TEL502E - Homework 1

Due 25.02.2014

1. (a) Suppose that X is a non-negative random variable with a pdf $f_{X}(t)$ (that is, $f_{X}(t)=0$ for $t<0$). Show that, for any $n>0$ and $s>0$,

$$
P(\{X \geq s\}) \leq \frac{\mathbb{E}\left(X^{n}\right)}{s^{n}}
$$

(b) Using part (a), show that for an arbitrary random variable Y with $\mathbb{E}(Y)=\mu$,

$$
P(\{\mu-\epsilon \leq Y \leq \mu+\epsilon\}) \geq 1-\frac{\operatorname{var}(Y)}{\epsilon^{2}}
$$

(c) Suppose that X_{1}, X_{2}, \ldots is a sequence of iid random variables with $\mathbb{E}\left(X_{i}\right)=\mu, \operatorname{var}\left(X_{i}\right)=\sigma^{2}$. Also let,

$$
Z_{n}=\frac{1}{n} \sum_{i=1}^{n} X_{i}
$$

Compute $\mathbb{E}\left(Z_{n}\right)$ and $\operatorname{var}\left(Z_{n}\right)$.
(d) Show that

$$
\lim _{n \rightarrow \infty} P\left(\left\{\mu-\epsilon<Z_{n}<\mu+\epsilon\right\}\right)=1
$$

for any $\epsilon>0$.
Solution. (a) Keeping in mind that $s>0$, we have,

$$
\begin{aligned}
P(\{X \geq s\}) & =\int_{s}^{\infty} f_{X}(t) d t \\
& \leq \int_{0}^{s} \frac{t^{n}}{s} f_{X}(t) d t+\int_{s}^{\infty} f_{X}(t) d t \\
& \leq \int_{0}^{s} \frac{t^{n}}{s} f_{X}(t) d t+\int_{s}^{\infty} \frac{t^{n}}{s^{n}} f_{X}(t) d t \\
& =\frac{\mathbb{E}\left(X^{n}\right)}{s^{n}}
\end{aligned}
$$

This inequality is known as Markov's inequality.
(b) Using Y suppose we define a new random variable as $Z=|Y-\mu|$. Then, using Markov's inequality with $n=2$, we have,

$$
P(\{Z \geq \epsilon\}) \leq \frac{\mathbb{E}\left(Z^{2}\right)}{\epsilon^{2}}=\frac{\operatorname{var}(Y)}{\epsilon^{2}}
$$

Observe now that

$$
P(\{Z \geq \epsilon\})+P(\{Z<\epsilon\})=1
$$

since the two events partition the sample space. This implies,

$$
P(\{Z<\epsilon\}) \geq 1-\frac{\operatorname{var}(Y)}{\epsilon^{2}}
$$

But now observe that

$$
\{Z<\epsilon\}=\{|Y-\mu|<\epsilon\}=\{-\epsilon<Y-\mu<\epsilon\}=\{\mu-\epsilon \leq Y \leq \mu+\epsilon\}
$$

Thus the claim follows. This inequality (or an equivalent version) is known as Chebyshev's inequality.
(c) First,

$$
\mathbb{Z}_{n}=\frac{1}{n} \sum_{i=1}^{n} \mathbb{E}\left(X_{i}\right)=\mu
$$

Now, note when the random variables are independent, we can add their variances. Thus,

$$
\operatorname{var}\left(Z_{n}\right)=\sum_{i=1}^{n} \operatorname{var}\left(X_{i} / n\right)=\sum_{i=1}^{n} \frac{\sigma^{2}}{n^{2}}=\frac{\sigma^{2}}{n}
$$

(d) Since $\mathbb{E}\left(Z_{n}\right)=\mu$, we can use the result of part (b). That gives,

$$
P\left(\left\{\mu-\epsilon<Z_{n}<\mu+\epsilon\right\}\right) \geq 1-\frac{\sigma^{2}}{\epsilon^{2} n}
$$

Letting $n \rightarrow \infty$, the right hand side converges to 1 and the claim follows.
2. (a) Show that if $\operatorname{var}(Y)=0$, then $P(\{Y=\mathbb{E}(Y)\})=1$.
(b) Show that if $\mathbb{E}\left(Y^{2}\right)=0$, then $P(\{Y=0\})=1$.

Solution. (a) Let A be the event of interest defined as,

$$
A=\{Y=\mathbb{E}(Y)\}
$$

Instead of $P(A)$, we will compute the $P\left(A^{c}\right)$. Now observe that,

$$
A^{c}=\{|Y-\mathbb{E}(Y)|>0\}=\cup_{n=1}^{\infty} \underbrace{\{|Y-\mathbb{E}(Y)|>1 / n\}}_{B_{n}} .
$$

But by part (b) of Question-1, we have that $P\left(B_{n}\right)=0$. Therefore,

$$
P\left(A^{c}\right) \leq \sum_{n=1}^{\infty} P\left(B_{n}\right)=0 .
$$

Since $P\left(A^{c}\right) \geq 0$ by definition, it follows that $P\left(A^{c}\right)=0$. Thus, $P(A)=1-P\left(A^{c}\right)=1$.
(b) Since $\operatorname{var}(Y)=\mathbb{E}\left(Y^{2}\right)-(\mathbb{E}(Y))^{2} \geq 0$, the condition ' $\mathbb{E}\left(Y^{2}\right)=0$ ' implies that $\mathbb{E}(Y)=0$. The desired equality follows therefore follows from part (a).
3. Suppose X is a discrete random variable, taking values on the set of integers \mathbb{Z}. Suppose we are testing whether X is distributed according to the probability mass function (PMF) $P_{0}(t)$ (this is the null hypothesis) or it's distributed according to the PMF $P_{1}(t)$ (this is the alternative hypothesis). We somehow form the acceptance region $C \subset \mathbb{Z}$ such that if a realization of X, say x falls in C, we accept the null hypothesis, and reject it otherwise. Also, let $p_{I}(C)$ and $p_{I I}(C)$ denote the probabilities of type-I and type-II errors of this test. Below, the parts (a) and (b) are independent of each other.
(a) Suppose we discover that for some $r \in(\mathbb{Z} \backslash C)$ and $a_{1}, a_{2}, \ldots a_{n} \in C$,
(i) $P_{0}(r)=\sum_{i=1}^{n} P_{0}\left(a_{i}\right)$, and
(ii) $\left(P_{0}(r) / P_{1}(r)\right)>\left(P_{0}\left(a_{i}\right) / P_{1}\left(a_{i}\right)\right)$ for $i=1,2, \ldots, n$.

Based on this observation, we decide to update the acceptance region and use $D=C \cup\{r\} \backslash\left\{a_{1}, \ldots, a_{n}\right\}$ as the acceptance region (i.e., we remove a_{i} 's and include r in the new acceptance region). Let $p_{I}(D)$ and $p_{I I}(D)$ denote the type-I and type-II error probabilities for this updated test. Show that $p_{I}(D) \leq p_{I}(C)$, and $p_{I I}(D)<p_{I I}(C)$.
(b) Suppose we find that for any $r \in\left(\mathbb{Z} \cap C^{c}\right)$, and $a \in C$, the inequality

$$
\begin{equation*}
\frac{P_{0}(r)}{P_{1}(r)}<\frac{P_{0}(a)}{P_{1}(a)} \tag{1}
\end{equation*}
$$

is satisfied. Consider now another test than the one described above with an acceptance region given as D, whose type-I and type-II error probabilities are given as $p_{I}(D)$ and $p_{I I}(D)$ respectively. Show that if $p_{I}(D) \leq p_{I}(C)$, then $p_{I}(D)>p_{I I}(D)$.
Solution. Notice that, in this setting, for an acceptance region denoted as C, the type-I and type-II error probabilities are given by

$$
p_{I}(C)=\sum_{x \in \mathbb{Z} \cap C^{c}} P_{0}(x), \quad p_{I I}(C)=\sum_{x \in C} P_{1}(x)
$$

(a) First, observe that, by condition (i), we have,

$$
p_{I}(D)-p_{I}(C)=\sum_{z \in \mathbb{Z} \cap D^{c}} P_{0}(z)-\sum_{z \in \mathbb{Z} \cap C^{c}} P_{0}(z)=\sum_{i=1}^{n} P_{0}\left(a_{i}\right)-P_{0}(r)=0
$$

Rewriting (ii) as,

$$
\frac{P_{1}\left(a_{i}\right)}{P_{1}(r)}>\frac{P_{0}\left(a_{i}\right)}{P_{0}(r)}, \text { for } i=1,2, \ldots, n
$$

and summing over i, we obtain,

$$
\frac{\sum_{i=1}^{n} P_{1}\left(a_{i}\right)}{P_{1}(r)}>\frac{\sum_{i=1}^{n} P_{0}\left(a_{i}\right)}{P_{0}(r)}=1,
$$

where we made use of (i) again. Now observe that,

$$
p_{I I}(D)-p_{I I}(C)=\sum_{z \in D} P_{1}(z)-\sum_{z \in C} P_{1}(z)=P_{1}(r)-\sum_{i=1}^{n} P_{1}\left(a_{i}\right)<0 .
$$

(b) Suppose $p_{I}(D) \leq p_{I}(c)$. This implies,

$$
p_{I}(D)-p_{I}(C)=\sum_{x \in \mathbb{Z} \cap D^{c}} P_{0}(x)-\sum_{x \in \mathbb{Z} \cap C^{c}} P_{0}(x)=\sum_{x \in D^{c} \cap C} P_{0}(x)-\sum_{x \in C^{c} \cap D} P_{0}(x) \leq 0,
$$

or

$$
\begin{equation*}
\frac{\sum_{x \in C^{c} \cap D} P_{0}(x)}{\sum_{x \in D^{c} \cap C} P_{0}(x)} \geq 1 . \tag{2}
\end{equation*}
$$

Now observe similarly that

$$
p_{I I}(D)-p_{I I}(C)=\sum_{x \in D} P_{1}(x)-\sum_{x \in C} P_{1}(x)=\sum_{x \in D \cap C^{c}} P_{1}(x)-\sum_{x \in C \cap D^{c}} P_{1}(x) .
$$

Thus, if we can show that

$$
\begin{equation*}
\frac{\sum_{x \in D \cap C^{c}} P_{1}(x)}{\sum_{x \in C \cap D^{c}} P_{1}(x)}>1, \tag{3}
\end{equation*}
$$

we are done.
For this, we first rewrite (1) in a different form. Note that if $x \in C^{c}$ and $c \in C$, then

$$
P_{1}(c) P_{0}(x)<P_{0}(c) P_{1}(x) .
$$

Fixing $c \in C$, we obtain,

$$
P_{1}(c)\left(\sum_{x \in D \cap C^{c}} P_{0}(x)\right)<P_{0}(c)\left(\sum_{x \in D \cap C^{c}} P_{1}(x)\right) .
$$

Now taking the terms inside the parentheses as fixed, we can write,

$$
\left(\sum_{c \in D^{c} \cap C} P_{1}(c)\right)\left(\sum_{x \in D \cap C^{c}} P_{0}(x)\right)<\left(\sum_{c \in D^{c} \cap C} P_{0}(c)\right)\left(\sum_{x \in D \cap C^{c}} P_{1}(x)\right) .
$$

Rewriting and using (2), we obtain (3) :

$$
\frac{\sum_{x \in D \cap C^{c}} P_{1}(x)}{\sum_{x \in D^{c} \cap C} P_{1}(x)}>\frac{\sum_{x \in D \cap C^{c}} P_{0}(x)}{\sum_{x \in D^{c} \cap C} P_{0}(x)} \geq 1 .
$$

Notice that throughout, I assumed that $P_{i}(x)$ is non-zero as long as $x \in \mathbb{Z}$. I leave it to you to consider how to modify the argument if $P_{i}(x)=0$ from some x.

