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APPENDIX 2

Expressions for some common vector differential quantities in -
orthogonal curvilinear co-ordinate systems

€1 &2, £3 1s a system of orthogonal curvilinear co-ordinates, and the unit
vectors a, b, ¢ are parallel to the co-ordinate lines and in the directions of
increase of m: & &4 vamns,\% The change in the voecos vector x corre-
w@o:m_sm toincréments in &, &,, and &, can then be written as

0x =h 08, a+hy08,b+hy 08¢,
a, b, c and the positive scale factors Ay, h,, kg are functions of the co-ordinates.
Hro fact that the three families of co-ordinate lines form an oZTomos&
system provides useful expressions for the derivatives of a, b, and ¢. We have
ox 0x
== =0,
& -
with two other similar relations, and since
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we see that EE TG ot T

is a vector normal to e. It follows that
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with four other similar relations. Then
oa _d(bxc) 1 ok 1 ohy
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with two other similar relations.
The vector gradient of a scalar function V is

a o b o c 0
gradV, or VV, HA\MMMM Nwmw NMMWMVH\

The gradient in a direction n is obtained from the operator n.V, which may
act on either a scalar or a vector. To find the components of n. VF, where

F=Fa+Fb+Fece,
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we must allow for the dependence of both F, F,, F; and the unit vectors
a, b, ¢ on position. It follows from the above relations that

m\ﬁ m\; mw mw %Nu
g, ﬁv hahs A Yo, ﬁvu
+b{ }+e{ }
where 3,. ny, ng are the components of n in the directions a, b, ¢.
The divergence and curl operators act only on a vector, and

. adF b oF c oF
divF, Oad.m_. “n s lwﬂ o T
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By making use of the expressions mon mmn?maﬁm ofa, b m:a ¢, we find
1 (AhahsF) , A y) | AheT)
hyhg wuﬁ 23" 2 0k, “*
this can'also be regarded as the result of applying the ‘divergence theorem’

to the small parallelepiped whose edges are displacements along co-ordinate
lines corresponding to the increments wmc 0¢,, 8&,. Likewise we find

a A%N o Fs) by @n o "m@ 1 F) mgwév

curlF, or VxF, =
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which-can also be regarded as following from the application of Stokes’s
theorem in turn to three orthogonal faces of the same parallelepiped.
The divergence of the gradient gives the Laplacian operator, which may
act on either a scalar or a vector.
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The components of V2F may be calculated by replacing ¥ in this formula by

F, = F,a+F,b +F, ¢, and using the expressions for derivatives of a, band c,
but the result is too complicated to be useful. It is usually more convenient,
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when finding the components of V2F in a particular co-ordinate system, to nFE n,F n,F neF,
use the ao:QQ dwmﬂdﬁd.mvlﬂxﬁdxmv :.dmuuwAb.dmulfmﬂlwltv UAS.Q@ Rk 4 - v
and the above expressions for grad, divand curl. . ) gﬁ mw
Consider now the components of the rate-of-strain tensor expressed in Lia A:.ﬂus+ r ot Qv
terms of velocity components and derivatives relative to the curvilinear 2 0 oF
system, The gradient, in the direction n, of the component of velocity u in V.F = .Hm Aty + - ey + i 3
the fixed direction m is = KRR el g
n.V(m.u), =m.(n.Vu). UxF o8 (MFsinG) o) b( 1 OF_HFy)| c(o(F)_oF
: ’ XY= rsind o0 o¢ t7 \sing op  or +w or o0
Diagonal elements of the rate-of-strain tensor represent rates of extension,
obtained by putting m = n, and the non-diagonal elements involve velocity eyl 7. 2 4 H\v o] 9 «inf J ! &V
gradients for which m and n are orthogonal. We see then, from the above or\ o) r2sin6 90 6] * r¥sin?6 og?’
formula for n. VF, that the components of the rate-of-strain tensor relative . oF
to Cartesian axes locally parallel to a, b and ¢ (to which the suffixes 1, 2, 3 VEF = "ﬂw _2E_ E Bfpsind] - l&
. r® r%sinfd 40 r?sind o¢
refer, respectively) are
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Rate-of-strain tensor:

oF, F, 2cos8 OF,
=a.(a.V pgp g 2 e S§ . ZCOSU g
ey =2a.(a.Vu) = +b ﬂq 5 72 06 1%sin?@ 1%sin%f 99 V
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with four other expressions obtained by cyclic interchange of suffixes. The

components of the stress tensor o; can be obtained from those of rate of & o, o e Ouy L 1 duy o 42 e, Yy cotd
strain, using the relation (for an incompressible fluid) "= €Ty Ty 97 rsind 29 p "
Ty = =P Oy+2pey _sinf 8 ( uy 1 Oy 1 ou, r0 :a

The components of all terms in the equation of motion of a fluid in the , =57 26\sind) T 2 sind 0p’ U " 2rsin0ag zor\r
directions a, b, ¢ may now be found by simple substitution in the appro-

. ; ; r o 1 ou,
priate expressions above. The components of the term u. Vu in the accelera- e = nm. s
tion are obtained from the expression for n.VF. Ak "

Applications to some particular co-ordinate systems are as follows. Equation of motion for an incompressible fluid, with no vo% force:
Spherical polar co-ordinates w$+ u.Vu lm.m = :fw . wm

* T
To the co-ordinates §;, = 7, £, = 6, §, = ¢ (where ¢ is the azimuthal angle o r.r por
about the axis @ = o) there correspond the scale factors ... 2 & ugsin0) 2 Ouy
% g VT T A 60 " 7%sin6 8¢
1 =1, hy=7r, hg=rsinb.
da da - du, u,uy ujcotd 1 9
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Cylindrical co-ordinges

To the co-ordinates £, = &, £, = 0, £3 = ¢ (where ¢ is the azimuthal
angle about the axis o = o) there correspond the scale factors

hi=1, hy=1, hy=o0.

oa ob dc
Then mwwuo, mmuo, M@ﬂl?
and a, b, ¢ are independent of x and o
v oV ¢ oV

VV = N.&-TUMM M.lm.mv

F, F
n.VF = uAa.dm.sV+cA=.< qi{v +c Ab.<ﬁ$+mﬁ.@wﬂmv.
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Rate-of-strain tensor:

p lnmb:'..a e .I.W:IIQ e .|M| gl.uw
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Equation of motion for an incompressible fluid, with no body force:
oy, _ 19 gy
mw.*.c.d:sl i mx+c< 1,
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Moy u Uy —2 =2 V2 g2 78
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du Uty 1 0p 2 u, u
bk ) 2% o o B, , gt EEE
P +u. Vi, + = o m%+cA< e+ 5 qmv.

Polar co-ordinates in two dimensions

The relevant formulae can be obtained from those for the above cylindrical
co-ordinates by suppressing all components and derivatives in the direction
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of the x-co-ordinate line, but are written out here in view of the frequency of
their use. The co-ordinates are

=7, £=06, and h =1, hy=r7,

a_ oty b b _

- 8-> %> w7
oV b v
V=t

n.VF = »Ab.dmlgv +WA=.S@+$BV.
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Equation of motion for an incompressible fluid, with no body force:
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