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Abstract

A numerical-analytical hybrid method is presented for the three dimensional analysis of
forced oscillatory motion of a vertical axisymmetric cylinder in finite water depth. The present
study extends the direct method based on Weber'’s integral theorem to include more general,
axisymmetric, cylindrical forms. A classical perturbation procedure is employed to solve the
nonlinear problem through the second-order. The fluid domain around the cylinder is separated
into an interior and an exterior region. The advantage of axisymmetry is taken into consideration
in the interior region by making use of Rankine ring-source distribution within the boundary
element formulation. In the exterior region, nonhomogeneous second-order free surface condition
is satisfied by means of a modified form of Weber’s integral theorem. Eigenfunction expansion is
used for the exterior homogeneous solution. The complete solution is then obtained by matching
the interior and the exterior solutions on the common boundary by satisfying the continuity of
pressure and radial velocities. A computational example is given for the verification of the
formulation for the heave motion of a vertical truncated circular cylinder.

1. Introduction

Various approaches to the solution of the problem of the second-order radiation/diffraction
of waves, by a vertical axis cylinder, can still be seen in the literature. Using the classical
perturbation method, these studies aim to provide benchmark computations and understand
the effect of higher-order harmonics beyond the linear theory. These attempts may be classified
into two categories: (i) an indirect approach, pioneered by Lighthill (1979) and Molin (1979),
which uses Green’s second identity to calculate the wave loads without calculating the second-
order potential solution in a closed-form; and (ii) an explicit calculation of the second-order
potential using a Fourier-Bessel expansion which satisfies second-order free surface condition
by means of a modified form of Weber'’s integral theorem, which was introduced by Hunt and
Baddour (1981). Recent attempts for the correct and complete solutions to the second-order
diffraction forces can be seen in Huang and Eatock Taylor (1996) and Newman (1996). It is
clear that the debate is still continuing on the numerical results rather than on the formulation,
as remarked by Newman (1996). On the other hand, besides the diffraction problem, Goren
(1996) extended the linear theory of Sabuncu and Calisal (1981) and Yeung (1981) to include
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second-order effects by adopting an approach similar to the one used in Hunt and Baddour
(1981).

The present work considers Goren’s (1996) exterior solution as a buit-in formulation and
makes use of the Boundary Element Method (BEM) in the interior region which allows the
application of that procedure to more general, axisymmetric forms. The solution is obtained
by matching the interior and the exterior solutions on the common boundary to satisfy the
continuity of pressure and radial velocities. To test the numerical results, a computational
example is given for the heave motion of a truncated circular cylinder in finite water depth.

2. Second-order Formulation
2.1 Boundary Value Problem
A vertical axisymmetric cylinder (Figure 1) is forced to make a harmonic motion with a
known frequency w, and an amplitude A. The motion amplitude is assumed to be small compared
to the radius of the cylinder. The displacement of the oscillatory cylinder is prescribed as;

c(t) = Asinwt (1)

LS|

Figure 1.
With the usual assumptions necessary for the existance of a potential flow, the velocity is
defined as V = V¢ , and accordingly the governing equation is Laplace’s equation:

V2¢(7',9,z;t) =10 (2)

Both Cartesian (Ozyz) and cylindrical coordinates (r,0,z) are employed in Figure 1. The
velocity potential, ¢, satisfies the kinematic and dynamic boundary conditions, respectively, on
the free surface at z = ((r, 6;t) + d:

= :
Z—T+E(V¢-V¢)+9C=O r e 0nt) ok d (3)
o¢  0¢9¢ 10¢09¢ 09¢ ’
= b, Sl ———— e — = . - vl { 4),
5t " oror 120000 0z T )
the boundary condition at the flat bottom:
o =0 =10 (5),
0z

268




the kinematic condition on the rigid moving body surface, $(, 6, z;1):

9 _ __ S

on = VS (6).

and a proper radiation condition at infinity which ensures the uniqueness of the solution. n is
the unit normal pointing out of the fluid.

In the present analysis, a classical perturbation method is employed through the second-
order. Perturbation parameter e represents the ratio of the amplitude of the oscillation to the
radius of the cylinder in the perturbation series:

b =¢€dy+€2py+ - (7)

C=e€(1+€XCa+ - (8)

Zero-order approximation represents the fluid at rest. Expanding boundary conditions (3),
(4) and (6) into a Taylor series about the mean positions of the moving surfaces, and using
perturbation series (7) and (8) in these expressions and ultimately equating like powers of ¢,
lead to the reduced series of linear sub-problems. The solution for the first-order problem can
be found in detail in Sabuncu and Calisal (1981) and Yeung (1981). Since the main purpose
of this paper is to obtain second-order forces and wave components, the second-order boundary
value problem (BVP) of the heaving cylinder is explained below

V2¢2(7',9,z;t) =20 (9)

with the boundary condition on the free surface

(i Vor=-5 [(“‘)Mi(%)%(%)z +

ot? +"’5; ot or 72" 96 Oz

19¢; 0 ,0%¢, 991

AR RTT e ; =d 10
I (10)
and on the cylinder
0;(’2_=0 S ez e ]
or
2
%%2' = —aaagl sin wt ) (S S (11)
and on the sea bottom —
0z

The radiation condition for the sub-BVP having a homogeneous free surface condition can be
chosen such that the radial waves must be outgoing to infinity. The condition at infinity for the
sub-BVP with nonhomogeneous free surface condition is presumed to be spontaneously imposed
by the asymptotic behaviour of the r.h.s. of (10) which is quadratic in ¢;. The quadratic
character of equation (10) and the kinematic condition on the body implies that ¢ has the
form: :
oo
b2(r, 8, z;t) = Re{wa? Z wém)(r, z) cosnf exp[—i2wt]} (13)

m=0
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where -ué’") is the nondimentional spatial potential. Time-independent term which should be

included in (13) is discarded, since it contributes nothing to the second-order quantities. For

heave motion, rn-summation in (13) exists only for m = 0.
2.2 Method of Solution

According to the solution procedure, the fluid domain is separated into an interior (fluid
volume beneath the cylinder) and an exterior region (the remainder extending to infinity).

In the exterior region BVP is decomposed into two BVPs each having one nonhomogeneous
boundary condition. Following the same notation of Géren (1996), exterior solution is split into

a homogeneous and a particular solution:

vie = vih+vie, i T2 (14)

where (p?eh can be given in terms of an eigenfunction expansion as;

(0) _ (0) Ho(xor) - (0) Ko(xqr)
¢2eh( ) 5 EO Hé(K.QCL) ZO(KOZ) ar Z Eq Ké(nqa) Z‘J(K‘qz) (15)

q=1

wg‘j) is the solution for the sub-BVP which consists of the equations (9), (11), (12) and the

homogeneous form of (10). Eigenvalues x4 are the roots of the second-order dispersion relation

x tanh(xd) = 4w?/g where & represents kg or ikg for ¢ > 1. Z4(z) are orthonormal eigenfunctions

valid in the interval [0, d]. Ho and K are Hankel function of the first kind and the modified Bessel

function of the second kind, respectively, both of order of 0. A prime denotes differentiation

with respect to the argument. Differentiating of (15) with respect to r, at » = a, and multiplying

both sides by Z4(xq2), then integrating over the interval [0,d] and using orthonormal properties
of Z4(kqz) gives:

1 61/1(0)

EP) = — [ —Zhz de s cg=0 1 16

kqd By q( qz) q (16)

Particular solution z/)zep must satisfy nonhomogeneous second-order free surface condition.

Equation (10) can be rearranged as given by Sabuncu and Goren (1985) for the heave motion

as;
2
6(9(:;5 +g% = Re{iwsa“‘—;&fo,o exp[—iZwt]} (17)
where
(©) (0) 2., (0)
8Y;, Y1, ©0v{Y 1 (0%,
o Segi bl 1
fo‘o(‘l) < ar ) +< a2z ) w Oz zwle az?_ ; (8)

and zj;(o) is the first-order exterior solution. By virtue of (17), particular solution should be
given by a continuous spectrum which satisfies (9), (11) and (12);

wé kT 2) —a/ A (k)Co(kr) cosh kz dk (19)
0

where
Co(kr) = [Jo(kr)Y, (ka) — Yo(kr)Jo(ka)] (20)

Jo and Y, are Bessel functions of first and second kind, respectively,of order of 0. Thus, following
Hunt and Baddour (1981), we make use of the modified form of Weber’s integral theorem

Raite = /0 L g ~ RCo(kR)fo0(R) dR (21)

0

270




in (17) to give:
A© (k) [k sinh kd — = cosh kd] = ,ﬂ“—’—" : RCo(kR)foo(R)dR (22)
9 Qo 9 Ja :
where Qo = [J(’) (ka) + YO’ (ka)].

The interior solution, wé?), is obtained by BEM with circular ring elements distributed on
the control surface, S:, composed of a circular flat portion, S, (» < a), of the sea bottom,
common surface, S¢, at 7 = a (0 < z < h) and the cylinder surface, $;. Discretization on the
control surface is made so that Ng, N, and N elements are taken on Sp, S, and S}, respectively,
with a total of N ring elements. Parallel to the idea of Drimer and Agnon’s (1994) 2D study, free
surface is excluded from the boundary of the inner region. The potential value of each of these
ring elements is taken to be constant, and the mid point, P = P(rm,0, zn), of each element
is defined as the node point of that element, as is used in Calisal and Chan (1986). Rankine

sources are utilized as the Green’s function in the integral equation

© (p © =l _fesier 1o
s @)+ [ 0@ (o) 5@ = [ @)

where the point Q@ = Q(rncosf,r,sinf, z,), (n,m =1,2,---, N), is the source point, and 7’ is

the distance between P and @ and is written as

' =QP = \/(rncos8 — )2 + (rnsin )2 + (2 — 2m)2.

The matching of the velocity potential and its radial derivative at the common surface

(r = a) is achieved by the following matching conditions:

‘/"(0) "/’931 T ¢§2§, el e (24),
. (0) (0) (0)
Ve _ 0%  O%aep
= — s = S o<l .
or ar e bsesh (25a),
~1(0) w9
d'l{)zeh —i Vaep (st ) (25b)
or or

. : - : . : L)
(24) is used to express zpé?) at = a in terms of the exterior solution, since we consider (-—Tg;l—),,_

unknowns on S.. Therefore, by taking into account the boundary conditions (11) and (12) in
(23) we arrive at the following N equations with N + L + 1 unknowns:

No No+N.
Oy 42(1/)((_))) = / £ E(w/2,k') S OZ (dw aE(xf2,k") 5
e e e R A N R T

n=Ng+1
. i (5 )n(h = 2m) / . h{ L e
= = Zm ‘n LT'n, I e Zn,
n=No+N.+1 . et Ar, : (a/ = b")Va' + b i OH' o(koa) 2
Ko(ka) o E{n/2, k) F(n/2,k") o'E(m/2,k')
o+ E n 2a o o 1 1D
Z lK' Z[(z ) H2a (a' = b")Va' + b Va' +b! ((1'—1)’)\/z1.’+b’}(z
/ l / / / :
k E(n/2,k") w2 kD) a'E(m/2,k")
(k h(k dk{2a = = l2n
-2 | / KiColkaloashifelibCn et e

Ima) 1 2F(n/2,K')

170
= TR e R L R T R R T
: /{Z S + ) R a5 u= 12N (9
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where F (7 /2, k') and E(n/2,k’) are the complete elliptic integrals of the first and second kinds,
respectively, and a’ = 12 + 72, + (20 — 2)%, b = 2rprm, k' = /2b'/(a’ +b'), Gradshteyn
and Rhzhik (1973). The limiting value 27rw§?) in (26) is expressed in terms of the exterior
solution when P is on the common surface, S.. Ago)’s are the Fourier coefficients of the first-
order potential solution. The number of unknown coefficients, E;, of the exterior homogeneous
solution are not necessarily equal to the number of elements, N, on the common surface. The
rest L + 1 equations are obtained by using (25) in (16) as:

N0+Nc 6'(/)(0)
= Z (_L)n/ Zl(zn) dzn"‘El("'ld)‘Snl =0 ; (= 0L L) (27)
n=Ny 31' Azn

which completes the solution.

2.3 Hydrodynamic Force due to the Second-order Potential
The total dynamic pressure through the second-order at the bottom of the cylinder is given

as;
= 0é1 . 2 (0¢2 824y .
p——-ep{ Bt +ga51nwt} € p{ ot +a626t sinwt
1 a¢1 o 1 ad’l 2 ad’l 2 3 E o
+§[(—31‘ ) +T_2(_(9t9 ) +('——6z ) ]}+O(E ) S s e (28)

Second-order harmonic force is evaluated from the integration of the second-order pressure over
the cylinder which is proportional to 2. With a nondimensional notation second-order vertical
force due to the second-order potential is obtained as:

N

2 2
1
€ Fo - Re{(w—d)47ri{-— E ('g[;.g?))n/ Tn drn} exp —i2wt} (29)
pgaA? g ad vr

n=No+N.+1 2

3. Numerical Study and Results

A truncated vertical circular cylinder is chosen to compare the results of this formulation
with other available studies. First-order quantities calculated here are based on an analyti-
cal linear theory. Main difficulty lies in the evaluation of R— and k— integrals in (19) and
(22). Numerical considerations and accuracy in this numerical integration process are exam-
ined in Hunt and Baddour (1981) and Goren (1996). The control surface bounding the interior
region is discretized here so that equal number of elements are taken on S,, S, and S;. Com-
plete elliptic functions are computed by the polinomial approximations given in Abramowitz
and Stegun (1972). Line integrals in (26) are evaluated numerically by means of a 10 point
Gaussian-quadratures. An example of the numerical convergence, as a function of total number
of elements, N, observed during numerical tests is given in Table 1.

Table 1. Numerical convergence for w?d/g = 2.6, h/d = 0.5,a/d = 1.0

N €2Fy5/(pgaA?)
6 18.952
12 18.883
18 19.401
24 19.435

Truncation limit is set as 8 in eigenfunction expansion (15). When 24 elements are used for
the interior region, the resultant complex matrix is a 32 by 32 matrix which yields a (64 X 64)
real matrix. The system of linear equations is solved by a Gaussian elimination procedure.
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Comparative results for the second-order vertical force due to the second-order potential
are shown in Figure 2. Li’s (1995) work is a numerical study based on a mixed Eulerian-
Lagrangian method. Although a good agreement is seen in the low and moderate frequency
region, discrepancies get larger in the higher frequency region. Figure 3 illustrates the phase
shifts of the total second-order force which includes second-order contribution due to the first-
order potential. In the interval 0 < kga < 1.25, the agreement is quite satisfactory, while
deviations between solutions are observed, to some extend, at higher frequencies.

30 v T i T T T T T T T T
E
25 a 2
° Hybrid Method
20} =) Li (1995) s o =
a Goren (1996)
SRS 5
S ]
& qof -
2k 4
O i 1 i : L i = 3 i 1 4 1 "
0.0 0.5 150 1.5 2.0 2D 5.0

koa
Figure 2. Comparison of second-order vertical force due to the second-order potential
(a/d = 1.000, h/d = 0.500)
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Figure 3. Second-order phase shifts of the heaving cylinder. (a/d = 1.000, //d = 0.500)

4. Concluding Remarks

A hybrid method is presented which allows the calculation of second-order hydrodynamic
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forces for axisymmetric cylinders. This approach eliminates the numerical treatment of nonho-
mogeneous free surface condition and satisfies the conditions at infinity through the second-order.
Some additional work is required on the numerical procedure to clarify the effects of the nu-
merical parameters which are influenced by the frequency, water depth and the radius of the
cylinder.
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