
Automated Validation
of Security Protocols

(AVASP)

Sebastian Mödersheim Luca Viganò David von Oheimb

AVASP

Sebastian Mödersheim Luca Viganò David von Oheimb 1

Plan of the day

09:00 – 10:00 Introduction to security protocols (LV)

10:00 – 12:30 Internet protocols (DvO)

14:00 – 15:00 Formal methods for security protocol analysis (LV)

15:00 – 18:00 Methods for automated protocol analysis (SM)

AVASP 03.04.2005

Sebastian Mödersheim Luca Viganò David von Oheimb 2

Road map

• Introduction to security protocols.

� Motivation.

� A brief introduction to cryptography.

� Basic notions.

� An example: Needham-Schroeder Public Key Protocol.

� Protocol attacks.

• Formal methods for security protocol analysis.

N.B.: this is a survey, and as such is partial and incomplete.

AVASP 03.04.2005

Sebastian Mödersheim Luca Viganò David von Oheimb 3

Road map

☞ Introduction to security protocols.

� Motivation.

� A brief introduction to cryptography.

� Basic notions.

� An example: Needham-Schroeder Public Key Protocol.

� Protocol attacks.

• Formal methods for security protocol analysis.

N.B.: this is a survey, and as such is partial and incomplete.

AVASP 03.04.2005

Sebastian Mödersheim Luca Viganò David von Oheimb 4

Motivation

Charlie
(the intruder)

Alice
(a principal)

Bob
(a principal)

Information
ChannelMessage Message

• How do we turn untrustworthy channels into trustworthy ones?

Confidentiality: Transmitted information remains secret.

Integrity: Information not corrupted (or alterations detected).

Authentication: Principals know who they are speaking to.

• Cryptography is the enabling technology.

AVASP 03.04.2005

Sebastian Mödersheim Luca Viganò David von Oheimb 5

Motivation — Examples
• Example: Securing an e-banking application.

A→ B: “Send $10,000 to account X”
B → A: “I’ll transfer it now”

� How does B know the message originated from A?

� How does B know A just said it?

• Other examples:
� Constructing secure channels in wireless networks.

� A micro-payment scheme for E-Commerce.

� An access control system for area-wide ski-lifts.

• How can one build distributed algorithms for doing this?

Solutions involve protocols like IPSEC, KERBEROS, SSH, SSL,

SET, PGP... which exploit cryptographic algorithms.
AVASP 03.04.2005

Sebastian Mödersheim Luca Viganò David von Oheimb 6

General cryptographic schema

Encryption DecryptionPlaintext
Ciphertext

Key1 Key2

Plaintext
P C P

where EKey1(P) = C , DKey2(C) = P

• Symmetric algorithms.

� Key1 = Key2 , or are easily derived from each other.

• Asymmetric or public key algorithms.

� Different keys, which cannot be derived from each other.

� Public key can be published without compromising private key.

• Encryption and decryption should be easy, if keys are known.

• Security depends on secrecy of the key, not the algorithm.

AVASP 03.04.2005

Sebastian Mödersheim Luca Viganò David von Oheimb 7

Encryption/decryption

• A, the alphabet, is a finite set.

• M ⊆ A∗ is the message space. M ∈M is a plaintext (message).

• C is the ciphertext space, whose alphabet may differ from M.

• K denotes the key space of keys.

• Each e ∈ K determines a bijective function fromM to C, denoted

by Ee. Ee is the encryption function (or transformation).

• For each d ∈ K, Dd denotes a bijection from C to M.

Dd is the decryption function.

• Applying Ee (or Dd) is called encryption (or decryption).

AVASP 03.04.2005

Sebastian Mödersheim Luca Viganò David von Oheimb 8

Encryption/decryption (cont.)

• An encryption scheme (or cipher) consists of a set {Ee : e ∈ K}
and a corresponding set {Dd : d ∈ K} with the property that for

each e ∈ K there is a unique d ∈ K such that Dd = E−1
e ; i.e.,

Dd(Ee(m)) = m for all m ∈M .

• The keys e and d above form a key pair, sometimes denoted by

(e, d). They can be identical (i.e., the symmetric key).

• To construct an encryption scheme requires fixing a message

space M, a ciphertext space C, and a key space K, as well as

encryption transformations {Ee : e ∈ K} and corresponding

decryption transformations {Dd : d ∈ K}.

AVASP 03.04.2005

Sebastian Mödersheim Luca Viganò David von Oheimb 9

An example

Let M = {m1,m2,m3} and C = {c1, c2, c3}. There are 3! = 6

bijections from M to C. The key space K = {1, 2, 3, 4, 5, 6}
specifies these transformations.

E4

E1 E2 E3

E5 E6

m1
m2
m3

m1
m2
m3

m1
m2
m3

m1
m2
m3

m1
m2
m3

m1
m2
m3

c1
c2
c3

c1 c1

c1 c1 c1

c2 c2

c2c2c2
c3 c3 c3

c3c3

Suppose Alice and Bob agree on the transformation E1. To encrypt
m1, Alice computes E1(m1) = c3. Bob decrypts c3 by reversing the
arrows on the diagram for E1 and observing that c3 points to m1.

AVASP 03.04.2005

Sebastian Mödersheim Luca Viganò David von Oheimb 10

Symmetric key encryption

• Consider an encryption scheme {Ee : e ∈ K} and {Dd : d ∈ K}.
The scheme is symmetric-key if for each associated pair (e, d) it is

computationally “easy” to determine d knowing only e and to

determine e from d. In practice e = d.

• Other terms: single-key, one-key, private-key, and conventional

encryption.

• A block cipher is an encryption scheme that breaks up the

plaintext message into strings (blocks) of a fixed length t and

encrypts one block at a time.

• A stream cipher is one where the block-length is 1.

AVASP 03.04.2005

Sebastian Mödersheim Luca Viganò David von Oheimb 11

Background: one-way functions

• A function f : X → Y is a one-way function, if f is “easy” to

compute for all x ∈ X, but f−1 is “hard” to compute.

• Example: Problem of modular cube roots.

� Select primes p = 48611 and q = 53993.

� Let n = pq = 2624653723 and X = {1, 2, . . . , n− 1}.
� Define f : X → N by f(x) = x3 mod n.

� Example: f(2489991) = 1981394214. Computing f is easy.

� Inverting f is hard: find x which is cubed and yields remainder!

• A trapdoor one-way function is a one-way function f : X → Y

where, given extra information (the trapdoor information) it is

feasible to find, for y ∈ Im(f), an x ∈ X where f(x) = y.

• Example: Computing modular cube roots (above) is easy when p

and q are known (basic number theory).
AVASP 03.04.2005

Sebastian Mödersheim Luca Viganò David von Oheimb 12

Public-key cryptography

• Public key cryptography is based on two keys: e and d.

� Schema designed so that given a pair (Ee, Dd), knowing Ee it is

infeasible, given c ∈ C to find an m ∈M where Ee(m) = c.

This implies it is infeasible to determine d from e.

� Ee constitutes a trap-door one-way function with trapdoor d.

• Public key as e can be public information:

AVASP 03.04.2005

Sebastian Mödersheim Luca Viganò David von Oheimb 13

Definitions

• A protocol consists of a set of rules (conventions) that determine

the exchange of messages between two or more principals.

In short, a distributed algorithm with emphasis on communication.

• Security (or cryptographic) protocols use cryptographic

mechanisms to achieve security objectives.

Examples: Entity or message authentication, key establishment,

integrity, timeliness, fair exchange, non-repudiation, ...

• Small recipes, but nontrivial to design and understand.

Analogous to programming Satan’s computer.

AVASP 03.04.2005

Sebastian Mödersheim Luca Viganò David von Oheimb 14

Messages

• Message constructors are:

Names: A, B or Alice, Bob,

Keys: K and inverse keys K−1 (for signing, not decryption)

Encryption: {M}K. Encryption with A’s public key: {M}KA
.

Signing: {M}K−1. Signing with A’s private key: {M}K−1
A

.

Symmetric keys: {M}KAB
.

Nonces: NA, N1, ... fresh data items used for challenge/response.

N.B.: sometimes subscripts are used, e.g. NA, but it does not

mean that principals can find out that NA is related to (e.g. was

generated by) A.

Timestamps: T . Denote time, e.g. used for key expiration.

Message concatenation: {M1,M2}.

• Example: {A, T1,KAB}KB
.

AVASP 03.04.2005

Sebastian Mödersheim Luca Viganò David von Oheimb 15

Communication

• Fundamental event is communication.

A→ B : {A, T1,KAB}KB

• A and B are roles.

A role is a procedure specified for each party in a protocol and

that can be instantiated by any principal playing in the role.

� A, B, ... are protocol variables corresponding to roles.

� Their values (e.g. Alice, Bob, a, b,...) are principals.

• Communication is asynchronous (depending on semantic model).

• Sender/receiver names “A→ B” are not part of the message.

• Protocol specifies actions of principals.

Equivalently: it defines a set of event sequences (traces/states).
AVASP 03.04.2005

Sebastian Mödersheim Luca Viganò David von Oheimb 16

Road map

• Introduction to security protocols.

� Motivation.

� A brief introduction to cryptography.

� Basic notions.

☞ An example: Needham-Schroeder Public Key Protocol.
� Protocol attacks.

• Formal methods for security protocol analysis.

AVASP 03.04.2005

Sebastian Mödersheim Luca Viganò David von Oheimb 17

An authentication protocol
The Needham-Schroeder Public Key protocol (NSPK):

1. A→ B : {NA, A}KB

2. B → A : {NA,NB}KA

3. A→ B : {NB}KB

Here is an instance (a protocol run):

BobK

{41}

AliceK

BobK

{17,Alice}

{17,41}

AVASP 03.04.2005

Sebastian Mödersheim Luca Viganò David von Oheimb 18

How the protocol is executed 1. A → B : {NA, A}KB

2. B → A : {NA, NB}KA

3. A → B : {NB}KB

Each principal executes a “protocol automaton”, e.g. Alice in role A.

State s1:

• Generate nonce NAlice, pair it with name, and encrypt with KBob.

• Send {NAlice,Alice}KBob
to Bob.

• Goto state s2.

State s2:

• Receive message C and decrypt it: M = DK−1
Alice

(C).
• If M is not of the form {NAlice, X} for some nonce X, then goto

reject state else goto state s3.

State s3: . . .

State reject: terminate with failure.

N.B.: principals can be engaged in multiple runs (= multiple automata).

AVASP 03.04.2005

Sebastian Mödersheim Luca Viganò David von Oheimb 19

Assumptions and goals

Assumptions (for principals): Implicit (or explicit) prerequisites.

• Principals know their private keys and public keys of others.

• Principals can generate nonces.

Goals: What the protocol should achieve. E.g.

• Authenticate messages, binding them to their originator.

• Ensure timeliness of messages (recent, fresh, ...).

• Guarantee secrecy of certain items (e.g. generated keys).

Theses:

• A protocol without clear goals (and assumptions) is useless.

• A protocol without a proof of correctness is probably wrong.

AVASP 03.04.2005

Sebastian Mödersheim Luca Viganò David von Oheimb 20

Assumptions: intruder

How do we model the intruder (attacker, adversary, spy, penetrator,

saboteur, enemy, ... Mallory, Malice, Charlie,...)? Possibilities:

• He knows the protocol but cannot break cryptography.

(Standard: perfect cryptography.)

• He is passive but overhears all communications.

• He is active and can intercept and generate messages.

“Transfer $20 to Bob ; “Transfer $10,000 to Charlie”

• He might even be one of the principals running the protocol!

A friend’s just an enemy in disguise. You can’t trust nobody.

(Charles Dickens, Oliver Twist)
AVASP 03.04.2005

Sebastian Mödersheim Luca Viganò David von Oheimb 21

Standard intruder model

• The intruder is active. Namely:

� He can intercept and read all messages.

� He can decompose messages into their parts.

But cryptography is secure: decryption requires inverse keys.

� He can build new messages with the different constructors.

� He can send messages at any time.

• Sometimes called the Dolev-Yao intruder model.

• Strongest possible assumptions about the intruder

=⇒
correct protocols function in the largest range of environments.

AVASP 03.04.2005

Sebastian Mödersheim Luca Viganò David von Oheimb 22

Problem with protocols
1. A → B : {NA, A}KB

2. B → A : {NA, NB}KA

3. A → B : {NB}KB

• Goal: mutual (entity) authentication.

• Correctness argument (informal):

“This is Alice and I have chosen a nonce NA.”

“Here is your nonce NA. Since I could read it,
I must be Bob. I also have a challenge NB for you.”

“You sent me NB . Since only Alice can read this
and I sent it back, you must be Alice.”

AVASP 03.04.2005

Sebastian Mödersheim Luca Viganò David von Oheimb 22

Problem with protocols
1. A → B : {NA, A}KB

2. B → A : {NA, NB}KA

3. A → B : {NB}KB

• Goal: mutual (entity) authentication.

• Correctness argument (informal):

“This is Alice and I have chosen a nonce NA.”

“Here is your nonce NA. Since I could read it,
I must be Bob. I also have a challenge NB for you.”

“You sent me NB . Since only Alice can read this
and I sent it back, you must be Alice.”

NSPK proposed in 1970s and used for decades, until...

AVASP 03.04.2005

Sebastian Mödersheim Luca Viganò David von Oheimb 22

Problem with protocols
1. A → B : {NA, A}KB

2. B → A : {NA, NB}KA

3. A → B : {NB}KB

• Goal: mutual (entity) authentication.

• Correctness argument (informal):

“This is Alice and I have chosen a nonce NA.”

“Here is your nonce NA. Since I could read it,
I must be Bob. I also have a challenge NB for you.”

“You sent me NB . Since only Alice can read this
and I sent it back, you must be Alice.”

NSPK proposed in 1970s and used for decades, until...
Protocols are typically small and convincing...
AVASP 03.04.2005

Sebastian Mödersheim Luca Viganò David von Oheimb 22

Problem with protocols
1. A → B : {NA, A}KB

2. B → A : {NA, NB}KA

3. A → B : {NB}KB

• Goal: mutual (entity) authentication.

• Correctness argument (informal):

“This is Alice and I have chosen a nonce NA.”

“Here is your nonce NA. Since I could read it,
I must be Bob. I also have a challenge NB for you.”

“You sent me NB . Since only Alice can read this
and I sent it back, you must be Alice.”

NSPK proposed in 1970s and used for decades, until...
Protocols are typically small and convincing... and wrong!
AVASP 03.04.2005

Sebastian Mödersheim Luca Viganò David von Oheimb 23

How to at least tie against a grandmaster in chess

AVASP 03.04.2005

Sebastian Mödersheim Luca Viganò David von Oheimb 24

Man-in-the-middle attack
A→ B : {NA, A}KB

B → A : {NA,NB}KA

A→ B : {NB}KB

NSPK #1 NSPK #2

AVASP 03.04.2005

Sebastian Mödersheim Luca Viganò David von Oheimb 24

Man-in-the-middle attack
A→ B : {NA, A}KB

B → A : {NA,NB}KA

A→ B : {NB}KB

A→ B : {NA, A}KB

NSPK #1 NSPK #2

{ }NA,A KC

AVASP 03.04.2005

Sebastian Mödersheim Luca Viganò David von Oheimb 24

Man-in-the-middle attack
A→ B : {NA, A}KB

B → A : {NA,NB}KA

A→ B : {NB}KB

A→ B : {NA, A}KB

NSPK #1 NSPK #2

{ }NA,A KC
{ }NA,A KB

AVASP 03.04.2005

Sebastian Mödersheim Luca Viganò David von Oheimb 24

Man-in-the-middle attack
A→ B : {NA, A}KB

B → A : {NA,NB}KA

A→ B : {NB}KB

B → A : {NA,NB}KA

NSPK #1 NSPK #2

{ }NA,A KC
{ }NA,A KB

{ }NA,NB KA

AVASP 03.04.2005

Sebastian Mödersheim Luca Viganò David von Oheimb 24

Man-in-the-middle attack
A→ B : {NA, A}KB

B → A : {NA,NB}KA

A→ B : {NB}KB

B → A : {NA,NB}KA

NSPK #1 NSPK #2

{ }NA,A KC
{ }NA,A KB

{ }NA,NB
AK { }NA,NB KA

AVASP 03.04.2005

Sebastian Mödersheim Luca Viganò David von Oheimb 24

Man-in-the-middle attack
A→ B : {NA, A}KB

B → A : {NA,NB}KA

A→ B : {NB}KB
A→ B : {NB}KB

NSPK #1 NSPK #2

{ }NA,A KC
{ }NA,A KB

{ }NA,NB
AK { }NA,NB KA

{ }NB CK

AVASP 03.04.2005

Sebastian Mödersheim Luca Viganò David von Oheimb 24

Man-in-the-middle attack
A→ B : {NA, A}KB

B → A : {NA,NB}KA

A→ B : {NB}KB
A→ B : {NB}KB

NSPK #1 NSPK #2

{ }NA,A KC
{ }NA,A KB

{ }NA,NB
AK { }NA,NB KA

{ }NB CK { }NB KB

B believes he is speaking with A!

AVASP 03.04.2005

Sebastian Mödersheim Luca Viganò David von Oheimb 25

What went wrong?

• Goal: mutual (entity) authentication.

• Principals can be involved in multiple runs.

Goal should hold in all interleaved protocol runs.

• Problem in step 2.

B → A : {NA,NB}KA

Agent B should also give his name: {NA,NB , B}KA
.

AVASP 03.04.2005

Sebastian Mödersheim Luca Viganò David von Oheimb 25

What went wrong?

• Goal: mutual (entity) authentication.

• Principals can be involved in multiple runs.

Goal should hold in all interleaved protocol runs.

• Problem in step 2.

B → A : {NA,NB}KA

Agent B should also give his name: {NA,NB , B}KA
.

• Is the improved version now correct?

Against this and other kinds of attacks?
?

?

?
?

AVASP 03.04.2005

Sebastian Mödersheim Luca Viganò David von Oheimb 26

Road map

• Introduction to security protocols.

� Motivation.

� A brief introduction to cryptography.

� Basic notions.

� An example: Needham-Schroeder Public Key Protocol.

☞ Protocol attacks.

• Formal methods for security protocol analysis.

AVASP 03.04.2005

Sebastian Mödersheim Luca Viganò David von Oheimb 27

Examples of kinds of attack

• Man-in-the-middle (or parallel sessions) attack: pass messages

through to another session A↔ i↔ B.

• Replay (or freshness) attack: record and later re-introduce a

message or part.

• Masquerading attack: pretend to be another principal, e.g.

� i forges source address (e.g. present in network protocols), or

� i convinces other principals that A’s public key is Ki.

• Reflection attack: send transmitted information back to originator.

• Oracle attack: take advantage of normal protocol responses as

encryption and decryption “services”.

• Type flaw (confusion) attack: substitute a different type of

message field (e.g. a key vs. a name).
AVASP 03.04.2005

Sebastian Mödersheim Luca Viganò David von Oheimb 28

Type flaw attacks

• A message consists of a sequence of submessages.

Examples: a principal’s name, a nonce, a key, ...

• Messages sent as bit strings. No type information.

1011 0110 0010 1110 0011 0111 1010 0000

• Type flaw is when A→ B : M and B accepts M as valid but

parses it differently. I.e., B interprets the bits differently than A.

• Let’s consider some examples.

AVASP 03.04.2005

Sebastian Mödersheim Luca Viganò David von Oheimb 29

The Otway-Rees protocol

Server-based protocol providing authenticated key distribution (with

key authentication and key freshness) but without entity

authentication or key confirmation.

M1. A→ B : I,A, B, {NA, I, A,B}KAS

M2. B → S : I,A, B, {NA, I, A,B}KAS
, {NB , I, A,B}KBS

M3. S → B : I, {NA,K}KAS
, {NB ,K}KBS

M4. B → A : I, {NA,K}KAS

where server keys already known and I is protocol run identifier

(e.g. an integer).

Why should(n’t) it have the above properties?

AVASP 03.04.2005

Sebastian Mödersheim Luca Viganò David von Oheimb 30

Type flaw attack on the Otway-Rees protocol

M1. A→ B : I,A, B, {NA, I, A,B}KAS

M2. B → S : I,A, B, {NA, I, A,B}KAS
, {NB , I, A,B}KBS

M3. S → B : I, {NA,K}KAS
, {NB ,K}KBS

M4. B → A : I, {NA,K}KAS

• Suppose |{I, A,B}| = |{K}|,
e.g. I is 32 bits, A and B are

16 bits, and K is 64 bits.

Encryption

Decryption

Intended
interpretation
of sender

of receiver
Interpretation

1001101100111100 11011011 00010010

A BI

Ciphertext

1001101100111100 11011011 00010010

K

• Attack 1 (Reflection/type-flaw): The intruder i replays parts of

message 1 as message 4 (omitting steps 2 and 3).

M1. A→ i(B) : I,A, B, {NA, I, A,B}KAS

M4. i(B)→ A : I, {NA, I, A,B}KAS

• A sees NA and wrongly accepts {I, A,B} as the session key.
AVASP 03.04.2005

Sebastian Mödersheim Luca Viganò David von Oheimb 31

Type flaw attack on the Otway-Rees protocol (cont.)

M1. A→ B : I,A, B, {NA, I, A,B}KAS

M2. B → S : I,A, B, {NA, I, A,B}KAS
, {NB , I, A,B}KBS

M3. S → B : I, {NA,K}KAS
, {NB ,K}KBS

M4. B → A : I, {NA,K}KAS

Attack 2: intruder i can play the role of S in M2 and M3 by
reflecting the encrypted components of M2 back to B. Namely:

M1. A→ B : I,A, B, {NA, I, A,B}KAS

M2. B → i(S) : I,A, B, {NA, I, A,B}KAS
, {NB , I, A,B}KBS

M3. i(S)→ B : I, {NA, I, A,B}KAS
, {NB , I, A,B}KBS

M4. B → A : I, {NA, I, A,B}KAS

⇒ A and B accept wrong key and i can decrypt their subsequent

communication! So key authentication (and secrecy) fails!

AVASP 03.04.2005

Sebastian Mödersheim Luca Viganò David von Oheimb 32

Example of parallel sessions attack
The one-way authentication protocol

M1. A→ B : {NA}KAB

M2. B → A : {NA + 1}KAB

admits a parallel sessions attack (with ‘oracle’):

M1.1. A→ i(B) : {NA}KAB

M2.1. i(B)→ A : {NA}KAB

M2.2. A→ i(B) : {NA + 1}KAB

M1.2. i(B)→ A : {NA + 1}KAB

A is forced to do work on behalf of the intruder: A acts as an ‘oracle’ against
herself, because she provides the correct answer to her own question.

At very least, A believes then that B is operational, while B may no longer exist.

Fix: add A’s name to message M1.

M1. A→ B : {NA, A}KAB
AVASP 03.04.2005

Sebastian Mödersheim Luca Viganò David von Oheimb 33

Prudent engineering of security protocols
• Principles proposed by Abadi and Needham (1994, 1995):

� Every message should say what it means.

� Specify clearly conditions for a message to be acted on.

� Mention names explicitly if they are essential to the meaning.

� Be clear as to why encryption is being done: confidentiality,

message authentication, binding of messages, ...

e.g. {X, Y }K−1 versus {X}K−1, {Y }K−1

� Be clear on what properties you are assuming.

� Beware of clock variations (for timestamps).

� etc.

• Good advice, but

� Is the protocol guaranteed to be secure then?

� Is it optimal and/or minimal then?

� Have you considered all types of attacks?

� etc.

?
?

?
?

AVASP 03.04.2005

Sebastian Mödersheim Luca Viganò David von Oheimb 34

Summary

• Security protocols can achieve properties that cryptographic

primitives alone cannot offer, e.g. authentication, secrecy, ...

• The examples shown are simple, but the ideas are general.

• Even three liners show how difficult the art of correct design is.

Let every eye negotiate for itself

And trust no agent; for beauty is a witch

Against whose charms faith melteth into blood.

(William Shakespeare, Much ado about nothing)

• Formal analysis of protocols is required (using formal methods).

However, formal analysis of protocols is nontrivial (even assuming

perfect cryptography).

AVASP 03.04.2005

Sebastian Mödersheim Luca Viganò David von Oheimb 35

Road map

• Introduction to security protocols.

☞ Formal methods for security protocol analysis.

� Dolev-Yao intruder and ping-pong protocols.

� (Un-)decidability.

� Logics of belief.

� (Semi-)automated methods.

� Early and recent methods/tools.

� Computational models.

� Conclusions.

AVASP 03.04.2005

Sebastian Mödersheim Luca Viganò David von Oheimb 36

Formal Methods for Security Protocols

Protocols can be understood as mathematical objects.

Formal methods based on mathematics and logic should be

used to model, analyze, and construct them.

Doing so can substantially improve protocol security.

AVASP 03.04.2005

Sebastian Mödersheim Luca Viganò David von Oheimb 37

What are formal models?

• A language is formal when it has a well-defined syntax and

semantics. Additionally there is often a deductive system for

determining the truth of statements.

• Examples: propositional logic, first-order logic.

• A model (or construction) is formal when it is specified with a

formal language.

∀x. bird(x)→ flies(x) bird(tweety)

• Standard protocol notation is not formal.

AVASP 03.04.2005

Sebastian Mödersheim Luca Viganò David von Oheimb 38

Formal modeling and analysis of protocols

Goal: formally model protocols and their properties and provide a

mathematically sound means for reasoning about these models.

Basis: suitable abstraction of protocols and information flow.

⇒

Analysis: with formal methods based on mathematics and logic.

AVASP 03.04.2005

Sebastian Mödersheim Luca Viganò David von Oheimb 39

Formal security protocol analysis

Dolev−Yao
(ideal encryption)

Computational ModelsFormal Models

Security Protocol Analysis

Cryptographically faithful proofs

Probabilistic cryptographic view

AVASP 03.04.2005

Sebastian Mödersheim Luca Viganò David von Oheimb 40

Formal methods for security protocol analysis

Dolev−Yao
(ideal encryption)

Computational ModelsFormal Models

Security Protocol Analysis

Cryptographically faithful proofs

Probabilistic cryptographic view

AVASP 03.04.2005

Sebastian Mödersheim Luca Viganò David von Oheimb 41

Roger Needham & Michael Schroeder
Using encryption for authentication in large networks of computers

(CACM, 1978)

• Early protocols for key distribution and authentication.

• First mention that formal methods could be useful for assuring

protocol correctness; the last sentence of the paper is

Finally, protocols such as those developed here are prone to

extremely subtle errors that are unlikely to be detected in

normal operation. The need for techniques to verify the

correctness of such protocols is great, and we encourage those

interested in such problems to consider this area.

The challenge has been taken up by many researchers!

AVASP 03.04.2005

Sebastian Mödersheim Luca Viganò David von Oheimb 42

Danny Dolev & Andrew C. Yao
On the Security of Public Key Protocols (IEEE Trans. Inf. Th., 1983)

• Consider a public key system in which

� every user X has an encryption function EX and a decryption function DX

such that EX(DX(M)) = DX(EX(M)) = M ,
� cryptography is perfect (all DX private, decryption only with key, ...).

• Introduce the Dolev-Yao intruder:

� He can obtain any message passing through the network.
� He is a legitimate user of the network, and thus in particular can initiate a

conversation with any other user.
� He can be a receiver to any user A.

� He can decompose messages into their parts and can build new
messages with the different constructors.

� He can send messages at any time.

With some modifications, this is the most commonly

used intruder model today for formal protocol analysis.
AVASP 03.04.2005

Sebastian Mödersheim Luca Viganò David von Oheimb 43

Model by Dolev, Yao, Even and Karp (early ’80s)

• A protocol is an algebraic system operated by the intruder.

� Cryptoalgorithms behave like black-boxes that obey a limited

set of algebraic properties (e.g. encryption and decryption

operations cancel each other out).

� An intruder who can

∗ read all traffic,

∗ modify, delete and create traffic,

∗ perform cryptographic operations available to legitimate users

of the system,

∗ is in league with a subset of “corrupt” principals.

� An arbitrary number of principals.

� Protocol executions may be interleaved (concurrent).

With some modifications, this is the most commonly used model
today for formal methods analysis of security protocols.
AVASP 03.04.2005

Sebastian Mödersheim Luca Viganò David von Oheimb 44

Danny Dolev & Andrew C. Yao
On the Security of Public Key Protocols (IEEE Trans. Inf. Th., 1983)

• Give a formal model for the analysis of cascade protocols:

� Messages built only by (concatenation and) the

encryption-decryption operations (several layers possible), e.g.

A→ B : A,B, EB(M)
B → A : B,A, EA(M)

� Secure if and only if (i.e. transmitted plaintext is secret iff)

1. the messages transmitted between A and B always contain

some layers of encryption functions EA or EB,

2. in generating a reply message, each X never applies DX

without also applying EX.

⇒ A simple characterization of security and an efficient algorithm

for deciding whether a given cascade protocol is secure.
AVASP 03.04.2005

Sebastian Mödersheim Luca Viganò David von Oheimb 45

Cascade protocol example

• Cascade protocol secure (i.e. transmitted plaintext is secret) iff

1. the messages transmitted between A and B always contain

some layers of encryption functions EA or EB,

2. in generating a reply message, each X never applies DX

without also applying EX.

• An example:

A→ B : A,B, EB(M)
B → A : B,A, EA(M) generated as m→ EA(DB(m))

Insecure because B applies DB without EB. Attack:

A→ i(B) : A,B, EB(M) A creates secret M

i→ B : i, B, EB(M) i intercepts and forwards to B

B → i : B, i, Ei(M) i can apply Di to get M
AVASP 03.04.2005

Sebastian Mödersheim Luca Viganò David von Oheimb 46

Danny Dolev & Andrew C. Yao
On the Security of Public Key Protocols (IEEE Trans. Inf. Th., 1983)

• A formal model for the analysis of name-stamp protocols:

� Users may append, delete, and check names encrypted together

with the plaintext (can also contain layers of encryptions), e.g.

A→ B : A,B, EB(M,A)
B → A : B,A, EA(M,B)

• Ping-pong protocols: action of a principal on receiving a message

is to apply some sequence of operations to it and send it back out.

Message sent back and forth like a

ping-pong ball (hence the name).

AVASP 03.04.2005

Sebastian Mödersheim Luca Viganò David von Oheimb 47

Danny Dolev & Andrew C. Yao
On the Security of Public Key Protocols (IEEE Trans. Inf. Th., 1983)

Danny Dolev, Shimon Even and Richard M. Karp
On the Security of Ping-Pong Protocols (Info and Control, 1982)

• Dolev-Yao and Dolev, Even and Karp (and later others) found

PTIME algorithms for determining whether a ping-pong protocol

would reveal secrets to an intruder.

� Related to problem of finding intersection of 2 formal languages.

� Freshness issues (e.g. replay) were not considered.

• Relaxing the restrictions on the protocols even slightly makes the

security problem undecidable.

AVASP 03.04.2005

Sebastian Mödersheim Luca Viganò David von Oheimb 48

(Un-)Decidability

• General problem of protocol security is undecidable.

• Post Correspondence Problem:

� Given an indexed finite set of pairs of words (strings) (Ui, Vi), is

there a sequence of indices i1, . . . , in so that

Ui1 . . . Uin = Vi1 . . . Vin?

� Example:
Ui Vi

1 a ab

2 b ca

3 ca a

4 abc c

Solution: 1, 2, 3, 1, 4 ⇒ a b ca a abc = ab ca a ab c

No solution: 1 ⇒ a 6= b
AVASP 03.04.2005

Sebastian Mödersheim Luca Viganò David von Oheimb 49

(Un-)Decidability: PCP as a protocol (construction)

Reduce word problem to protocol security (message secrecy).

(Even & Goldreich 1983; Heintze & Tygar, 1994)

� Protocol with n + 2 parties.

K is a shared secret key that the intruder does not know.

� Compromises secret M if solution exists.
Initiator

send {empty,empty}K
Role for pair i (honest principal appends pair (Ui, VI))

receive {X, Y }K
send {XUi, Y Vi}K

Compromiser
receive {X, X}K if X 6= empty

send M

� Requires unbounded message length.
AVASP 03.04.2005

Sebastian Mödersheim Luca Viganò David von Oheimb 50

(Un-)Decidability

Decidability of the protocol security problem can be shown for

certain restrictions:

Without nonces With Nonces

No bounds Undecidable Undecidable
Infinite # sessions, bounded msgs DEXPTIME-complete Undecidable
Finite # sessions, unbounded msgs NP-complete NP-complete
(also with choice points)

Various bounds by

� Rusinowitch & Turuani.

� Durgin, Lincoln, Mitchell, Scedrov.

� Millen & Shmatikov.

� ...

AVASP 03.04.2005

Sebastian Mödersheim Luca Viganò David von Oheimb 51

Restricted classes of protocols

Different restrictions can be applied in isolation or in conjunction,

e.g.

• Bounded number of sessions.

� How many protocol sessions must be executed to ensure

coverage?

� E.g.: man-in-the-middle attack on NSPK needs 2 sessions, but

sometimes more are needed.

• Bounded number of principals.

Only need n + 1 distinct principals (in roles, multiple sessions).

� Only 2 if an honest principal can talk to itself in all roles.

� The extra principal is the intruder.

• Each role has a bounded number of steps.

AVASP 03.04.2005

Sebastian Mödersheim Luca Viganò David von Oheimb 52

Restricted classes of protocols (cont.)

Different restrictions can be applied in isolation or in conjunction,

e.g.

• Bounded message size.

� Fixed number of fields in a message.

� Fixed set of message constants.

� Fixed depth restriction.

� Allow nonces (but only “create new nonce” and =?).

• Everything constant, except for number of roles and number of

new nonces.

These restrictions can also be applied to finitize model-checking.

AVASP 03.04.2005

Sebastian Mödersheim Luca Viganò David von Oheimb 53

Logics of belief

Dolev−Yao
(ideal encryption)

interleaving trace models
state−based models

Cryptographically faithful proofs

Probabilistic cryptographic view

Computational ModelsFormal Models

Security Protocol Analysis

Semi−automatedBelief Logics

AVASP 03.04.2005

Sebastian Mödersheim Luca Viganò David von Oheimb 54

BAN and other authentication logics

⇒
Goal: formally model protocols and their properties and provide a

mathematically sound means for reasoning about these models.

Basis: suitable abstraction of protocols and information flow.

Formal analysis: BAN (by Burrows, Abadi and Needham).

• A logic for analyzing the evolution of the beliefs of the agents as

a consequence of communication in a particular protocol run.

• Simple and powerful but limited (and problematic).

• Extensions: partial solutions and other security properties

(GNY, SVO, Simple logic, ...).

� Logics of belief: view of user (to prove authentication).

� Logics of knowledge: view of intruder (to prove secrecy).

AVASP 03.04.2005

Sebastian Mödersheim Luca Viganò David von Oheimb 55

BAN Predicates

P bel X P may act as though X is true.

(P |≡ X)

P sees X P has received (and can read and repeat, possibly

(P � X) after some decryption) a message containing X.

P said X At some time, P sent a message including X.

(P |∼ X) N.B.: it is not known when message was sent,

but it is known that P believed X then.

P controls X P has jurisdiction over X and should be trusted

(P |⇒ X) on this matter (e.g. server controls keys).

secret(X, P,Q) X is secret known only to P and Q (& S).

(P
X

 Q) P and Q may use X to prove their identities

to one another.

AVASP 03.04.2005

Sebastian Mödersheim Luca Viganò David von Oheimb 56

BAN Predicates (cont.)

fresh(X) Formula X has not been sent in a message before

(#(X)) the current run of the protocol.

pubk(KP , P) P has public key KP .

(
K7−→ P) Private key K−1

P known only to P

(and perhaps trusted server S).

shk(K, P,Q) P and Q may use shared key K to communicate.

(P
K←→ Q) K is a good key: known only to P and Q

(and perhaps trusted server S).

{X}K X encrypted under key K.

Abbreviates {X}K from P .

〈X〉Y X combined (concatenated) with Y

AVASP 03.04.2005

Sebastian Mödersheim Luca Viganò David von Oheimb 57

BAN deduction system: Inference rules

Rules express how beliefs evolve as a result of communication.

• Message-meaning rules: interpretation of messages (how to derive

beliefs about origin of message).

Encrypted messages:

P bel shk(K, Q, P) P sees {X}K
P bel Q said X

sk (from R 6= P)

P bel pubk(K, Q) P sees {X}K−1

P bel Q said X
pk

Messages with secrets:

P bel secret(Y, Q, P) P sees 〈X〉Y
P bel Q said X

secret (〈X〉Y not by P)

AVASP 03.04.2005

Sebastian Mödersheim Luca Viganò David von Oheimb 58

BAN deduction system: Inference rules (cont.)

• Nonce-verification rule: check that message is recent (⇒ sender

still believes in it).

P bel fresh(X) P bel (Q said X)
P bel (Q bel X) nonce (X cleartext , X 6= {Y }K)

• Jurisdiction rule:

P bel (Q controls X) P bel (Q bel X)
P bel X

jurisdiction

N.B.: quantifiers are implicit, which may cause ambiguities, e.g.

P bel ∀K. (S controls (Q controls shk(K, P, Q))) vs.

P bel (S controls ∀K. (Q controls shk(K, P, Q)))

• Freshness rule: if a part of a formula is fresh, then the whole

formula is fresh.
P bel fresh(X)

P bel fresh(X, Y) fresh
AVASP 03.04.2005

Sebastian Mödersheim Luca Viganò David von Oheimb 59

BAN deduction system: Inference rules (cont.)

• Formulas and their components:

P sees (X, Y)
P sees X

P sees 〈X〉Y
P sees X

P bel shk(K, Q, P) P sees {X}K
P sees X

P bel pubk(K, P) P sees {X}K
P sees X

P bel pubk(K, Q) P sees {X}K−1

P sees X

where {X}K ≡ {X}K from R, and R 6= P .

• Other rules:

P bel (X, Y)
P bel X

P bel X P bel Y
P bel (X, Y)

P bel Q bel (X, Y)
P bel Q bel X

P bel Q said (X, Y)
P bel Q said X

• etc.
AVASP 03.04.2005

Sebastian Mödersheim Luca Viganò David von Oheimb 60

BAN: Analysis of protocols in 4 steps

1. Idealized protocol: message formula.

2. Assumptions about initial state state, e.g., which agents are

trusted (S controls shk(K, P, Q)).

3. Assertions about the state of the system after each message:

After message P → Q : Y

it holds Q sees Y .

4. Rules are applied to derive beliefs of agents, e.g.

A bel pubk(KB, B) and B bel pubk(KA, A)
or also: A bel (B bel pubk(KA, A))
or weaker: A bel (B bel X) for some X or...

AVASP 03.04.2005

Sebastian Mödersheim Luca Viganò David von Oheimb 61

BAN-analysis: Main ideas

• Main idea: see if the protocol goals can be derived using the

inference rules from the formulas representing the initial

assumptions and the protocol steps.

• Failure to reach the required goals can indicate the need

� to change details of the protocol, or

� for further assumptions.

• Alternatively: the analysis can identify places where

� the assumptions are unnecessarily strong, or

� the protocol is over-engineered (e.g. an unnecessary encryption

of a term).

AVASP 03.04.2005

Sebastian Mödersheim Luca Viganò David von Oheimb 62

The full NSPK

M1. A→ S : A,B
M2. S → A : {KB, B}K−1

S

M3. A→ B : {NA, A}KB

M4. B → S : B,A
M5. S → B : {KA, A}K−1

S

M6. B → A : {NA,NB}KA

M7. A→ B : {NB}KB

• Initially: A and B hold KS.

• Aim 1: A and B obtain each other’s public keys (M 1, 2, 4, 5).

• Aim 2: A and B use keys to communicate secret nonces NA and

NB (M 3, 6, 7).

• ‘Later’: A and B use NA and NB to sign further messages.

Protocol is flawed: no guarantee that public keys KA and KB are
fresh ⇒ replay attack!
AVASP 03.04.2005

Sebastian Mödersheim Luca Viganò David von Oheimb 63

BAN-analysis of full NSPK: Idealization

M1. A→ S : A,B ; omitted (no logical content)
M2. S → A : {KB, B}K−1

S
; S → A : {pubk(KB, B)}K−1

S

M3. A→ B : {NA, A}KB
; A→ B : {NA}KB

M4. B → S : B,A ; omitted (no logical content)
M5. S → B : {KA, A}K−1

S
; S → B : {pubk(KA, A)}K−1

S

M6. B → A : {NA,NB}KA
; B → A : {〈secret(NB , A, B)〉NA}KA

M7. A→ B : {NB}KB
; A→ B : {〈secret(NA, A, B),

B bel secret(NB , A, B)〉NB}KB

Remarks:

M3.: used to give NA to B.

NA not known to B, and thus not used to prove identity of A.

M6. & M7.: NA and NB used as secrets.

Alternative to M7.: A→ B : {〈secret(NA, A, B)〉NB}KB
.

AVASP 03.04.2005

Sebastian Mödersheim Luca Viganò David von Oheimb 64

BAN-analysis of NSPK: Initial assumptions

• Public keys:

A bel pubk(KA, A) A bel pubk(KS, S)
B bel pubk(KB, B) B bel pubk(KS, S)
S bel pubk(KA, A) S bel pubk(KB, B) S bel pubk(KS, S)

• Trust in the server:

A bel (S controls pubk(KB, B))
B bel (S controls pubk(KA, A))

• Belief in own secret

A bel fresh(NA) A bel secret(NA, A, B)
B bel fresh(NB) B bel secret(NB , A, B)

AVASP 03.04.2005

Sebastian Mödersheim Luca Viganò David von Oheimb 65

BAN-analysis of NSPK: Derivations of beliefs

Logical analysis yields:

A bel pubk(KB, B) A bel (B bel secret(NB , A, B))
B bel pubk(KA, A) B bel (A bel secret(NA, A, B))

B bel (A bel (B bel secret(NB , A, B)))

but only if we further assume

A bel fresh(pubk(KB, B)) and B bel fresh(pubk(KA, A))

i.e. A must assume that KB is fresh, and B that KA is fresh.

Else: replay attack.

⇒ modify the protocol by adding timestamps to M2 and M5:

M2’. S → A : {TS,pubk(KB, B)}K−1
S

M5’. S → B : {TS,pubk(KA, A)}K−1
S

AVASP 03.04.2005

Sebastian Mödersheim Luca Viganò David von Oheimb 66

BAN-analysis of NSPK: Example derivation

A bel
(S controls
pubk(KB, B))

ass
A bel
fresh(pubk(KB, B))

ASS

A bel
pubk(KS, S)

ass
A sees
{pubk(KB, B)}K−1

S

M2.

A bel
(S said pubk(KB, B))

pk

A bel
(S bel pubk(KB, B))

nonce

A bel pubk(KB, B) jurisdiction

Start from the goal and apply rules backwards to arrive at the initial
assumptions (ass) or to identify further required assumptions (like
ASS) in this case.

AVASP 03.04.2005

Sebastian Mödersheim Luca Viganò David von Oheimb 67

Limitations and extensions of BAN
BAN is simple and powerful, but is limited and misses many flaws.

• By design: inability to reason about certain events or variations.

� properties other than authentication (secrecy, anonymity,...),

� intruders,

� temporal properties (no explicit time),

� attacks resulting from multiple runs of a protocol, ...

• More dramatic limitation: BAN-analysis of the Nesset protocol

M1. A→ B : {NA,KAB}K−1
A

M2. B → A : {NB}KAB

yields

B bel shk(KAB, A, B)
but everyone can decipher M1 by using A’s public key KA!

AVASP 03.04.2005

Sebastian Mödersheim Luca Viganò David von Oheimb 68

Limitations and extensions of BAN (cont.)

� Burrows et al.’s answer: BAN focuses only on authentication of

honest principals by design (and does not attempt to detect

unauthorized release of secrets).

� Problem is not the logic, but idealization: informal formal.

BAN paper: “only knowledge of entire protocol can

determine the essential logical content of each message”

� This is dangerous and often wrong! Solution: extend BAN.

∗ Robustness: each message can be considered separately.

∗ Define idealization ‘formally’.

• Other extensions:

� Add notions of time (e.g. modal operator 3− for past-time).

� Allow for checking security properties other than authentication.

� etc.

AVASP 03.04.2005

Sebastian Mödersheim Luca Viganò David von Oheimb 69

Limitations and extensions of BAN (cont.)

• Another problem: semantics.

Can a principal believe something that is false?

• Improved semantics (e.g. possible world semantics) have been

provided subsequently, but it can still be quite difficult to interpret

the results of a BAN-analysis.

• Summary:

� BAN logic is undoubtedly seminal and has been highly

influential in the field.

“It has plenty of scalps under its belt.” (R. Needham)

� Limitations can be tackled by restrictions/extensions...

� ...or: just use BAN for the insights it can give.

AVASP 03.04.2005

Sebastian Mödersheim Luca Viganò David von Oheimb 70

Formal methods for security protocol analysis

Dolev−Yao
(ideal encryption)

Belief Logics

Model CheckingInductive Proofs

interleaving trace models
state−based models

Cryptographically faithful proofs

Probabilistic cryptographic view

Formal Models

Security Protocol Analysis

Semi−automated

Computational Models

AVASP 03.04.2005

Sebastian Mödersheim Luca Viganò David von Oheimb 71

Road map

• Security protocols.

• Formal methods for security protocol analysis.

� Dolev-Yao intruder and ping-pong protocols.

� (Un-)decidability.

� Logics of belief.

☞ (Semi-)automated methods.
∗ Interleaving trace models.

∗ Falsification vs. verification of protocols.

� Early and recent methods/tools.

� Computational models.

� Conclusions.

AVASP 03.04.2005

Sebastian Mödersheim Luca Viganò David von Oheimb 72

Modeling protocols

Goal: formally model protocols and their properties and provide a

mathematically sound means for reasoning about these models.

Basis: suitable abstraction of protocols and information flow.

⇒

AVASP 03.04.2005

Sebastian Mödersheim Luca Viganò David von Oheimb 73

Interleaving trace models

• Modeling idea: model possible communication events.

A→ B : M1

B → A : M2

...

AVASP 03.04.2005

Sebastian Mödersheim Luca Viganò David von Oheimb 73

Interleaving trace models

• Modeling idea: model possible communication events.

A→ B : M1

C → D : P1

B → A : M2

C → D : P2
...

AVASP 03.04.2005

Sebastian Mödersheim Luca Viganò David von Oheimb 73

Interleaving trace models

• Modeling idea: model possible communication events.

A→ B : M1

C → D : P1

i→ A : M2

C → D : P2
...

or

A→ C : P1

A→ B : M1

B → A : M2

C → A : P2
...

or

A→ B : M1

B → A : M2

C → D : P1

i→ C : P1
...

...

• A trace is a sequence of events.

• Trace-based interleaving semantics:

� A protocol denotes a set of traces.

� Interleavings of (partial) protocol runs and intruder messages.

• Also: state-based models.

AVASP 03.04.2005

Sebastian Mödersheim Luca Viganò David von Oheimb 74

Modeling: protocol as an
inductively defined set

A→ B : {NA, A}KB

B → A : {NA,NB}KA

A→ B : {NB}KB

Set P formalizes protocol steps (example: NSPK).

0. 〈〉 ∈ P

1. t, A→ B : {NA,A}KB
∈ P if t ∈ P and fresht(NA)

2. t, B → A : {NA,NB}KA
∈ P if t ∈ P , fresht(NB), and A′ → B : {NA,A}KB

∈ t

3. t, A→ B : {NB}KB
∈ P if t ∈ P , A→ B : {NA,A}KB

∈ t
and B′ → A : {NA,NB}KA

∈ t

4. t, i→ B : X ∈ P if t ∈ P and X ∈ synthesize (analyze (sees t))

Rules 0–3 formalize the protocol steps and rule 4 the intruder model

(what messages the intruder can generate from the terms he can

analyze from the messages he has seen in the trace (function sees).

Predicate fresht checks whether a nonce has been used before in a trace t.
AVASP 03.04.2005

Sebastian Mödersheim Luca Viganò David von Oheimb 75

Modeling the intruder: Paulson’s sets
Given a set M of messages, the set synthesize(M) is the smallest extension of M including

agent identifiers and closed under pairing and encryption:

m ∈M
m ∈ synthesize(M)

m1 ∈ synthesize(M) m2 ∈ synthesize(M)
m1,m2 ∈ synthesize(M)

m ∈ synthesize(M) k ∈ synthesize(M)
{m}k ∈ synthesize(M)

The set analyze(M) is the smallest extension of M closed under projection and decryption

by keys in analyze(M):

m ∈M
m ∈ analyze(M)

m1,m2 ∈ analyze(M)
mi ∈ analyze(M) (i ∈ {1, 2})

{m}k ∈ analyze(M) k−1 ∈ analyze(M)
m ∈ analyze(M)

The set parts(M) is the smallest extension of M obtained by adding the components of

compound messages and the bodies of encrypted messages:

m ∈M
m ∈ parts(M)

m1,m2 ∈ parts(M)
mi ∈ parts(M) (i ∈ {1, 2}) {m}k ∈ parts(M)

m ∈ parts(M)
AVASP 03.04.2005

Sebastian Mödersheim Luca Viganò David von Oheimb 76

Modeling the intruder: Paulson’s sets
Some remarks:

� The above rules 0–3 assume a synchronous model, where if A sends a
message to B then B really receives it.
Models where communication is asynchronous can also be considered (but
require slightly different rules).

� The above analyze rules assume that (k−1)−1 = k. When that is not the
case one needs two rules for decryption:

{m}k ∈ analyze(M) k−1 ∈ analyze(M)

m ∈ analyze(M)

{m}k−1 ∈ analyze(M) k ∈ analyze(M)

m ∈ analyze(M)

Similarly, one then needs also two rules for synthesizing encrypted messages.
One could also have different decryption and encryption rules for asymmetric
and symmetric keys.

• Note also that if one wants to consider, e.g., composed keys, then rule 4 must
be changed to make sure that the intruder can first synthesize a composed key
k (say k = (k1, k2)), then use k to decrypt some message {m}k, and finally use
m to compose some new message to be sent.

AVASP 03.04.2005

Sebastian Mödersheim Luca Viganò David von Oheimb 77

Modeling: the Dolev-Yao intruder
For a set M of messages, let DY(M) (for Dolev-Yao) be the smallest set closed
under the following generation (G) and analysis (A) rules:

m ∈M
m ∈ DY(M) Gaxiom

m1 ∈ DY(M) m2 ∈ DY(M)
〈m1,m2〉 ∈ DY(M)

Gpair

m1 ∈ DY(M) m2 ∈ DY(M)
{m2}m1

∈ DY(M)
Gcrypt

m1 ∈ DY(M) m2 ∈ DY(M)
{|m2|}m1

∈ DY(M)
Gscrypt

〈m1,m2〉 ∈ DY(M)
mi ∈ DY(M)

Apairi

{|m2|}m1
∈ DY(M) m1 ∈ DY(M)

m2 ∈ DY(M)
Ascrypt

{m2}m1
∈ DY(M) m1

−1 ∈ DY(M)
m2 ∈ DY(M)

Acrypt

{m2}
m1
−1 ∈ DY(M) m1 ∈ DY(M)

m2 ∈ DY(M) Acrypt
−1

AVASP 03.04.2005

Sebastian Mödersheim Luca Viganò David von Oheimb 78

Modeling: properties

• A property also corresponds to set of traces (or set of states).

Authentication for A: If (1) A used NA to start a protocol run
with B, and (2) received NA back, then B sent NA back.

AauthenticatesB(t) ≡ if A → B : {NA, A}KB
∈ t and

B′ → A : {NA, NB}KA
∈ t

then B → A : {NA, NB}KA
∈ t

iattacksA(t) ≡ ¬AauthenticatesB(t)

Secrecy: Intruder cannot discover NB , e.g.

For all t ∈ P , if B → A : {NA, NB}KA
∈ t then NB 6∈ analyze(sees t)

• Hence, the correctness of protocols has an exact meaning.

Every [no] trace of the

protocol P has property X.
P XP

X

• Every proposition is either true or false.

How do we determine which holds?
AVASP 03.04.2005

Sebastian Mödersheim Luca Viganò David von Oheimb 79

About authentication

• Different forms of entity (or user) authentication.

Yes.

Is it you, Alice?

• Contrast to message (or data-origin) authentication.

Alice

Tonight at
my place,

Ann
my place,

Tonight at

� Observe that message authentication implies message integrity.

� Message Authentication Codes (MACs) and digital signatures

are two main techniques for establishing message authentication.

AVASP 03.04.2005

Sebastian Mödersheim Luca Viganò David von Oheimb 80

A hierarchy of authentication specifications (Lowe)

• Other goals... many can be re-phrased in terms of secrecy and

authentication (as reachability problems).

• Safety temporal properties ranging from one-way to mutual, weak

to strong, authentication, e.g. for a protocol initiator A:

� Aliveness: a protocol guarantees to A aliveness of a another

principal B if, whenever A completes a run of the protocol,

apparently with responder B, then B has previously been

running the protocol.

� Weak agreement: a protocol guarantees to A weak agreement

with another principal B if, whenever A completes a run of the

protocol, apparently with responder B, then B has previously

been running the protocol, apparently with A.

AVASP 03.04.2005

Sebastian Mödersheim Luca Viganò David von Oheimb 81

A hierarchy of authentication specifications (Lowe)

� Non-injective agreement: a protocol guarantees to A

non-injective agreement with a responder B on a set of data ds
if, whenever A completes a run of the protocol, apparently with

responder B, then B has previously been running the protocol,

apparently with A, and B was running the protocol apparently

with A, and B was acting as a responder in his run, and the

two principals agreed on the values corresponding to all the

variables in ds.
� Agreement: non-injective agreement where each such run of A

corresponds to a unique run of B.

� Also issues of recentness: insist that B’s run was recent (within

t time units).

AVASP 03.04.2005

Sebastian Mödersheim Luca Viganò David von Oheimb 82

Model provides a basis for analysis

• Trace-based (state-based) model provides a basis for protocol

analysis.

• Challenging as general problem is undecidable.

• Possible approaches:

� Verification proves correctness but is difficult to automate.

∗ Use interactive (semi-automated) theorem-proving approach

based on induction.

∗ This often requires restrictions and/or simplifications, and

only semi-automation.

� Falsification identifies attack traces but does not guarantee

correctness.

AVASP 03.04.2005

Sebastian Mödersheim Luca Viganò David von Oheimb 83

Falsification using state enumeration

• Inductive definition corresponds to an infinite tree.

...

... ...

Says A−>B ...

...

...

Says A−>i ... Says i−>A ... Says i−>B ...

Says A−>i ...
Says i−>A ... Says B−>A ...

Says A−>i ...

• Properties correspond to a subset of nodes, e.g., iattacksA(t).

• State enumeration can be used to find attack in the infinite tree.

• But naive search is hopeless! Challenges:

Tree too wide: the intruder is extraordinarily prolific!

Too many interleavings: much “redundant” information.

We will see some ideas for tackling these problems.
AVASP 03.04.2005

Sebastian Mödersheim Luca Viganò David von Oheimb 84

Model-checking

Dolev−Yao
(ideal encryption)

Belief Logics interleaving trace models
state−based models

Probabilistic cryptographic view
Cryptographically faithful proofs

Computational ModelsFormal Models

Security Protocol Analysis

Semi−automated

Inductive Proofs Model Checking

Finite−state Constraint−based

AVASP 03.04.2005

Sebastian Mödersheim Luca Viganò David von Oheimb 85

Model-checking security protocols

• In a nutshell:

� System behavior modeled as a (finite) state transition system.

� System properties expressed by state satisfaction relations.

� State space exploration to check whether certain properties will

or will not be satisfied (yields attack trace).

• Model checking of security protocols focuses on safety properties.

� Safety: check that certain undesirable properties never occur.

� Liveness: check that certain desirable properties do eventually

occur.

• Very effective at finding flaws, but no guarantee of correctness,

due to “artificial” finite bounds (cf. the restrictions we saw above).

� Problem can be partially solved by infinite-state model checking

(e.g. based on symbolic methods and abstractions).
AVASP 03.04.2005

Sebastian Mödersheim Luca Viganò David von Oheimb 86

Road map

• Security protocols.

• Formal methods for security protocol analysis.

� Dolev-Yao intruder and ping-pong protocols.

� (Un-)decidability.

� Logics of belief.

� (Semi-)automated methods.

∗ Interleaving trace models.

∗ Falsification vs. verification of protocols.

☞ Early and recent methods/tools.
� Computational models.

� Conclusions.

AVASP 03.04.2005

Sebastian Mödersheim Luca Viganò David von Oheimb 87

Early methods/tools

• Interrogator (Millen, earliest version 1984).

� Backward state search for attack from goal state pattern.

� No guarantee of completeness or termination.

• NRL Protocol Analyzer (Meadows, earliest version 1989).

� Automated Dolev-Yao intruder.

� Used symbolic representation of states, and supported use of

lemmas to reduce infinite state space to a finite one.

� In earliest versions, lemmas proved by hand, later offered

automated support (inductive proofs).

� No guarantee of completeness or termination.

� Can sometimes prove a protocol correct.

Also: some tool support for BAN and other authentication logics
(decidable and completely automated, in some cases).
AVASP 03.04.2005

Sebastian Mödersheim Luca Viganò David von Oheimb 88

Recent methods/tools: inductive proofs
• Approach: like proofs of program correctness.

� Induction to prove “loop invariant”.

• General-purpose specification/verification system support:

� Kemmerer, using Ina Jo and ITP (1987). [the first]

� Paulson, using Isabelle (from mid 90s). [the new wave]

� Dutertre and Schneider, using PVS.

� Bolignano, using Coq.

� Cohen, using TAPS.

• Also manually: CSP (Schneider), Strands (Thayer et al.).

• Facts that can be proved:

� Secret keys are never lost.

� Nonces uniquely identify their message of origin.

� Nonces stay secret (under certain conditions).

AVASP 03.04.2005

Sebastian Mödersheim Luca Viganò David von Oheimb 89

Recent ...: model-checkers and symbolic methods

• Man-in-the-middle attack on NSPK: found by Lowe, using process

calculus CSP (for specification) and model-checker FDR (for

analysis).

� Several model-checkers applied to protocols, both general

purpose and special-purpose: CSP/FDR, Murphi, SMV, Maude,

...

� Mostly finite-state, but also work on infinite-state checking.

• Athena

� Special-purpose model-checker (Song, Berezin, Perrig, 2001–).

� Uses strand-space model (free algebra, atomic keys).

� Usually terminates, no fixed bound.

• Model-checkers and provers based on symbolic constraint solving

(Millen & Shmatikov, Boreale & Buscemi, Corin & Etalle, CL-atse, OFMC,...).
AVASP 03.04.2005

Sebastian Mödersheim Luca Viganò David von Oheimb 90

Approaches, methods & tools I haven’t told you about

• Modeling:

� Specification languages (CAPSL/CIL, Casper, HLPSL/IF).

� Typed vs. untyped models.

� Compound vs. atomic keys.

� Free algebra vs. algebraic properties of cryptographic operators.

{M1}K1 = {M2}K2 ⇒ M1 = M2 and K1 = K2

vs.

(M1 ⊕M1)⊕M2 = M2 (gx)y = (gy)x

� Intruder models (e.g. guessing).

� Open-ended (stream) protocols.

� Protocol composition.

AVASP 03.04.2005

Sebastian Mödersheim Luca Viganò David von Oheimb 91

Approaches, methods & tools I haven’t told you about

• Methods and tools:

� Process-algebras (e.g. CSP, CCS, Spi-calculus).

� Strand-spaces.

∗ Graph-theoretic approach easy to visualize.

∗ Can be used also as a basis for comparison between models.

� Multi-set rewriting.

� Type-checking.

� Logic programming and planning (SATMC).

� Abstractions for infinite-state model-checking/verification.

• Analysis of Internet Protocols ⇒ AVISPA Tool.

AVASP 03.04.2005

Sebastian Mödersheim Luca Viganò David von Oheimb 92

Road map

• Security protocols.

• Formal methods for security protocol analysis.

� Dolev-Yao intruder and ping-pong protocols.

� (Un-)decidability.

� Logics of belief.

� (Semi-)automated methods.

∗ Interleaving trace models.

∗ Falsification vs. verification of protocols.

� Early and recent methods/tools.

☞ Computational models.
� Conclusions.

AVASP 03.04.2005

Sebastian Mödersheim Luca Viganò David von Oheimb 93

Computational Models

Dolev−Yao
(ideal encryption)

Computational ModelsFormal Models

Security Protocol Analysis

Cryptographically faithful proofs

Probabilistic cryptographic view

AVASP 03.04.2005

Sebastian Mödersheim Luca Viganò David von Oheimb 94

Computational Models
Dolev−Yao
(ideal encryption)

Computational ModelsFormal Models

Security Protocol Analysis

Cryptographically faithful proofs

Probabilistic cryptographic view

• The formal methods and cryptography communities have both

developed formal techniques for protocol analysis.

• However, they have quite different points of view.

� Cryptographers apply complexity and probability theory to

reduce protocol security to security of underling cryptosystem.

� Security of cryptosystem: an attacker with polynomial

computing power can break it only with negligible probability.

� Typically, cryptographic proofs are long and difficult, and error

prone (done by hand).

• Unsatisfying: standard Dolev-Yao abstraction used in formal

methods analysis lacks cryptographic justification.

There are protocols that are secure in the DY model, but become

insecure if implemented with some provably secure crypto-primitives.
AVASP 03.04.2005

Sebastian Mödersheim Luca Viganò David von Oheimb 95

Closing the gap
Dolev−Yao
(ideal encryption)

Computational ModelsFormal Models

Security Protocol Analysis

Cryptographically faithful proofs

Probabilistic cryptographic view

• Goal: cryptographically faithful verification of security protocols.

� Considerable amount of research on tool-supported formal

verification using cryptographically sound abstractions.

� IBM & ETH, Abadi, Bellare, Canetti, Mitchell, Rogaway,

Scedrov,

• For example: crypto library of Backes, Pfitzmann, Waidner (IBM)

(and also Basin and Sprenger, ETH)

� Real library reflects probabilistic cryptographic view.

� Ideal library reflects non-probabilistic formal methods view.

� Procedure:

∗ Prove that real library securely implements ideal library.

∗ Use ideal library for tool-supported analysis of ideal protocol.

∗ Conclude real protocol is secure by preservation results.

AVASP 03.04.2005

Sebastian Mödersheim Luca Viganò David von Oheimb 96

The future: security sensitive protocols
 H.323

MT
V−GK MRP H−BE AuF

1.) GRQ(EPID, GKID, 0, CH1,
T1, gx, HMACZZ(GRQ))

13.) GCF(GKID, EPID, CH1,
 CH2, (T13), gy,
 HMACZZ(W), HMACZZ(GKID),
 HMACK(GCF))

14.) RRQ(EPID, GKID, CH2, CH3,
(T14), HMACK(RRQ))

2.) RIP(...)

15.) RCF(GKID, EPID, CH3, CH4,
(T15), HMACK(RCF))

V−BE MRP

4.) 5.) 6.) 7.)

12.) 11.) 10.) 9.) 8.)

3.)

compute DH: gx mod p

compute DH: gy mod p
W:= gx ⊕ gy

K := gxy mod p

K := gxy mod p
W:= gx ⊕ gy

AuthenticationRequest (GRQ(..), GKID, W, HMAC)

AuthenticationConfirmation (HMACZZ(W), HMACZZ(GKID), HMAC)

Examples:

Mobility: Mobile IP, mobile QoS (hand-off), mobile multi-media.
Session control: SIP, H323.
Authentication: Kerberos variants, AAA, PANA, http-digest.
Key agreement: Son-of-IKE.
End-to-End and Peer-to-Peer scenarios: SIP, SOAP, geopriv.

AVASP 03.04.2005

Sebastian Mödersheim Luca Viganò David von Oheimb 97

Conclusions

• It is possible and desirable to apply rigorous scientific methods to

construct and analyze secure systems.

=⇒ Requires work in foundations, tool support, and applications.

• Automated Validation of Internet Security Protocols and

Applications (www.avispa-project.org).

� AVISPA: a state-of-the-art tool for protocol analysis.

� Both falsification and (bounded) verification of security

protocols.

AVASP 03.04.2005

A
V
I
S
P
A
www.avispa-project.org

Sebastian Mödersheim Luca Viganò David von Oheimb 98

The AVISPA Tool www.avispa-project.org

AVASP 03.04.2005

www.avispa-project.org

Sebastian Mödersheim Luca Viganò David von Oheimb 99

The AVISPA Tool www.avispa-project.org

Translator
HLPSL2IF

High−Level Protocol Specification Language (HLPSL)

Intermediate Format (IF)

Output

Model−Checker
CL−based

CL−AtSe

SAT−based

SATMC TA4SP

Tree Automata−based

OFMC

On−the−fly
Model−Checker Attack Searcher Protocol Analyser

• Specification Languages:

� HLPSL: a High-Level Protocol Specification Language.
∗ Supports expressive, modular, high-level specifications of security sensitive

protocols and properties.
∗ Suitable for protocol designers.

� IF (Intermediate Format): a tool-independent, low-level

protocol specification language suitable for analysis.

� HLPSL2IF: a translator from HLPSL into IF.
AVASP 03.04.2005

www.avispa-project.org

Sebastian Mödersheim Luca Viganò David von Oheimb 100

The AVISPA Tool www.avispa-project.org

Translator
HLPSL2IF

High−Level Protocol Specification Language (HLPSL)

Intermediate Format (IF)

Output

Model−Checker
CL−based

CL−AtSe

SAT−based

SATMC TA4SP

Tree Automata−based

OFMC

On−the−fly
Model−Checker Attack Searcher Protocol Analyser

• Development of automatic analysis techniques to be integrated

into robust, state-of-the-art tools.

OFMC, an on-the-fly model-checker (developed by ETHZ),

CL-atse, a protocol analyzer based on Constraint Logic (INRIA),

SATMC, a SAT-based model-checker (UNIGE),

TA4SP, a protocol verifier based on tree-automata-based

automatic approximations (INRIA).
AVASP 03.04.2005

www.avispa-project.org

Sebastian Mödersheim Luca Viganò David von Oheimb 101

The AVISPA Tool: Results
AVISPA Library: 112 security problems from 33 protocols

Protocol #P P A T P A T P A TE TS
UMTS_AKA 3 3 0 0,02 3 0 0,01 3 0 0,11 0,00
AAAMobileIP 7 7 0 0,75 7 0 0,20 7 0 1,32 0,01
ISO-PK1 1 1 1 0,02 1 1 0,00 1 1 0,05 0,00
ISO-PK2 1 1 0 0,05 1 0 0,00 1 0 1,62 0,00
ISO-PK3 2 2 2 0,04 2 2 0,01 2 2 0,27 0,00
ISO-PK4 2 2 0 0,54 2 0 0,03 2 0 1.153 1,16
LPD-MSR 2 2 2 0,02 2 2 0,02 2 2 0,17 0,02
LPD-IMSR 2 2 0 0,08 2 0 0,01 2 0 0,43 0,01
CHAPv2 3 3 0 0,32 3 0 0,01 3 0 0,55 0,00
EKE 3 3 2 0,19 3 2 0,04 3 2 0,22 0,00
TLS 3 3 0 2,20 3 0 0,32 3 0 - 0,00
DHCP-delayed 2 2 0 0,07 2 0 0,00 2 0 0,19 0,00
Kerb-Cross-Realm 8 8 0 11,86 8 0 4,14 8 0 113,60 1,69
Kerb-Ticket-Cache 6 6 0 2,43 6 0 0,38 6 0 495,66 7,75
Kerb-V 8 8 0 3,08 8 0 0,42 8 0 139,56 2,95
Kerb-Forwardable 6 6 0 30,34 6 0 10,89 0 0 - -
Kerb-PKINIT 7 7 0 4,41 7 0 0,64 7 0 640,33 11,65
Kerb-preauth 7 7 0 1,86 7 0 0,62 7 0 373,72 2,57
CRAM-MD5 2 2 0 0,71 2 0 0,74 2 0 0,40 0,00
PKB 1 1 1 0,25 1 1 0,01 1 1 0,34 0,02
PKB-fix 2 2 0 4,06 2 0 44,25 2 0 0,86 0,02
SRP_siemens 3 3 0 2,86 0 0 - 0 0 - -
EKE2 3 3 0 0,16 0 0 - 0 0 - -
SPEKE 3 3 0 3,11 0 0 - 0 0 - -
IKEv2-CHILD 3 3 0 1,19 0 0 - 0 0 - -
IKEv2-DS 3 3 1 5,22 0 0 - 0 0 - -
IKEv2-DSx 3 3 0 42,56 0 0 - 0 0 - -
IKEv2-MAC 3 3 0 8,03 0 0 - 0 0 - -
IKEv2-MACx 3 3 0 40,54 0 0 - 0 0 - -
h.530 3 1 1 0,64 0 0 - 0 0 - -
h.530-fix 3 3 0 4.278 0 0 - 0 0 - -
lipkey-spkm-known 2 2 0 0,23 0 0 - 0 0 - -
lipkey-spkm-unknown 2 2 0 7,33 0 0 - 0 0 - -

OFMC CL-atse SATMCProblems

Also: TA4SP establishes in a few minutes that a number of protocols (EKE, EKE2,
IKEv2-CHILD, IKEv2-MAC, TLS, UMTS AKA, CHAPv2) guarantee secrecy.
AVASP 03.04.2005

Sebastian Mödersheim Luca Viganò David von Oheimb 102

Bibliography

• David Basin, Sebastian Möderhseim, Luca Viganò. An on-the-fly model-checker
for security protocol analysis. International Journal of Information Security
2004.
See the papers available on our webpages, as well as the AVISPA papers on
http://www.avispa-project.org.

• Wenbo Mao. Modern Cryptography. Paerson, 2004.

• Peter Ryan, Steve Schneider, Michael Goldsmith, Gawin Lowe, Bill Roscoe.
Modelling and Analysis of Security Protocols. Addison-Wesley, 2000.

• John Clark and Jeremy Jacob: A survey of authentication protocol literature,
1997. http://www.cs.york.ac.uk/~jac/

• Catherine Meadows: Formal Methods for Cryptographic Protocol Analysis.
Emerging Issues and Trends. IEEE Journal on Selected Areas in
Communication, 21(1):44–54, 2003.

AVASP 03.04.2005

http://www.avispa-project.org
http://www.cs.york.ac.uk/~jac/

Sebastian Mödersheim Luca Viganò David von Oheimb 103

Bibliography

• Michael Burrows, Mart́ın Abadi, and Roger Needham. A logic of
authentication. ACM Transactions in Computer Systems, 8(1):18–36, 1990.

• Mart́ın Abadi and Roger Needham: Prudent Engineering Practice for
Cryptographic Protocols. IEEE Transactions on Software Engineering,
22(1):2-15, 1996.

• Various papers by Gawin Lowe.

• Bruce Schneier. Applied Cryptography. John Wiley & Sons, New York, 1996.

• Dieter Gollmann. Computer Security. Wiley, 2000.

• Alfred J. Menezes, Paul C. van Oorschot, Scott A. Vanstone. Handbook of
Applied Cryptography. CRC Press, 1996.
Available online at http://cacr.math.uwaterloo.ca/hac/

• Williams Stallings. Cryptography and Network Security. Prentice Hall, 2003.

• Matt Bishop. Computer Security (Art and Science). Pearson, 2003.

• Kaufman, Perlman, Speciner. Network Security: Private Communication in a
Public World, Prentice Hall, 2002.

AVASP 03.04.2005

http://cacr.math.uwaterloo.ca/hac/

Sebastian Mödersheim Luca Viganò David von Oheimb 104

AVASP 03.04.2005

Sebastian Mödersheim Luca Viganò David von Oheimb 105

Theorem proving

• In a nutshell:

� System behavior is defined by a set of formulas.

� Derivation of formulas is defined by axioms and/or inference

rules.

� Desired behavior or properties of the system being analyzed are

specified as a set of theorems to be proved.

� A proof of a theorem is carried out by using premises and

applying axioms, rules, or already proved theorems to reach the

desired consequences.

AVASP 03.04.2005

Sebastian Mödersheim Luca Viganò David von Oheimb 106

Theorem proving (cont.)

• Proof process can often be mechanized

� E.g. rewriting a formula to some normal form.

• Mechanical prover may produce impractically large proofs.

� A theorem proving approach is nevertheless capable of dealing

with systems whose behavioral description cannot be

represented by a finite structure (e.g. the system has an infinite

state space).

� E.g. induction-based proof of an integer-based mathematical

statement.

• However, proofs often require the involvement of human

ingenuity: semi-automated proofs.

AVASP 03.04.2005

Sebastian Mödersheim Luca Viganò David von Oheimb 107

Theorem proving (cont.)
• A theorem proving approach aims to demonstrate some desired

property of a system (e.g. correctness), rather than to find errors

in a system.

� This is because usually an undesirable property cannot be

formulated into a theorem.

� Nevertheless, failure to demonstrate a desired property by a

theorem proving system may often result in some insightful

ideas leading to a revelation of a hidden error.

� E.g. BAN and other authentication logics.

• Security protocols are extremely error-prone systems.

� Correctness of a security protocol can be proved using an

interactive (semi-automated) theorem proving approach.

� This often requires restrictions and/or simplifications, and only

semi-automation.
AVASP 03.04.2005

Sebastian Mödersheim Luca Viganò David von Oheimb 108

Model-checking

• In a nutshell:

� System behavior is modeled as a (finite) state system.

� Properties of the system can be expressed by some state

satisfaction relations.

� Analysis of behavior of the system by state space exploration to

check whether certain properties will or will not be satisfied.

• In general:

� Safety of a system: check that certain undesirable properties

never occur.

� Liveness of a system: check that certain desirable properties do

eventually occur.

Model checking of security protocols focuses on safety properties.

AVASP 03.04.2005

Sebastian Mödersheim Luca Viganò David von Oheimb 109

Model checking (cont.)

• More in detail, a model checking approach can be described as

follows:

� The operational behavior of a finite state system is modeled by

a finite state labeled transition system (LTS), which can make

state transitions by interacting with its environment on a set of

events.

� Each state of an LTS is interpreted mechanically into (or

assigned with) a logical formula.

� A system property which is the target of an analysis is also

explicitly interpreted into a logical formula.

� An LTS is symbolically executed to produce a trace.

� A mechanical procedure can check whether or not a target

formula is satisfiable by any formula in any trace (i.e. whether

or not the formula is a logical formula in a trace).

AVASP 03.04.2005

Sebastian Mödersheim Luca Viganò David von Oheimb 110

Model checking (cont.)

• Theorem proving: a theorem is an assertion of a desired goal of

the system.

• Model checking: a target formula can model a desirable property

of the system as well as an undesirable one,

� e.g. i knows the newly distributed session key K.

In this case, the result of a satisfiable checking produces a trace

that provides an explicit description of a system error,

� e.g. the trace where i gets hold of K.

• Model checking very effective at finding flaws, but no guarantee of

correctness, due to artificial finite bounds.

� Problem can be partially solved by infinite-state model checking

(e.g. based on symbolic methods).

AVASP 03.04.2005

Sebastian Mödersheim Luca Viganò David von Oheimb 111

Finiteness concerns for model checking

• How many protocol sessions must be executed to ensure coverage?

� E.g.: man-in-the-middle attack on NSPK needs 2 sessions, but

sometimes more are needed.

• No algorithmic determined bound is possible for all cases (because

of undecidability for the model).

• Possible bounds for limited classes of protocols (e.g. small system

result).

• Only need n + 1 distinct principals (in roles, multiple sessions).

� Only 2 if an honest principal can talk to itself in all roles.

� The extra principal is the intruder.

N.B.: a role is a procedure specified for each party in a protocol. A, B, ... are
protocol variables corresponding to roles; their values (e.g. Alice, Bob, ...) are
principals.
AVASP 03.04.2005

Sebastian Mödersheim Luca Viganò David von Oheimb 112

BAN deduction system: Inference rules

Rules express how beliefs evolve as a result of communication.

• Message-meaning rules: interpretation of messages (how to derive

beliefs about origin of message).

Encrypted messages:

P bel shk(K, Q, P) P sees {X}K
P bel Q said X

sk (from R 6= P)

P bel pubk(K, Q) P sees {X}K−1

P bel Q said X
pk

Messages with secrets:

P bel secret(Y, Q, P) P sees 〈X〉Y
P bel Q said X

secret (〈X〉Y not by P)

AVASP 03.04.2005

Sebastian Mödersheim Luca Viganò David von Oheimb 113

BAN deduction system: Inference rules (cont.)

• Nonce-verification rule: check that message is recent (⇒ sender

still believes in it).

P bel fresh(X) P bel (Q said X)
P bel (Q bel X) nonce (X cleartext , X 6= {Y }K)

• Jurisdiction rule:

P bel (Q controls X) P bel (Q bel X)
P bel X

jurisdiction

N.B.: quantifiers are implicit, which may cause ambiguities, e.g.

P bel ∀K. (S controls (Q controls shk(K, P, Q))) vs.

P bel (S controls ∀K. (Q controls shk(K, P, Q)))

• Freshness rule: if a part of a formula is fresh, then the whole

formula is fresh.
P bel fresh(X)

P bel fresh(X, Y) fresh
AVASP 03.04.2005

Sebastian Mödersheim Luca Viganò David von Oheimb 114

The full NSPK

M1. A→ S : A,B
M2. S → A : {KB, B}K−1

S

M3. A→ B : {NA, A}KB

M4. B → S : B,A
M5. S → B : {KA, A}K−1

S

M6. B → A : {NA,NB}KA

M7. A→ B : {NB}KB

• Initially: A and B hold KS.

• Aim 1: A and B obtain each other’s public keys (M 1, 2, 4, 5).

• Aim 2: A and B use keys to communicate secret nonces NA and

NB (M 3, 6, 7).

• ‘Later’: A and B use NA and NB to sign further messages.

Protocol is flawed: no guarantee that public keys KA and KB are
fresh ⇒ replay attack!
AVASP 03.04.2005

