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TELH02E — Homework 1

Due 25.02.2014

Suppose that X is a non-negative random variable with a pdf fx(¢) (that is, fx(¢t) = 0 for ¢ < 0).
Show that, for any n > 0 and s > 0,

P{X >s}) < EXT).

STL
Using part (a), show that for an arbitrary random variable Y with E(Y') = u,

var(Y)
e

PAu—e<Y <p+ep)>1-

Suppose that X, Xs,... is a sequence of iid random variables with E(X;) = pu, var(X;) = o2. Also
let,

1 n
:ﬁ;)@.

Compute E(Z,,) and var(Z,).
Show that

lim P({p—e<Z, <p+e}) =1,

n—oo

for any € > 0.

Solution. (a) Keeping in mind that s > 0, we have,

P({X > 5)) = /Oo Fx(t)dt

/*fx dt+/ fx(t)
< [Snwas [T Lo

_E(X")

STL

This inequality is known as Markov’s inequality.

Using Y suppose we define a new random variable as Z = |Y — p|. Then, using Markov’s inequality
with n = 2, we have,

P({ZZG})S 2 2
Observe now that

P{Z=z )+ P({Z<el) =1,
since the two events partition the sample space. This implies,

var(Y)
2

P({Z<e})>1-
But now observe that
{Z<e}={lY —p|<e}={-e<Y —pu<et={p—e<Y <pu+e}

Thus the claim follows. This inequality (or an equivalent version) is known as Chebyshev’s inequality.
First,

Now, note when the random variables are independent, we can add their variances. Thus,

o2 o2
var( E var(X;/n) :E =
n

= 1



(d) Since E(Z,) = p, we can use the result of part (b). That gives,

o2

P{p—€e<Zp<p+e})>1———

en
Letting n — oo, the right hand side converges to 1 and the claim follows.
. (a) Show that if var(Y) =0, then P({Y =E(Y)}) = 1.
(b) Show that if E(Y?) =0, then P({Y =0}) = 1.
Solution. (a) Let A be the event of interest defined as,
A={Y =E(®)}.
Instead of P(A), we will compute the P(A¢). Now observe that,

A= {]Y —E(Y)| > 0} = U2, {|Y — E(Y)| > 1/n}.

Bn

But by part (b) of Question-1, we have that P(B,,) = 0. Therefore,
P(A%) <> P(By) =0.
n=1

Since P(A°) > 0 by definition, it follows that P(A¢) = 0. Thus, P(A) =1 — P(A°) = 1.

(b) Since var(Y) = E(Y?) — (IEZ(Y))2 > 0, the condition ‘E(Y?2) = 0’ implies that E(Y) = 0. The desired
equality follows therefore follows from part (a).

. Suppose X is a discrete random variable, taking values on the set of integers Z. Suppose we are testing
whether X is distributed according to the probability mass function (PMF) Py(t) (this is the null hypoth-
esis) or it’s distributed according to the PMF P (t) (this is the alternative hypothesis). We somehow form
the acceptance region C' C Z such that if a realization of X, say « falls in C, we accept the null hypothesis,
and reject it otherwise. Also, let pr(C) and pr;(C) denote the probabilities of type-I and type-II errors of
this test. Below, the parts (a) and (b) are independent of each other.

(a) Suppose we discover that for some r € (Z\C) and a3, az,...a, € C,
(i) Po(r) =327 Po(ai), and
(i) (Po(r)/Pi(r)) > (Po(a;)/Pi(a;)) for i =1,2,...,n.
Based on this observation, we decide to update the acceptance region and use D = CU{r}\{a1,...,a,}
as the acceptance region (i.e., we remove a;’s and include r in the new acceptance region). Let
pr(D) and pr;(D) denote the type-I and type-II error probabilities for this updated test. Show that
pr(D) < p;r(C), and pr1(D) < p11(C).
(b) Suppose we find that for any r € (Z N C°), and a € C, the inequality
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is satisfied. Consider now another test than the one described above with an acceptance region given
as D, whose type-I and type-II error probabilities are given as p;(D) and p;;(D) respectively. Show
that if p;(D) < pr(C), then pr(D) > prr(D).

Solution. Notice that, in this setting, for an acceptance region denoted as C', the type-I and type-II error
probabilities are given by

pi(C)= Y Po(x), pu(C)=>_ Pi(x).

z€ZNC*e zeC

(a) First, observe that, by condition (i), we have,

pr(D)—pr(C)= Y Po(z)— Y Po(z):ZPo(ai)—Po(r):O.

z€ZNDe z€ZNC'e



Rewriting (ii) as,

Pl(al') Po(ai)
Pi(r) ~ Polr)

, fori=1,2,...,n,

and summing over i, we obtain,

Z?:l Py (a;) Z?:l Po(a;) N
OO

where we made use of (i) again. Now observe that,
prr(D) = prr(C) =Y Pi(z) = > Pi(z) = Pi(r) = Y _ Pi(a;) < 0.
z€D zeC i=1

Suppose pr(D) < pr(c). This implies,

or

ZCEGCCQD P()(l‘)
> zenenc Po(@)

Now observe similarly that

prr(D) —pir(C) =Y Pi(x) =Y Pi(z)= Y, Pla)— > Pix)

xz€D zeC zeDNCe zeCNDe

> 1.

Thus, if we can show that

ZzeDﬁCC Pr(z)
ZxECﬁDC Pl(x)

we are done.
For this, we first rewrite (1) in a different form. Note that if z € C° and ¢ € C, then

> 1,

Pl(C) Po(af) < Po(C) Pl(QE)
Fixing ¢ € C, we obtain,
Pi(c) < Z Po(@) < Py(c) ( Z Pl(@) :
zeDNCe zeDNC*e
Now taking the terms inside the parentheses as fixed, we can write,
( > Pl(c)) ( > Po(x)> < < > Po(c)> < > Pl(x)> .
ceDenC zeDNC*e ceDenC zeDNCe

Rewriting and using (2), we obtain (3) :

ZxEDF‘ICC Pl (l’) > ZwEDﬁCC PO(‘T)
EzeDcmC Pi(z) erDcmC Po(z)

> 1.

Notice that throughout, I assumed that P;(x) is non-zero as long as z € Z. I leave it to you to consider

how to modify the argument if P;(z) = 0 from some z.



