TEL502E - Homework 1

Due 25.02.2014

1. (a) Suppose that X is a non-negative random variable with a pdf $f_{X}(t)$ (that is, $f_{X}(t)=0$ for $\left.t<0\right)$. Show that, for any $n>0$ and $s>0$,

$$
P(\{X \geq s\}) \leq \frac{\mathbb{E}\left(X^{n}\right)}{s^{n}}
$$

(b) Using part (a), show that for an arbitrary random variable Y with $\mathbb{E}(Y)=\mu$,

$$
P(\{\mu-\epsilon \leq Y \leq \mu+\epsilon\}) \geq 1-\frac{\operatorname{var}(Y)}{\epsilon^{2}}
$$

(c) Suppose that X_{1}, X_{2}, \ldots is a sequence of iid random variables with $\mathbb{E}\left(X_{i}\right)=\mu, \operatorname{var}\left(X_{i}\right)=\sigma^{2}$. Also let,

$$
Z_{n}=\frac{1}{n} \sum_{i=1}^{n} X_{i}
$$

Compute $\mathbb{E}\left(Z_{n}\right)$ and $\operatorname{var}\left(Z_{n}\right)$.
(d) Show that

$$
\lim _{n \rightarrow \infty} P\left(\left\{\mu-\epsilon<Z_{n}<\mu+\epsilon\right\}\right)=1
$$

for any $\epsilon>0$.
2. (a) Show that if $\operatorname{var}(Y)=0$, then $P(\{Y=\mathbb{E}(Y)\})=1$.
(b) Show that if $\mathbb{E}\left(Y^{2}\right)=0$, then $P(\{Y=0\})=1$.
3. Suppose X is a discrete random variable, taking values on the set of integers \mathbb{Z}. Suppose we are testing whether X is distributed according to the probability mass function (PMF) $P_{0}(t)$ (this is the null hypothesis) or it's distributed according to the PMF $P_{1}(t)$ (this is the alternative hypothesis). We somehow form the acceptance region $C \subset \mathbb{Z}$ such that if a realization of X, say x falls in C, we accept the null hypothesis, and reject it otherwise. Also, let $p_{I}(C)$ and $p_{I I}(C)$ denote the probabilities of type-I and type-II errors of this test. Below, the parts (a) and (b) are independent of each other.
(a) Suppose we discover that for some $r \in(\mathbb{Z} \backslash C)$ and $a_{1}, a_{2}, \ldots a_{n} \in C$,
(i) $P_{0}(r)=\sum_{i=1}^{n} P_{0}\left(a_{i}\right)$, and
(ii) $\left(P_{0}(r) / P_{1}(r)\right)>\left(P_{0}\left(a_{i}\right) / P_{1}\left(a_{i}\right)\right)$ for $i=1,2, \ldots, n$.

Based on this observation, we decide to update the acceptance region and use $D=C \cup\{r\} \backslash\left\{a_{1}, \ldots, a_{n}\right\}$ as the acceptance region (i.e., we remove a_{i} 's and include r in the new acceptance region). Let $p_{I}(D)$ and $p_{I I}(D)$ denote the type-I and type-II error probabilities for this updated test. Show that $p_{I}(D) \leq p_{I}(C)$, and $p_{I I}(D)<p_{I I}(C)$.
(b) Suppose we find that for any $r \in\left(\mathbb{Z} \cap C^{c}\right)$, and $a \in C$, the inequality

$$
\begin{equation*}
\frac{P_{0}(r)}{P_{1}(r)}<\frac{P_{0}(a)}{P_{1}(a)} \tag{1}
\end{equation*}
$$

is satisfied. Consider now another test than the one described above with an acceptance region given as D, whose type-I and type-II error probabilities are given as $p_{I}(D)$ and $p_{I I}(D)$ respectively. Show that if $p_{I}(D) \leq p_{I}(C)$, then $p_{I}(D)>p_{I I}(D)$.

