
TEL502E – Homework 1

Due 25.02.2014

1. (a) Suppose that X is a non-negative random variable with a pdf fX(t) (that is, fX(t) = 0 for t < 0).
Show that, for any n > 0 and s > 0,

P
(
{X ≥ s}

)
≤ E(Xn)

sn
.

(b) Using part (a), show that for an arbitrary random variable Y with E(Y ) = µ,

P
(
{µ− ε ≤ Y ≤ µ+ ε}

)
≥ 1− var(Y )

ε2
.

(c) Suppose that X1, X2, . . . is a sequence of iid random variables with E(Xi) = µ, var(Xi) = σ2. Also
let,

Zn =
1

n

n∑
i=1

Xi.

Compute E(Zn) and var(Zn).

(d) Show that

lim
n→∞

P
(
{µ− ε < Zn < µ+ ε}

)
= 1,

for any ε > 0.

Solution. (a) Keeping in mind that s > 0, we have,

P
(
{X ≥ s}

)
=

∫ ∞

s

fX(t) dt

≤
∫ s

0

tn

s
fX(t) dt+

∫ ∞

s

fX(t) dt

≤
∫ s

0

tn

s
fX(t) dt+

∫ ∞

s

tn

sn
fX(t) dt

=
E(Xn)

sn
.

This inequality is known as Markov’s inequality.

(b) Using Y suppose we define a new random variable as Z = |Y − µ|. Then, using Markov’s inequality
with n = 2, we have,

P
(
{Z ≥ ε}

)
≤ E(Z2)

ε2
=

var(Y )

ε2
.

Observe now that

P
(
{Z ≥ ε}

)
+ P

(
{Z < ε}

)
= 1,

since the two events partition the sample space. This implies,

P
(
{Z < ε}

)
≥ 1− var(Y )

ε2

But now observe that

{Z < ε} = {|Y − µ| < ε} = {−ε < Y − µ < ε} = {µ− ε ≤ Y ≤ µ+ ε}.

Thus the claim follows. This inequality (or an equivalent version) is known as Chebyshev’s inequality.

(c) First,

Zn =
1

n

n∑
i=1

E(Xi) = µ.

Now, note when the random variables are independent, we can add their variances. Thus,

var(Zn) =

n∑
i=1

var
(
Xi/n

)
=

n∑
i=1

σ2

n2
=
σ2

n
.



(d) Since E(Zn) = µ, we can use the result of part (b). That gives,

P
(
{µ− ε < Zn < µ+ ε}

)
≥ 1− σ2

ε2 n
.

Letting n→∞, the right hand side converges to 1 and the claim follows.

2. (a) Show that if var(Y ) = 0, then P
(
{Y = E(Y )}

)
= 1.

(b) Show that if E(Y 2) = 0, then P
(
{Y = 0}

)
= 1.

Solution. (a) Let A be the event of interest defined as,

A = {Y = E(Y )}.

Instead of P (A), we will compute the P (Ac). Now observe that,

Ac = {|Y − E(Y )| > 0} = ∪∞n=1 {|Y − E(Y )| > 1/n}︸ ︷︷ ︸
Bn

.

But by part (b) of Question-1, we have that P (Bn) = 0. Therefore,

P (Ac) ≤
∞∑

n=1

P (Bn) = 0.

Since P (Ac) ≥ 0 by definition, it follows that P (Ac) = 0. Thus, P (A) = 1− P (Ac) = 1.

(b) Since var(Y ) = E(Y 2)−
(
E(Y )

)2 ≥ 0, the condition ‘E(Y 2) = 0’ implies that E(Y ) = 0. The desired
equality follows therefore follows from part (a).

3. Suppose X is a discrete random variable, taking values on the set of integers Z. Suppose we are testing
whether X is distributed according to the probability mass function (PMF) P0(t) (this is the null hypoth-
esis) or it’s distributed according to the PMF P1(t) (this is the alternative hypothesis). We somehow form
the acceptance region C ⊂ Z such that if a realization of X, say x falls in C, we accept the null hypothesis,
and reject it otherwise. Also, let pI(C) and pII(C) denote the probabilities of type-I and type-II errors of
this test. Below, the parts (a) and (b) are independent of each other.

(a) Suppose we discover that for some r ∈ (Z\C) and a1, a2, . . . an ∈ C,

(i) P0(r) =
∑n

i=1 P0(ai), and

(ii)
(
P0(r)

/
P1(r)

)
>
(
P0(ai)

/
P1(ai)

)
for i = 1, 2, . . . , n.

Based on this observation, we decide to update the acceptance region and use D = C∪{r}\{a1, . . . , an}
as the acceptance region (i.e., we remove ai’s and include r in the new acceptance region). Let
pI(D) and pII(D) denote the type-I and type-II error probabilities for this updated test. Show that
pI(D) ≤ pI(C), and pII(D) < pII(C).

(b) Suppose we find that for any r ∈ (Z ∩ Cc), and a ∈ C, the inequality

P0(r)

P1(r)
<
P0(a)

P1(a)
(1)

is satisfied. Consider now another test than the one described above with an acceptance region given
as D, whose type-I and type-II error probabilities are given as pI(D) and pII(D) respectively. Show
that if pI(D) ≤ pI(C), then pI(D) > pII(D).

Solution. Notice that, in this setting, for an acceptance region denoted as C, the type-I and type-II error
probabilities are given by

pI(C) =
∑

x∈Z∩Cc

P0(x), pII(C) =
∑
x∈C

P1(x).

(a) First, observe that, by condition (i), we have,

pI(D)− pI(C) =
∑

z∈Z∩Dc

P0(z)−
∑

z∈Z∩Cc

P0(z) =

n∑
i=1

P0(ai)− P0(r) = 0.
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Rewriting (ii) as,

P1(ai)

P1(r)
>
P0(ai)

P0(r)
, for i = 1, 2, . . . , n,

and summing over i, we obtain,∑n
i=1 P1(ai)

P1(r)
>

∑n
i=1 P0(ai)

P0(r)
= 1,

where we made use of (i) again. Now observe that,

pII(D)− pII(C) =
∑
z∈D

P1(z)−
∑
z∈C

P1(z) = P1(r)−
n∑

i=1

P1(ai) < 0.

(b) Suppose pI(D) ≤ pI(c). This implies,

pI(D)− pI(C) =
∑

x∈Z∩Dc

P0(x)−
∑

x∈Z∩Cc

P0(x) =
∑

x∈Dc∩C

P0(x)−
∑

x∈Cc∩D

P0(x) ≤ 0,

or ∑
x∈Cc∩D P0(x)∑
x∈Dc∩C P0(x)

≥ 1. (2)

Now observe similarly that

pII(D)− pII(C) =
∑
x∈D

P1(x)−
∑
x∈C

P1(x) =
∑

x∈D∩Cc

P1(x)−
∑

x∈C∩Dc

P1(x).

Thus, if we can show that∑
x∈D∩Cc P1(x)∑
x∈C∩Dc P1(x)

> 1, (3)

we are done.

For this, we first rewrite (1) in a different form. Note that if x ∈ Cc and c ∈ C, then

P1(c)P0(x) < P0(c)P1(x).

Fixing c ∈ C, we obtain,

P1(c)

( ∑
x∈D∩Cc

P0(x)

)
< P0(c)

( ∑
x∈D∩Cc

P1(x)

)
.

Now taking the terms inside the parentheses as fixed, we can write,( ∑
c∈Dc∩C

P1(c)

) ( ∑
x∈D∩Cc

P0(x)

)
<

( ∑
c∈Dc∩C

P0(c)

) ( ∑
x∈D∩Cc

P1(x)

)
.

Rewriting and using (2), we obtain (3) :∑
x∈D∩Cc P1(x)∑
x∈Dc∩C P1(x)

>

∑
x∈D∩Cc P0(x)∑
x∈Dc∩C P0(x)

≥ 1.

Notice that throughout, I assumed that Pi(x) is non-zero as long as x ∈ Z. I leave it to you to consider
how to modify the argument if Pi(x) = 0 from some x.
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