Overview (1)

- Introduction
- Goal
- Cryptography Overview
 - Symmetric crytography
 - Modes of encryption
 - ECB: Electronic Code Book
 - OFB: Output Feed Back
 - CFB Cipher Feed Back
 - CBC: Cipher Block Chaining
 - Padding before encryption
 - Secret Key ↔ Public Key

Overview (2)

- Key-Agreement
 - Diffie-Hellman Key-Agreement Protocol
 - One Way Functions
 - Modular Exponentiation
- Secret Key derivation
- Public Key Cryptography
 - Secret Key ↔ Public Key
 - RSA Public Key Algorithm
- Data Authentication
 - Hash Functions
 - MDC: Hash function without key
 - MAC: Hash function with Secret Key
 - retail MAC: MAC based on Block Cipher

Overview (3)

- Digital Signature
 - Digital Signature with RSA
- Station to Station Protocol
- Protocol Details: Key agreement
- Protocol Details: Data Broadcast
- Expectations
- References

Goal

- Setup a secure bidirectional communication channel between A and B
- Secure: data integrity and confidentiality are guaranteed
- Confidentiality: Encryption (AES or DES in CBC mode)
- Integrity: retail-MAC based on the AES or DES
- Secret keys (shared keys) negotiated through key agreement
- MAC and encryption keys are derived from the shared secret (after application of hash function SHA-1)
- Digital signatures for the authenticated key agreement use RSA or ECC

Protocol Details: Key agreement A B

- 1: Send PING
 - get input: x, Priv₁, Pub₁,Pub₂
 - compute msg:α^xmod por xP
 - send msg
- 4: Receive PONG
 - get msg
 - check signature
 - compute shared secret:
 (α^y)^xmod p or xyP
 - derive secret keys

- 2: Receive PING
 - **get msg** ($\alpha^x \mod p \text{ or } xP$)
- 3: Send PONG
 - get input: y, Priv₂, Pub₁,
 Pub₂
 - compute shared secret: $(\alpha^x)^y \mod p \text{ or } yxP$
 - derive secret keys
 - compute msg: $E_{ENC}(S_{Priv2}(\alpha^{y},\alpha^{x}))||\alpha^{y} \text{ or }$ $E_{ENC}(S_{Priv2}(yP,xP))||yP$
 - send msg

Protocol Details: First Data Cell of the Data Broadcast

- First data message sent from A to B contains in the data field:
 - $E_{ENC}(DatallS_{Priv1}(\alpha^x,\alpha^y))$ or $E_{ENC}(DatallS_{Priv1}(xP,yP))$
- Next data messages will only contain $E_{\text{ENC}}(\text{Data})$ in that field.

Protocol Details: Data BroadcastA B

- 5: Get data
 - pad the data
 - encrypt the padded data
 - compute MAC on the encrypted data
- 6: Send data to B

- 7: Receive data from A
 - check integrity(MAC)
 - decrypt data
 - strip padding

Implementation Hints: Suggested message format

- 4 types of messages
- Structure TLV (Type, Length, Value)

	Length $= N$		
1 byte	2 bytes	N bytes	
Type	Length	Value	

PING	1	Length	α ^x mod p	
PONG	2	Length	$E(S) \alpha^y \mod p $	←
1st Data msg	3	Length	E(D S) MAC	
rest Data msgs	4	Length	E(D) MAC	

Key agreement: shared secret

- $\sec_{DH} = \alpha^{xy} \mod p$ or xyP
- 2 secret keys are derived from the shared secret [H(•) = SHA-1]:
 - Encryption key (confidentiality protection):
 - $\sec_{\text{ENC}} = \text{H}(\sec_{\text{DH}} || 0 \times 0 \text{F}) \rightarrow \text{E}_{\text{ENC}}(\bullet)$
 - MAC-Key (integrity protection):
 - $\sec_{MAC} = H(\sec_{DH} || 0xF0) \rightarrow M_{MAC}(\bullet)$
 - MAC is computed on the encrypted information

Secure broadcast: A

- A: produce *Padded* = Data || padding
- A: compute the ciphertext: $E(\sec_{ENC})(Padded)$
- A: compute the MAC (using sec_{MAC}) on the ciphertext
- A: broadcast info to B

Secure broadcast: B

- When B receives information:
 - Retrieve the MAC-Key
 - Compute the MAC on the incoming info
 - Compare the computed MAC and the incoming MAC
 - IF both MACs have the same value:
 - B: Decrypt information (using sec_{ENC})
 - B: Validate padded information
 - IF ok, info ready for further processing

Expectations

- IMPLEMENTATION of:
 - AES or DES
 - SHA-1
 - Protocols: key agreement and data broadcast
 - Retail MAC based on AES or DES
 - General modular exponentiation or point multiplication (Diffie-Hellman and RSA or ECC)
 - Padding (adding and stripping)
 - Encryption/Decryption in CBC mode