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Wave Drift Forces’ Calculation
on Two Floating Bodies Based
on the Boundary Element
Method—Attempt for
Improvement of the Constant
Panel Method
An improved constant panel method for more accurate evaluation of wave drift forces
and moment is proposed. The boundary element method (BEM) of solving boundary inte-
gral equations is used to calculate velocity potentials of floating bodies. The equations
are discretized by either the higher-order boundary element method or the constant panel
method. Though calculating the velocity potential via the constant panel method is sim-
ple, the results are unable to accurately evaluate wave drift forces and moment. An
improved constant panel method is introduced to address these issues. The improved con-
stant panel method can, without difficulty, employ the near-field method to evaluate wave
drift forces and moment, especially for multiple floating bodies. Results of the new evalu-
ation method will be compared with other evaluation method. Additionally, hydrody-
namic interaction between multiple floating bodies will be assessed.
[DOI: 10.1115/1.4042180]

1 Introduction

Floating production storage and offloading systems including
floating liquefied natural gas vessels exemplify a system of two
floating bodies. Such a system necessitates a numerical calcula-
tion method to predict the fluid forces concerning the bodies’
hydrodynamic interactions. The far-field method and near-field
method are available for evaluating wave drift forces and moment.
Newman [1] and Maruo [2] proposed the far-field method, which
is based on the momentum conservation principle. This method is
always used for single floating body because it considers all forces
and moment acting on all bodies within the domain of a fictitious
vertical cylinder far from the bodies. Kashiwagi et al. [3] devel-
oped the far-field method for multiple floating bodies if the verti-
cal cylinders surrounding the floating bodies do not overlap.
Alternatively, the near-field method integrates pressure across the
wetted surface of each floating body [4–6], and can be used to
evaluate wave drift forces, moment, as well as local pressure on
each floating body. In either method, accurate evaluation of veloc-
ity potentials of the floating bodies is crucial.

The velocity potential of the floating bodies is found by using
the boundary element method (BEM) to solve the boundary inte-
gral equations derived from Green’s function and the linearized
boundary conditions [7]. Two methods are available to discretize
the boundary integral equations, the constant panel method and
HOBEM. Though the constant panel method [8] is itself simple to
employ, the resulting velocity potentials are inaccurate compared
to the HOBEM. Additionally, the resulting velocity potentials
cannot accurately evaluate wave drift forces and moment by near-
field method, because the velocity potentials are not representative
of the water line. Finally, it is difficult to evaluate differential
value of velocity potentials with high precision. S€oding [9]

introduced a new numerical method, which uses Rankine sources
to accurately predict pressure and forces on a constant panel. Fur-
thermore, S€oding et al. [10] presented a method of calculating
ship drift forces in waves using constant panels. To ascertain high
computational precision of velocity panels, many studies utilize
HOBEM with seven and nine-point isoparametric representations
of the velocity potentials for comparative analysis (e.g., see
Refs. [3] and [11]).

This paper proposes a numerical technique to solve the afore-
mentioned issues concerning inaccuracy at the water line and the
difficulties regarding velocity potential differential calculations.
Through this new technique, the near-field method can be used
with ease to calculate wave drift forces and moment. Two mod-
ules will be introduced by this technique, the extrapolation func-
tion, and isoparametric elements. The velocity potential obtained
from the constant panel method on the floating bodies is extrapo-
lated to the other points, including the water line, to resolve the
former issue. These more representative velocity potentials are
used by the near-field method to calculate wave drift forces and
moment. The formulation of isoparametric elements serves to
simplify the differential calculations. To test the accuracy of the
proposed technique, the fluid forces of an ellipsoidal floating body
are calculated by the new numerical method and compared with
the conventional constant panel method and HOBEM. Addition-
ally, the new numerical method is applied to two floating bodies
arranged in tandem to assess various drift forces and moments,
and the effects of distance on hydrodynamic interactions between
floating bodies.

2 Boundary Element Method and Conventional

Solution Method

2.1 Boundary Value Problem. As shown in Fig. 1, the
global coordinate system xyz is used throughout this paper, with
the xy-plane representing the undisturbed water surface, and z
extending positively into the sea floor. In addition to the global
coordinate system, two local coordinate systems are introduced:
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xAyAzA in body-A and xByBzB in body-B. SH is the wetted body
surface, SF is the free surface, and SB is the water bottom.

The floating bodies are assumed to oscillate in time as a sinu-
soid with circular frequency x. The velocity potential of the first-
order incident wave is expressed as

Uðx; y; z; tÞ ¼ Re½/ðx; y; zÞeixt� (1)

The velocity potential, which satisfies the above governing equa-
tion and linearized boundary conditions, is summarized as
follows:

L½ � @2/
@x2
þ @

2/
@y2
þ @

2/
@z2
¼ 0 for z � 0 (2)

F½ � @/
@z
þ K/ ¼ 0 on SF z ¼ 0ð Þ (3)

B½ � @/
@z
¼ 0 as z!1 (4)

H½ � @/
@n
¼ 0 on SH (5)

Equation (2) is the Laplace equation in the fluid domain; Eq. (3) is
the linear free surface condition (K¼x2/g); Eq. (4) is a condition
on the sea bottom; and Eq. (5) is the conditions across the wetted
surface of the body surface.

2.2 Boundary Integral Equation and Discretization of the
Constant Panel Method. The free-surface Green’s function G(P,
Q) is used to solve the first-order boundary value problem. The
constant panel method is used to solve the diffraction integral
equation for the velocity potentials given by

1

2
/D Pð Þ þ

ð ð
SH

/D Qð Þ @G P; Qð Þ
@nQ

dS Qð Þ ¼ /0 Pð Þ (6)

where P¼ (x, y, z) is the point on the field and Q ¼ ðx0; y0; z0Þ is
the source on the floating body. The constant panel method is
used to solve for the diffraction velocity potential /D(P) in
Eq. (6).

The Green’s function of the unbound fluid in three dimensions
is given by

G P;Qð Þ ¼ � 1

4pr

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x� x0ð Þ2 þ y� y0ð Þ2 þ z� z0ð Þ2

q
8>><
>>:

(7)

and assuming N panels on the surface of the floating body, the
potential / is

2p/D Pmð Þ ¼
XN

n¼1

/D Qnð ÞDmn

�
XN

n¼1

@/D Qnð Þ
@n

� �
Smn m ¼ 1;…;N; n ¼ 1;…;Nð Þ

(8)

where

Dmn ¼
ð ð

SHn

@

@n

1

r

� �
ds Qð Þ

Smn ¼
ð ð

SHn

1

r
ds Qð Þ r ¼ r Pm;Qð Þ

(9)

Dmn and Smn may be computed using the local coordinate system
for each panel to be calculated [12]. Dmn and Smn can be discre-
tized as

D¼
ð ð

@

@z0
1

r

� �� �
z0¼0

dx0dy0 ¼
X4

n¼1

tan�1 B1A2�B2A1

A1A2þB1B2

� �

S¼
ð ð

1

r
dx0dy0

¼
X4

n¼1

x�x0n
� �@y0n

sn
� y�y0n
� �@x0n

sn

� �
� log

RnþRnþ1þ sn

RnþRnþ1� sn

� �
� zD

(10)

where

A1 ¼ Rnzdx0n

B1 ¼ dy0n½ðx� x0nÞ
2 þ z2� � dx0nðx� x0nÞðy� y0nÞ

A2 ¼ Rnþ1zdx0n

B2 ¼ dy0n½ðx� x0nþ1Þ2 þ z2� � dx0nðx� x0nþ1Þðy� y0nþ1Þ

8>>>>><
>>>>>:

(11)

and

dx0n ¼ x0nþ1 � x0n

dy0n ¼ y0nþ1 � y0n

Rn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� x0nÞ

2 þ ðy� y0nÞ
2 þ z2

q

Rnþ1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� x0nþ1Þ

2 þ ðy� y0nþ1Þ
2 þ z2

q

8>>>>>>><
>>>>>>>:

(12)

Fig. 1 Calculating domain

Fig. 2 Local coordinate system
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For Fig. 2, in the local coordinate system x ¼ x0n and y ¼ y0n, sn

denotes the panel side’s length, and n denotes panel side,
n¼ 1…4. For each panel, the calculated diffraction velocity
potential /D(P) is measured at the center of the panel.

2.3 Boundary Integral Equation for Two Floating Bodies.
To compute the velocity potential of two bodies, their hydrody-
namic interaction must be considered. As shown in Fig. 1, the
surfaces of bodies A and B can be discretized into panels
SnA
ðnA ¼ 1 � NAÞ and SnB

ðnB ¼ 1 � NBÞ, respectively. The total

number of panels Nall¼NAþNB. To evaluate the diffraction
velocity potential of two bodies, Eq. (6) is rewritten as

1

2
/D Pmð Þ þ

XNall

n¼1

/D Qnð Þ @

@nQ
G Pm; Qnð ÞdS ¼ /0 Pmð Þ (13)

The resulting Nall�Nall equations can be solved similar to the
case of the single floating body. The equations can be represented
by [Tmn] as

(14)

Section I represents the single body equations for body-A. Section
II represents the hydrodynamic effects of body-B on body-A.
Section III represents the hydrodynamic effects of body-A on
body-B. Section IV represents the single body equations for body-
B. Therefore, the totality of hydrodynamic interactions of the two
bodies is considered in the numerical solutions.

2.4 Calculation of Wave Drift Forces by the Near-Field
Method. The wave drift forces and moment can be obtained by
taking a time average over one period of the second-order forces,
which can be computed by integrating the pressure on the surface
of the floating body as follows

Fq ¼ �
ð ð

SH

pnqdS (15)

in the x- and y-direction (q¼ 1 and 2). Using Bernoulli’s principle

p ¼ q � @U
@t
� 1

2
jrUj2
	 


� gZ

� �
(16)

The second-order forces can be computed as follows

Fq ¼
q
2

ð ð
SH

jrUj2nqdS� 1

2
qg

þ
Cw

f2 � nqdl (17)

where Cw denotes the water line and f is calculated as follows

f ¼ � 1

g

@U
@t

����
z¼0

(18)

Similarly, the second-order moment can be obtained as follows

Mz ¼
q
4

ð ð
SH

jrUj2 zny � ynxð ÞdS� qg

þ
Cw

f2 � xny � ynxð Þdl

(19)

Referring to an established second-order theory using the consist-
ent perturbation scheme (e.g., see Refs. [10] and [13]), the time
average of the time-dependent exponential, eixt in Eq. (1), can be
evaluated according to the following formula:

Re Aeixt½ �� Re Beixt½ � ¼ 1

2
Re AB�½ � (20)

where * denotes the complex conjugate.
As a result, when the floating bodies are restrained in motion,

the equations for the time-averaged steady forces and moments
include only the diffraction components. The nondimensional
equations for drift forces Fq and moment MZ are as follows:

Fq

1
2
qgf2

wL
¼ 1

2

1

K

ð ð
SH

jr/Dj2nqdS�
þ

Cw

jr/Dj2nqdl

� �
(21)

Mz

1
2
qgf2

wL2

¼ 1

2

1

K

ð ð
SH

jr/Dj2 zny � ynxð ÞdS�
þ

Cw

jr/Dj2 xny � ynxð Þdl

� �

(22)

where the overbar denotes the time average, fw denotes the wave
height, and the L denotes the length of floating body.

3 Formulation of New Numerical Technique

Evaluating the wave drift forces and moment using the near-
field method is inaccurate because the velocity potential derived
from the constant panel method only yields velocity potentials
representative of the center of the panel, thus making the contour
integral along the water line Cw, in Eqs. (21) and (22), difficult.
Additionally, evaluating the velocity potential differential (the
double integral in Eqs. (21) and (22)) is also difficult.

To resolve the velocity potential inaccuracies along the water
line, the extrapolation function is introduced. The new constant
panel method uses the conventional constant panel method to
obtain the velocity potential of the floating body, and extrapolates
the velocity potential of other points on the panels, some of which
are representative of the water line, thus providing accurate veloc-
ity potentials along the water line Cw. The resulting velocity
potential extrapolations are used for the generation of isoparamet-
ric elements. These isoparametric elements are used to solve the
velocity potential differential.

3.1 Formulation of the Extrapolation Function. When
computing the velocity potential on the water line Cw (second
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terms on the right-hand sides of Eqs. (21) and (22)), the quadratic
extrapolation function can be used to calculate the velocity poten-
tial / and the normal vector n of the new evaluation points. The
positional relationship between the new evaluation points and the
center point of the conventional constant panel method is defined
in Fig. 3. The circular points are those used in the conventional
calculation (center points P), and the triangular points are the new
evaluation points P0. Here, 1–9 denote the numbers of the center
points, and ‹ � · denote the numbers of the new evaluation
points. Moreover, i–iv are the auxiliary points that are obtained in
the extrapolation. lAX, lBX, and lCX are the trend lines in the x
direction, and lAZ, lBZ, and lCZ are the trend lines in the z direction.

Along line lAX in the x-axis, the quadratic elements alAX
; blAX

,
and clAX

, based on / and the x coordinates of points 1, 2, and 3,
are formulated as follows:

x2
1 x1 1

x2
2 x2 1

x2
3 x3 1

0
BB@

1
CCA

alAX

blAX

clAX

0
@

1
A ¼ /1

/2

/3

0
@

1
A (23)

The velocity potential /i and /ii can be computed with the above
coefficients as follows:

i : /i ¼ alAX
x2

i þ blAX
xi þ clAX

(24)

ii : /ii ¼ alAX
x2

ii þ blAX
xii þ clAX

(25)

The velocity potentials /fl;/–; /iii, and /iv can be obtained
using the same method along lines lBX and lCX.

Along line lAZ in the z axis, the quadratic elements alAZ
; blAZ

,
and clAZ

can be formulated as follows:

x2
i xi 1

x2
fl

xfl 1

x2
iii xiii 1

0
BB@

1
CCA

alAZ

blAZ

clAZ

0
@

1
A ¼ /i

/fl

/iii

0
@

1
A (26)

Similarly, velocity potentials /‹ and /† can be computed as
follows:

‹ : /‹ ¼ alAZ
x2

‹
þ blAZ

x‹ þ clAZ
(27)

† : /† ¼ alAZ
x2

†
þ blAZ

x† þ clAZ
(28)

The velocity potentials /›; /‡; /fi, and /· can be obtained
using the same method along lines lBZ and lCZ.

Thus, the velocity potentials have been successfully extrapo-
lated from /1–/9 to the new evaluation points /‹ � /·

/‹ ¼ alAZ
x2

‹
þ blAZ

x‹ þ clAZ

/› ¼ alBZ
x2

›
þ blBZ

x› þ clBZ

/fi ¼ alCZ
x2

fi
þ blCZ

xfi þ clCZ

/fl ¼ alBX
x2

fl
þ blBX

xfl þ clBX

/� ¼ /5

/– ¼ alBX
x2

–
þ blBX

x– þ clBX

/† ¼ alAZ
x2

†
þ blAZ

x† þ clAZ

/‡ ¼ alBZ
x2

‡
þ blBZ

x‡ þ clBZ

/· ¼ alCZ
x2

·
þ blCZ

x· þ clCZ

8>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>:

(29)

These new extrapolated velocity potentials along the water line
can be used to solve the contour integral in Eqs. (21) and (22).

3.2 Formulation of the Isoparametric Elements. Formulat-
ing the isoparametric elements using the new extrapolated points
is used to solve the double integral in Eqs. (21) and (22). Figure 4
shows the utilization of isoparametric elements. The velocity
potential can be obtained as follows:

/ ¼ a0 þ a1nþ a2gþ a3ngþ a4n
2 þ a5g

2

þ a6n
2gþ a7ng2 þ a8n

2g2 (30)

where the n and g are positional coordinates of values 1, �1, or 0

/1 ¼ a0 � a1 þ a2 � a3 þ a4 þ a5 þ a6 � a7 þ a8

/2 ¼ a0 þ a2 þ a5

/3 ¼ a0 þ a1 þ a2 þ a3 þ a4 þ a5 þ a6 þ a7 þ a8

/4 ¼ a0 � a1 þ a4

/5 ¼ a0

/6 ¼ a0 þ a1 þ a4

/7 ¼ a0 � a1 � a2 þ a3 þ a4 þ a5 � a6 � a7 þ a8

/8 ¼ a0 � a2 þ a5

/9 ¼ a0 þ a1 � a2 � a3 þ a4 þ a5 � a6 þ a7 þ a8

8>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>:

(31)

Fig. 4 Isoparametric elements

Fig. 3 Evaluation points used in the conventional and the new
constant panel method
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Through rearrangement, Eq. (30) is written as follows:

/¼/5þ
1

2
/6�/4ð Þn�1

2
/5�/7ð Þg

þ 1

4
/7�/9þ/3�/4ð Þng

þ 1

2
/6þ/4ð Þ�/5

� 

n2þ 1

2
/8þ/2ð Þ�/5

� 

g2

þ �1

4
/7þ/9�/3�/1ð Þþ 1

2
/8�/2ð Þ

� 

n2g

þ �1

4
/7�/9�/3þ/1ð Þ� 1

2
/6�/4ð Þ

� 

ng2

þ 1

4
/7þ/9þ/3þ/1ð Þ� 1

2
/8þ/6þ/2þ/4ð Þþ/5

� 

n2g2

�
X9

k¼1

Nk n;gð Þ/k (32)

where Nk denotes the isoparametric elements decomposed as
follows:

N1 ¼
1

4
n n� 1ð Þg gþ 1ð Þ

N2 ¼
1

2
g gþ 1ð Þ 1� n2

� �

N3 ¼
1

4
n nþ 1ð Þg gþ 1ð Þ

N4 ¼
1

2
n n� 1ð Þ 1� g2

� �

N5 ¼ 1� n2
� �

1� g2
� �

N6 ¼
1

2
n nþ 1ð Þ 1� g2

� �

N7 ¼
1

4
n n� 1ð Þg g� 1ð Þ

N8 ¼
1

2
g g� 1ð Þ 1� n2

� �

N9 ¼
1

4
n nþ 1ð Þg g� 1ð Þ

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

(33)

Their derivative with respect to n as follows:

@N1

@n
¼ 1

4
2n� 1ð Þg gþ 1ð Þ

@N2

@n
¼ �g gþ 1ð Þn

@N3

@n
¼ 1

4
2nþ 1ð Þg gþ 1ð Þ

@N4

@n
¼ 1

2
2n� 1ð Þ 1� g2

� �

@N5

@n
¼ �2n 1� g2

� �

@N6

@n
¼ 1

2
2nþ 1ð Þ 1� g2

� �

@N7

@n
¼ 1

4
2n� 1ð Þg g� 1ð Þ

@N8

@n
¼ �g g� 1ð Þn

@N9

@n
¼ 1

4
2nþ 1ð Þg g� 1ð Þ

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

(34)

Similarly, their derivative with respect to g can be evaluated.
ðð@/=@xÞ; ð@/=@yÞ; ð@/=@zÞÞ can then be evaluated using the iso-
parametric elements and their derivatives as follows:

@/
@x
¼ 1

ja� bj nZ
@/
@n

@y

@g
� @/
@g

@y

@n

� �
� nY

@/
@n

@Z

@g
� @/
@g

@z

@n

� �� 


(35)

@/
@y
¼ 1

ja� bj nX
@/
@n

@z

@g
� @/
@g

@z

@n

� �
� nZ

@/
@n

@X

@g
� @/
@g

@x

@n

� �� 


(36)

@/
@z
¼ 1

ja� bj nY
@/
@n

@x

@g
� @/
@g

@x

@n

� �
� nX

@/
@n

@Y

@g
� @/
@g

@y

@n

� �� 


(37)

where

a ¼ @x

@n
;
@y

@n
;
@z

@n

� �
; b ¼ @x

@g
;
@y

@g
;
@z

@g

� �
(38)

Their derivatives with respect to n and g can be computed from
the isoparametric elements as follows:

f/; x; y; zg ¼
X9

k¼1

Nkðn; gÞf/k; xk; yk; zkg (39)

@/
@n

;
@x

@n
;
@y

@n
;
@z

@n

� 

¼
X9

k¼1

@Nk

@n
/k; xk; yk; zkf g (40)

@/
@g

;
@x

@g
;
@y

@g
;
@z

@g

� 

¼
X9

k¼1

@Nk

@g
/k; xk; yk; zkf g (41)

Thus, with the new constant panel method, accurate velocity
potential differential calculations can be obtained.

4 Results and Discussion

4.1 Calculation of Single Floating Body. For comparative
analysis, the results of a floating body of ellipsoid geometry are
analyzed. The ellipsoid parameterizations are as follows:

x ¼ a cos u

y ¼ b sin u cos#

z ¼ c sin u sin#ðz � 0Þ
(42)

where a, b, and c denote the half-length, the half-breadth, and the
draft of the ellipsoid. The parametric variables u and # vary from
0 to p. The shape of the ellipsoid is shown in Fig. 5. The length

Fig. 5 Calculation model of an ellipsoid body
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(L), breadth (B), and draft (D) of the ellipsoid are 1.0, 0.5, and
0.2, respectively. The number of discretized elements on the sur-
face of the ellipsoid is 30� 30¼ 900.

4.1.1 Decision of the Number of Elements. To ensure compu-
tational speed and accuracy, both the numerical method and the
number of elements must be considered. Generally, the greater the
number of elements, the greater the computational accuracy.
However, this also increases the computational load and thus the
computation time. Fortunately, as the number of elements and
computational accuracy increase, it reaches a point where an addi-
tional number of elements does not change the result, hinting at a
convergence of results. Therefore, setting an appropriate number
of elements is a crucial step in performing high precision calcula-
tions at an appropriate speed.

To extract the appropriate of elements, the number of elements
NE varies from 6� 6 to 48� 48 in increments 6� 6, while the
results are stored for analysis

A ¼
ð ð

SH

/DdS (43)

Table 1 Convergence of the results with different mesh
numbers

NE k/L¼ 0.3 0.5 1.0

6� 6 357.70% �50.02% �0.50%
12� 12 10.55% �1.98% 0.00%
18� 18 2.62% �0.78% 0.01%
24� 24 1.22% �0.27% 0.01%
30� 30 0.62% �0.19% 0.01%
36� 36 0.30% �0.09% 0.00%
42� 42 0.12% �0.04% 0.00%
48� 48 0.00% 0.00% 0.00%

Fig. 6 Wave exciting forces and moments of single body (b 5 0 deg)

Fig. 7 Wave exciting forces and moments of single body (b 5 30 deg)
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To compare, the results are compared to those which were
obtained with the NE¼ 48� 48 mesh. This convergence of
varying k/L values is tabulated in Table 1. For all k/L, the results
converged within 1% error for a mesh size greater than or equal to
30� 30.

For the single floating body, fluid forces are gathered using the
new constant panel method, HOBEM, and the conventional con-
stant panel method, and compared afterward.

4.1.2 Wave Exciting Forces and Moments. The velocity
potential is calculated using the three methods (new constant
panel method, HOBEM, and conventional constant panel
method). The wave exciting forces and moments (surge, i¼ 1;
sway, i¼ 2; heave, i¼ 3; roll, i¼ 4; pitch, i¼ 5; yaw, i¼ 6) were
calculated as follows:

Fi ¼ �
ð ð

SH

pðx; y; zÞnidS ¼ qgfw

ð ð
SH

/Dðx; y; zÞnidS (44)

The nondimensional exciting forces and moments can be calcu-
lated as follows:

CFi ¼
Fi

qgfwAw
i ¼ 1 � 3ð Þ

CFi ¼
Fi

qgfwAwL
i ¼ 4 � 6ð Þ

(45)

where fw denotes the wave height, Aw denotes the water area.
The wave exciting forces and moments at both wave angles of

incidence, b¼ 0 deg and 30 deg, are shown in Figs. 6 and 7,
respectively. For all cases, the results obtained using the three
methods are equal. Therefore, conventional constant panel method
can be used to calculate wave exciting forces and moments,
though the velocity potential on the water line cannot be accu-
rately obtained. Furthermore, the new constant panel method also
accurately calculates the wave exciting forces and moments.

4.1.3 Wave Drift Forces and Moment. The velocity potential
is calculated using the three methods (new constant panel method,
HOBEM and conventional constant panel method). Figure 8
shows the results of the surge drift force (angle of incidence b¼ 0
deg). Figure 9 shows the results of the surge drift force, sway drift
force, and yaw drift moment (angle of incidence b¼ 30 deg).

The following four combinations of numerical methods are
recorded for comparative analysis:

(A) New constant panel methodþ near-field method
(B) Conventional constant panel methodþ near-field method
(C) Conventional constant panel methodþ far-field method
(D) HOBEMþ far-field method

Method (A) is the method this paper proposes. Method (B) is
method (A) without utilization of the extrapolation function and
without the isoparametric elements. Method (C) and method (D)
are the conventional methods used to calculate wave drift forces.

Figures 8 and 9 show that the results obtained by the proposed
method, method (A), agree well with method (C) and method (D),
the conventional dependable simulation standards. Table 2 pro-
vides the percentage difference of the surge drift forces (b¼ 0
deg) obtained from the three methods compared to method (D);
Table 3, the sway drift forces (b¼ 30 deg); and Table 4, the yaw
drift moment (b¼ 30 deg).

Though method (B) sometimes produces acceptable results
(b¼ 0 deg surge drift force), it consistently produces results with
an error rate above 20%, even exceeding 60% (b¼ 30 deg yaw
drift moment). Method (A) often returns results with an error rate

Fig. 8 Wave drift force of single body (b 5 0 deg)

Fig. 9 Wave drift forces and moment of single body (b 5 30 deg)

Table 2 Percentage difference of the calculation accuracy by
(A)-method–(C)-method (b 5 0 deg surge)

k/L (A) (B) (C)

0.3 0.0% 6.9% 15.3%
0.7 �3.5% �3.3% 1.6%
1.1 �3.6% �3.3% 0.0%
1.5 �2.4% �0.5% 0.0%
1.9 �1.6% 4.5% 0.0%
2.3 �1.1% 6.7% 0.2%
2.7 �0.9% 6.9% 0.3%
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of less than 1%. Thus, this new numerical technique solves the
two aforementioned issues regarding the use of the conventional
constant panel method, allowing for the use of the near-field
method to accurately calculate wave drift forces and moment.

4.2 Calculation of Two Floating Bodies. The same ellipsoid
geometry is used for calculating hydrodynamic forces and
moments for two floating bodies. As shown in Fig. 10, the ellip-
soids are arranged in tandem along the Y-axis, where body-B
makes first contact with the wave followed by body-A. DX denotes
the distance between the cores of the ellipsoids. The fluid forces
of both floating bodies will be recorded and analyzed at as DX

varies from zero (single floating body) to 50 times the ellipsoid
major diameter.

4.2.1 Wave Exciting Forces and Moments. Figure 11 shows
the surge wave exciting force (left), heave wave exciting force
(center), and pitch wave exciting moment (right) for body-A;
Fig. 12 shows the same for body-B. The sway wave exciting
force, roll wave exciting moment, and yaw wave exciting moment
are omitted since the results were 0.

As shown in Fig. 11, all wave exciting forces and moment in
body-A for two floating bodies were found to be lower than those
of the single floating body. As the distance between the floating
bodies increases, the wave exciting forces and moment approach
the single body result. The reason for this phenomenon is
the shield effect, which suggests a reduction in hydrodynamic
interaction as the distance between the floating bodies increases.
Figure 12 shows that the wave exciting forces and moment experi-
enced by body-B vary from being larger and smaller than the sin-
gle body results. This phenomenon is caused by the reflected
wave effect of body-A.

4.2.2 Wave Drift Forces and Moment. Figures 13 and 14
show the surge wave drift forces for body-A and body-B for vary-
ing DX values. The sway drift force and yaw wave drift moment
are omitted since the results were 0.

Figure 13 shows a decrease of more than 50% in surge wave
drift forces in body-A when DX¼ 2.0 compared to the single body
results. As the distance between the floating bodies increases, the
hydrodynamic interaction decreases and approaches that of the
single body result. Figure 14 shows that surge wave drift force
of body-B remains unchanged for shorter wavelengths
(k/L¼ 0.3–1.0). For longer wavelengths (k/L¼ 2.0–3.0), the same
phenomenon occurs—as the distance increases, the surge drift
force approximates that of the single body results.

5 Conclusion

This paper proposes a numerical technique, the new constant
panel method, to address two issues in the usage of the conven-
tional constant panel method. The first issue is the evaluation of

Table 3 Percentage difference of the calculation accuracy by
(A)-method–(C)-method (b 5 30 deg sway)

k/L (A) (B) (C)

0.3 1.8% 0.0% 1.8%
0.7 0.2% �2.8% 1.9%
1.1 0.1% 11.1% 0.3%
1.5 0.0% 22.8% 0.1%
1.9 0.0% 31.7% 0.1%
2.3 0.0% 36.8% 0.2%
2.7 0.1% 39.8% 0.2%

Table 4 Percentage difference of the calculation accuracy by
(A)-method–(C)-method (b 5 30 deg yaw)

k/L (A) (B) (C)

0.3 �0.3% 61.8% 4.3%
0.7 0.6% 51.0% 1.6%
1.1 �0.1% 42.0% �0.3%
1.5 �0.3% 39.5% �0.9%
1.9 �0.3% 42.2% �1.0%
2.3 �0.3% 45.0% �0.9%
2.7 �0.3% 47.3% �0.8%

Fig. 10 Calculation model of two ellipsoid bodies in tandem

Fig. 11 Wave exciting forces and moments of body 5 A in different DX
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the velocity potential along the water line, and the other is evalu-
ating velocity potential differentials with high precision. The new
technique allows for usage of the near-field method to calculate
the wave drift forces and moment. Floating bodies of ellipsoid
geometry were used as examples to test and compare results of
the new method. Fluid forces obtained from the new method,
HOBEM, and the conventional constant panel method were com-
pared. The new constant panel method was applied to calculate
motions of the two floating bodies. Hydrodynamic interactions for
the two floating bodies arranged in tandem different lengths were
analyzed.

The following results were obtained for the single floating body
simulation:

	 The conventional constant panel method can be used to cal-
culate wave exciting forces and moments (first-order forces),
even though the velocity potential was not representative
of the water line. Furthermore, wave exciting forces and
moments can be obtained using the new constant panel
method.

	 In comparing drift wave forces and moment to the dependa-
ble standard HOBEM in combination with the far-field
method, the conventional constant panel method in combina-
tion with the near-field method produces large discrepancies
upward of a 60% difference, while the new constant panel
method in combination with the near-field method consis-
tently produces discrepancies of less than 1%.

The following results were obtained for the two floating bodies’
simulation:

	 The wave exciting forces and moment experienced by body-
A (down-wave body) approximate the results of the single
body when the distances between the bodies increase.

	 When the distance between the floating bodies is twice the
ellipsoid major diameter, surge wave drift forces in body-A
(down-wave body) decreases by 50% compared to the results
of the single body. As the distance between the floating
bodies increases, the hydrodynamic interactions decrease
and the wave drift forces approach results of the single body.
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