TEL502E – Homework 1

Due 25.02.2014

1. (a) Suppose that X is a non-negative random variable with a pdf $f_X(t)$ (that is, $f_X(t) = 0$ for t < 0). Show that, for any n > 0 and s > 0,

$$P({X \ge s}) \le \frac{\mathbb{E}(X^n)}{s^n}.$$

(b) Using part (a), show that for an arbitrary random variable Y with $\mathbb{E}(Y) = \mu$,

$$P(\{\mu - \epsilon \le Y \le \mu + \epsilon\}) \ge 1 - \frac{\operatorname{var}(Y)}{\epsilon^2}.$$

(c) Suppose that X_1, X_2, \ldots is a sequence of iid random variables with $\mathbb{E}(X_i) = \mu$, $\operatorname{var}(X_i) = \sigma^2$. Also let,

$$Z_n = \frac{1}{n} \sum_{i=1}^n X_i.$$

Compute $\mathbb{E}(Z_n)$ and $\operatorname{var}(Z_n)$.

(d) Show that

$$\lim_{n \to \infty} P(\{\mu - \epsilon < Z_n < \mu + \epsilon\}) = 1,$$

for any $\epsilon > 0$.

Solution. (a) Keeping in mind that s > 0, we have,

$$P({X \ge s}) = \int_{s}^{\infty} f_{X}(t) dt$$
$$\leq \int_{0}^{s} \frac{t^{n}}{s} f_{X}(t) dt + \int_{s}^{\infty} f_{X}(t) dt$$
$$\leq \int_{0}^{s} \frac{t^{n}}{s} f_{X}(t) dt + \int_{s}^{\infty} \frac{t^{n}}{s^{n}} f_{X}(t) dt$$
$$= \frac{\mathbb{E}(X^{n})}{s^{n}}.$$

This inequality is known as Markov's inequality.

(b) Using Y suppose we define a new random variable as $Z = |Y - \mu|$. Then, using Markov's inequality with n = 2, we have,

$$P(\{Z \ge \epsilon\}) \le \frac{\mathbb{E}(Z^2)}{\epsilon^2} = \frac{\operatorname{var}(Y)}{\epsilon^2}.$$

Observe now that

$$P(\{Z \ge \epsilon\}) + P(\{Z < \epsilon\}) = 1$$

since the two events partition the sample space. This implies,

$$P(\{Z < \epsilon\}) \ge 1 - \frac{\operatorname{var}(Y)}{\epsilon^2}$$

But now observe that

$$\{Z < \epsilon\} = \{|Y - \mu| < \epsilon\} = \{-\epsilon < Y - \mu < \epsilon\} = \{\mu - \epsilon \le Y \le \mu + \epsilon\}$$

Thus the claim follows. This inequality (or an equivalent version) is known as Chebyshev's inequality. (c) First,

$$\mathbb{Z}_n = \frac{1}{n} \sum_{i=1}^n \mathbb{E}(X_i) = \mu.$$

Now, note when the random variables are independent, we can add their variances. Thus,

$$\operatorname{var}(Z_n) = \sum_{i=1}^n \operatorname{var}(X_i/n) = \sum_{i=1}^n \frac{\sigma^2}{n^2} = \frac{\sigma^2}{n}.$$

(d) Since $\mathbb{E}(Z_n) = \mu$, we can use the result of part (b). That gives,

$$P(\{\mu - \epsilon < Z_n < \mu + \epsilon\}) \ge 1 - \frac{\sigma^2}{\epsilon^2 n}.$$

Letting $n \to \infty$, the right hand side converges to 1 and the claim follows.

- 2. (a) Show that if $\operatorname{var}(Y) = 0$, then $P(\{Y = \mathbb{E}(Y)\}) = 1$.
 - (b) Show that if $\mathbb{E}(Y^2) = 0$, then $P(\{Y = 0\}) = 1$.

Solution. (a) Let A be the event of interest defined as,

$$A = \{Y = \mathbb{E}(Y)\}.$$

Instead of P(A), we will compute the $P(A^c)$. Now observe that,

$$A^{c} = \{ |Y - \mathbb{E}(Y)| > 0 \} = \bigcup_{n=1}^{\infty} \underbrace{\{ |Y - \mathbb{E}(Y)| > 1/n \}}_{B_{n}}.$$

But by part (b) of Question-1, we have that $P(B_n) = 0$. Therefore,

$$P(A^c) \le \sum_{n=1}^{\infty} P(B_n) = 0$$

Since $P(A^c) \ge 0$ by definition, it follows that $P(A^c) = 0$. Thus, $P(A) = 1 - P(A^c) = 1$.

- (b) Since $\operatorname{var}(Y) = \mathbb{E}(Y^2) (\mathbb{E}(Y))^2 \ge 0$, the condition $\mathbb{E}(Y^2) = 0$ implies that $\mathbb{E}(Y) = 0$. The desired equality follows therefore follows from part (a).
- 3. Suppose X is a discrete random variable, taking values on the set of integers \mathbb{Z} . Suppose we are testing whether X is distributed according to the probability mass function (PMF) $P_0(t)$ (this is the null hypothesis) or it's distributed according to the PMF $P_1(t)$ (this is the alternative hypothesis). We somehow form the acceptance region $C \subset \mathbb{Z}$ such that if a realization of X, say x falls in C, we accept the null hypothesis, and reject it otherwise. Also, let $p_I(C)$ and $p_{II}(C)$ denote the probabilities of type-I and type-II errors of this test. Below, the parts (a) and (b) are independent of each other.
 - (a) Suppose we discover that for some $r \in (\mathbb{Z} \setminus C)$ and $a_1, a_2, \ldots a_n \in C$,

 - (i) $P_0(r) = \sum_{i=1}^n P_0(a_i)$, and (ii) $(P_0(r)/P_1(r)) > (P_0(a_i)/P_1(a_i))$ for i = 1, 2, ..., n.

Based on this observation, we decide to update the acceptance region and use $D = C \cup \{r\} \setminus \{a_1, \ldots, a_n\}$ as the acceptance region (i.e., we remove a_i 's and include r in the new acceptance region). Let $p_I(D)$ and $p_{II}(D)$ denote the type-I and type-II error probabilities for this updated test. Show that $p_I(D) \leq p_I(C)$, and $p_{II}(D) < p_{II}(C)$.

(b) Suppose we find that for any $r \in (\mathbb{Z} \cap C^c)$, and $a \in C$, the inequality

$$\frac{P_0(r)}{P_1(r)} < \frac{P_0(a)}{P_1(a)} \tag{1}$$

is satisfied. Consider now another test than the one described above with an acceptance region given as D, whose type-I and type-II error probabilities are given as $p_I(D)$ and $p_{II}(D)$ respectively. Show that if $p_I(D) \leq p_I(C)$, then $p_I(D) > p_{II}(D)$.

Solution. Notice that, in this setting, for an acceptance region denoted as C, the type-I and type-II error probabilities are given by

$$p_I(C) = \sum_{x \in \mathbb{Z} \cap C^c} P_0(x), \quad p_{II}(C) = \sum_{x \in C} P_1(x).$$

(a) First, observe that, by condition (i), we have,

$$p_I(D) - p_I(C) = \sum_{z \in \mathbb{Z} \cap D^c} P_0(z) - \sum_{z \in \mathbb{Z} \cap C^c} P_0(z) = \sum_{i=1}^n P_0(a_i) - P_0(r) = 0.$$

Rewriting (ii) as,

$$\frac{P_1(a_i)}{P_1(r)} > \frac{P_0(a_i)}{P_0(r)}, \text{ for } i = 1, 2, \dots, n,$$

and summing over i, we obtain,

$$\frac{\sum_{i=1}^{n} P_1(a_i)}{P_1(r)} > \frac{\sum_{i=1}^{n} P_0(a_i)}{P_0(r)} = 1,$$

where we made use of (i) again. Now observe that,

$$p_{II}(D) - p_{II}(C) = \sum_{z \in D} P_1(z) - \sum_{z \in C} P_1(z) = P_1(r) - \sum_{i=1}^n P_1(a_i) < 0.$$

(b) Suppose $p_I(D) \leq p_I(c)$. This implies,

$$p_I(D) - p_I(C) = \sum_{x \in \mathbb{Z} \cap D^c} P_0(x) - \sum_{x \in \mathbb{Z} \cap C^c} P_0(x) = \sum_{x \in D^c \cap C} P_0(x) - \sum_{x \in C^c \cap D} P_0(x) \le 0,$$

or

$$\frac{\sum_{x \in C^c \cap D} P_0(x)}{\sum_{x \in D^c \cap C} P_0(x)} \ge 1.$$
(2)

Now observe similarly that

$$p_{II}(D) - p_{II}(C) = \sum_{x \in D} P_1(x) - \sum_{x \in C} P_1(x) = \sum_{x \in D \cap C^c} P_1(x) - \sum_{x \in C \cap D^c} P_1(x).$$

Thus, if we can show that

$$\frac{\sum_{x \in D \cap C^c} P_1(x)}{\sum_{x \in C \cap D^c} P_1(x)} > 1,$$
(3)

we are done.

For this, we first rewrite (1) in a different form. Note that if $x \in C^c$ and $c \in C$, then

$$P_1(c) P_0(x) < P_0(c) P_1(x)$$

Fixing $c \in C$, we obtain,

$$P_1(c) \left(\sum_{x \in D \cap C^c} P_0(x)\right) < P_0(c) \left(\sum_{x \in D \cap C^c} P_1(x)\right).$$

Now taking the terms inside the parentheses as fixed, we can write,

$$\left(\sum_{c\in D^c\cap C} P_1(c)\right) \left(\sum_{x\in D\cap C^c} P_0(x)\right) < \left(\sum_{c\in D^c\cap C} P_0(c)\right) \left(\sum_{x\in D\cap C^c} P_1(x)\right).$$

Rewriting and using (2), we obtain (3):

$$\frac{\sum_{x \in D \cap C^c} P_1(x)}{\sum_{x \in D^c \cap C} P_1(x)} > \frac{\sum_{x \in D \cap C^c} P_0(x)}{\sum_{x \in D^c \cap C} P_0(x)} \ge 1.$$

Notice that throughout, I assumed that $P_i(x)$ is non-zero as long as $x \in \mathbb{Z}$. I leave it to you to consider how to modify the argument if $P_i(x) = 0$ from some x.