^2}{2\mu_0}$

(5)

- then $U_B = u_B A l = \frac{1}{2} \mu_0 n^2 l A l^2$
- Recalling $L = \mu_0 n^2 l A$ we get $U_B = \frac{1}{2} L i^2 = U.$
- All given energy is stored in the magnetic field.

Magnetic energy density

• The magnetic energy density

Recall

 The electric energy density was defined as

 $u_E = \frac{1}{2}\epsilon_0 E^2$

• The energy given to a capacitor was stored in the electric field

• Ex: The magnetic energy density in an ideal solenoid is then $u_B = \frac{(\mu_0 n i)^2}{2\mu_0} = \frac{1}{2}\mu_0 n^2 i^2$

 $u_B = \frac{B^2}{2\mu_0}$

(5)

- The energy in an ideal solenoid is then $U_B = u_B A l = \frac{1}{2} \mu_0 n^2 l A i^2$
- Recalling $L = \mu_0 n^2 l A$ we get $U_B = \frac{1}{2} L i^2 = U.$
- All given energy is stored in the magnetic field.

Energy stored in a toroidal solenoid • Recall $L = \frac{N\Phi}{i} = \frac{\mu_0 N^2 h}{2\pi} \ln \frac{b}{a}$ and so

$$U = \frac{1}{2}Li^{2} = \frac{\mu_{0}N^{2}h}{4\pi}\ln\frac{b}{a}i^{2}$$

- Let us find this from the energy density.
- Recall $B = \mu_0 N i / 2\pi r$
- Energy density: $u_B = B^2/2\mu_0 = \mu_0 N^2 i^2/8\pi^2 r^2$ (not uniform)
- Consider a cylindrical shell of radius r, thickness dr and height h. It's volume is $dV = 2\pi r drh$. The energy stored is $dU = u_B dV$

Energy stored in a toroidal solenoid • Recall $L = \frac{N\Phi}{i} = \frac{\mu_0 N^2 h}{2\pi} \ln \frac{b}{a}$ and so $U = \frac{1}{2}Li^2 = \frac{\mu_0 N^2 h}{4\pi} \ln \frac{b}{a}i^2$

- Let us find this from the energy density.
- Recall $B = \mu_0 N i / 2 \pi r$
- Energy density: $u_B = B^2/2\mu_0 = \mu_0 N^2 i^2/8\pi^2 r^2$ (not uniform)
- Consider a cylindrical shell of radius r, thickness dr and height h. It's volume is $dV = 2\pi r drh$. The energy stored is $dU = u_B dV$

$$U = \frac{1}{2}Li^2 = \frac{\mu_0 N^2 h}{4\pi} \ln \frac{b}{a}i^2$$

- Let us find this from the energy density.
- Recall $B = \mu_0 N i / 2\pi r$
- Energy density: $u_B = B^2/2\mu_0 = \mu_0 N^2 i^2/8\pi^2 r^2$ (not uniform)
- Consider a cylindrical shell of radius r, thickness dr and height h. It's volume is $dV = 2\pi r drh$. The energy stored is $dU = u_B d$

$$U = \frac{1}{2}Li^2 = \frac{\mu_0 N^2 h}{4\pi} \ln \frac{b}{a}i^2$$

- Let us find this from the energy density.
- Recall $B = \mu_0 N i / 2\pi r$
- Energy density: $u_B = B^2/2\mu_0 = \mu_0 N^2 i^2/8\pi^2 r^2$ (not uniform)
- Consider a cylindrical shell of radius r, thickness dr and height h. It's volume is $dV = 2\pi r drh$. The energy stored is $dU = u_B d$

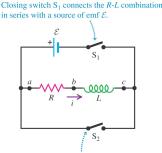
$$U = \frac{1}{2}Li^2 = \frac{\mu_0 N^2 h}{4\pi} \ln \frac{b}{a}i^2$$

- Let us find this from the energy density.
- Recall $B = \mu_0 N i / 2\pi r$
- Energy density: $u_B = B^2/2\mu_0 = \mu_0 N^2 i^2/8\pi^2 r^2$ (not uniform)
- Consider a cylindrical shell of radius *r*, thickness d*r* and height *h*. It's volume is $dV = 2\pi r drh$. The energy stored is $dU = u_B dV$

$$U = \frac{1}{2}Li^2 = \frac{\mu_0 N^2 h}{4\pi} \ln \frac{b}{a}i^2$$

- Let us find this from the energy density.
- Recall $B = \mu_0 N i / 2\pi r$
- Energy density: $u_B = B^2/2\mu_0 = \mu_0 N^2 i^2/8\pi^2 r^2$ (not uniform)
- Consider a cylindrical shell of radius *r*, thickness d*r* and height *h*. It's volume is $dV = 2\pi r drh$. The energy stored is $dU = u_B dV$

$$U_B = \int_a^b u_b \, dV = \int_a^b \frac{\mu_0 N^2 i^2}{8\pi^2 r^2} 2\pi r \, dr \, h$$
$$= \frac{\mu_0 N^2 h i^2}{4\pi} \int_a^b \frac{dr}{r}$$
$$= \frac{\mu_0 N^2 h i^2}{4\pi} \ln \frac{b}{a} = U$$



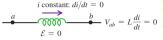
Closing switch S_2 while opening switch S_1 disconnects the combination from the source.

- How does an inductor behave in a circuit?
- An inductor in a circuit makes it difficult for rapid changes in current to occur, thanks to the effects of self-induced emf.
- According to $\mathcal{E} = -L \frac{di}{dt}$ the greater the rate of change of current di/dt, the greater the self-induced emf and the greater the potential difference between the inductor terminals.

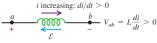
The potential difference across an inductor

(a) Resistor with current *i* flowing from *a* to *b*: potential drops from *a* to *b*.

(b) Inductor with *constant* current *i* flowing from *a* to *b*: no potential difference.



(c) Inductor with *increasing* current *i* flowing from *a* to *b*: potential drops from *a* to *b*.



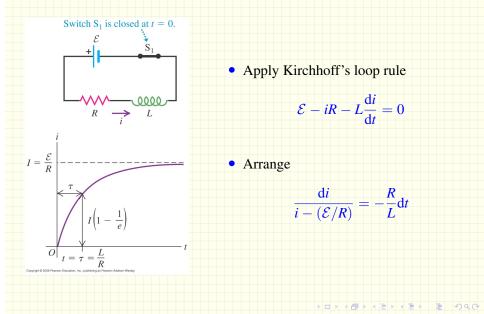
(d) Inductor with *decreasing* current *i* flowing from *a* to *b*: potential increases from *a* to *b*.

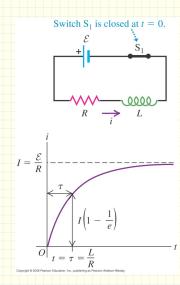
$$a \xrightarrow{i \text{ decreasing: } di/dt < 0} b$$

$$- \underbrace{0}_{\mathcal{E}} \xrightarrow{b} V_{ab} = L \frac{di}{dt} < 0$$

- The potential difference across a resistor depends on the current (a).
- whereas the potential difference across an inductor depends on the rate of change of the current (b), (c), (d).

A B > A B > A B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B >



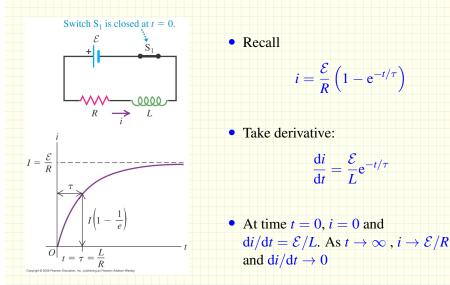


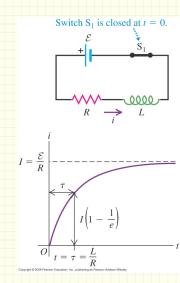
• Integrate $\int_{0}^{i} \frac{di'}{i' - (\mathcal{E}/R)} = -\int_{0}^{t} \frac{R}{L} dt'$ $\ln\left(\frac{i - (\mathcal{E}/R)}{-\mathcal{E}/R}\right) = -\frac{R}{L}t$

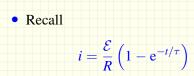
• take exponentials of both sides and solve for *i*

 $i = \frac{\mathcal{E}}{R} \left(1 - \mathrm{e}^{-t/\tau} \right), \qquad \tau = L/R$

A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

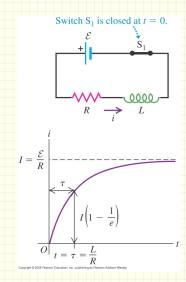






- At $t = \tau$ the current has risen to $(1 1/e) \simeq 63\%$ of its final value.
- At $t = 5\tau$ the current has risen to 99.3% of its final value.

A = A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A



Energy considerations

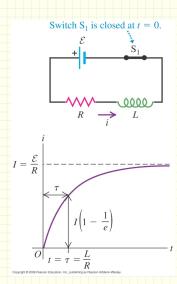
- The rate at which the source delivers energy to the circuit is $P_{\mathcal{E}} = \mathcal{E}i$.
- The rate at which energy is dissipated in the resistor is $P_R = i^2 R$.
- The rate at which energy is stored in the inductor is $P_L = Lidi/dt$

• Multiply $\mathcal{E} - iR - L\frac{di}{dt} = 0$ by *i* and arrange

$$\mathcal{E}i = i^2 R + Li \frac{\mathrm{d}i}{\mathrm{d}t}$$

Of the power supplied by the source $\mathcal{E}i$, part i^2R is dissipated in *R* and part $Li\frac{di}{dt}$ goes to store energy in *L*.

Energy delivered by the source



• The rate at which the source delivers energy to the circuit is $P_{\mathcal{E}} = \mathcal{E}i$.

•
$$dU_{\mathcal{E}} = P_{\mathcal{E}} dt$$
 and $i = \frac{\mathcal{E}}{R} \left(1 - e^{-t/\tau} \right)$

•
$$U_{\mathcal{E}} = \int_0^\infty \mathcal{E}i \mathrm{d}t$$

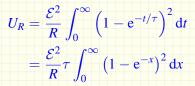
$$U_{\mathcal{E}} = \frac{\mathcal{E}^2}{R} \int_0^\infty \left(1 - e^{-t/\tau}\right) dt$$
$$= \frac{\mathcal{E}^2}{R} \tau \int_0^\infty \left(1 - e^{-x}\right) dx$$

where $x \equiv t/\tau$. The integral diverges. If we integrate to some finite $x_f \gg 1$

$$U_{\mathcal{E}} = \frac{\mathcal{E}^2}{R} \tau \left(x + e^{-x} \right)_0^{x_f} \simeq \frac{\mathcal{E}^2}{R} \tau (x_f - 1)$$

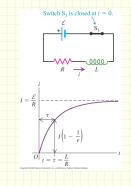
Energy dissipated on the resistor

- The rate at which the resistor dissipates energy is $P_R = Ri^2$.
- $dU_R = P_R dt$ and $i = \frac{\mathcal{E}}{R} \left(1 e^{-t/\tau}\right)$ • $U_R = R \int_0^\infty i^2 dt$



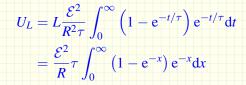
where $x \equiv t/\tau$. If we integrate to some finite $x_f \gg 1$

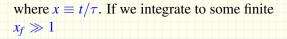
$$U_{R} = \frac{\mathcal{E}^{2}}{R} \tau \left(x + 2e^{-x} - \frac{1}{2}e^{-2x} \right)_{0}^{x_{f}} \simeq \frac{\mathcal{E}^{2}}{R} \tau (x_{f} - \frac{3}{2})$$

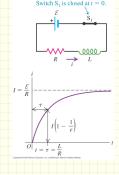


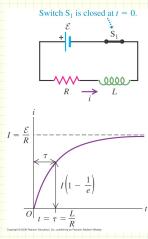
Energy stored on the inductor

- The rate at which the inductor stores energy is $P_L = Lidi/dt$.
- $dU_L = P_L dt$ and $i = \frac{\mathcal{E}}{R} (1 e^{-t/\tau}),$ $di/dt = \frac{\mathcal{E}}{R\tau} e^{-t/\tau}$ • $U_L = L \int_0^\infty i(di/dt) dt$









Since the current does not go to zero, there is always some dissipation of energy on the resistor which is supplied by the source.

In summary

• Energy delivered by the source to the circuit

$$U_{\mathcal{E}} \simeq \frac{\mathcal{E}^2}{R} \tau (x_f - 1)$$

Energy dissipated on the resistor

$$U_R \simeq rac{\mathcal{E}^2}{R} au(x_f - rac{3}{2})$$

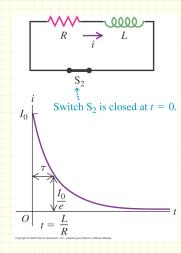
• Energy stored on the inductor

 $U_L \simeq rac{\mathcal{E}^2}{R} au rac{1}{2}$

•
$$U_{\mathcal{E}} = U_R + U_I$$

<ロ>

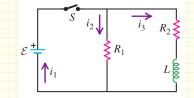
Current decay in an R-L circuit



- Now suppose switch *S*₁ has been closed for a while and the current has reached the value *I*₀.
- We reset our stopwatch to redefine the initial time, we close switch S_2 at time t = 0, bypassing the battery.
- Kirchhoff's loop eqn: $-iR - L\frac{di}{dt} = 0$ whose solution is

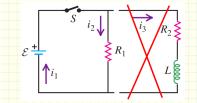
 $i = I_0 e^{-t/\tau}, \qquad \tau = L/R \qquad (6)$

A B A B A B A
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A



Question

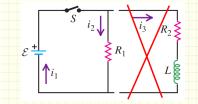
An inductor with inductance L = 0.300 H and negligible resistance is connected to a battery, a switch *S*, and two resistors, $R_1 = 12.0 \Omega$ and $R_2 = 16.0 \Omega$. The battery has emf 96.0 V and negligible internal resistance. *S* is closed at t = 0. (a) What are the currents i_1 , i_2 , and i_3 just after *S* is closed? (b) What are i_1 , i_2 , and i_3 after *S* has been closed a long time?



Solution a

• $i_1 = i_2 = \mathcal{E}/R_1$

• As soon as the *S* is closed there is no current on the *L* branch.



Solution a

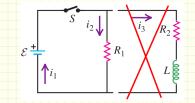
• As soon as the *S* is closed there is no current on the *L* branch.

A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

3

•
$$i_3 = 0$$

 \bullet i = i = \mathcal{E}/R_1



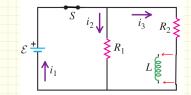
Solution a

• As soon as the *S* is closed there is no current on the *L* branch.

A B > A B > A B > B
 B > B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B

•
$$i_3 = 0$$

•
$$i_1 = i_2 = \mathcal{E}/R$$

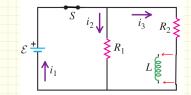


Solution b

• $i_3 = \mathcal{E}/R_2$ • $i_1 = i_2 + i_3$

• After *S* has been closed a long time *L* acts just like a wire (as di/dt = 0).

(ロ) (部) (注) (注) (注)



Solution b

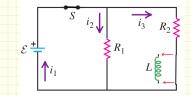
• After *S* has been closed a long time *L* acts just like a wire (as di/dt = 0).

A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

3

• $i_2 = \mathcal{E}/R_1$ • $i_3 = \mathcal{E}/R_2$

• $i_1 = i_2 + i_3$

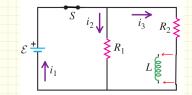


Solution b

• After *S* has been closed a long time *L* acts just like a wire (as di/dt = 0).

A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A

- $i_2 = \mathcal{E}/R_1$
- $i_3 = \mathcal{E}/R_2$ • $i_1 = i_2 + i_3$



Solution b

• After *S* has been closed a long time *L* acts just like a wire (as di/dt = 0).

A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

3

• $i_2 = \mathcal{E}/R_1$

•
$$i_3 = \mathcal{E}/R_2$$

•
$$i_1 = i_2 + i_3$$