
Object Oriented Programming

©1999-2006 Dr. Feza BUZLUCAwww.buzluca.info/oop 6.1

KALITIM (Inheritance)
Inheritance is one of the ways in object-oriented programming that makes
reusability possible. Reusability means taking an existing class and using it in a
new programming situation. By reusing classes, you can reduce the time and
effort needed to develop a program, and make software more robust and
reliable.

History:

•Rewriting existing code: You have some code that works in an old program, but
doesn’t do quite what you want in a new project.
•Paste the old code into your new source file, make a few modifications, debug
the code all over again.

•To reduce the bugs introduced by modification of code, programmers
attempted to create self-sufficient program elements in the form of functions.
•Function libraries were a step in the right direction, but, functions don’t model
the real world very well, because they don’t include important data.
•All too often, functions require modification to work in a new environment. But
again, the modifications introduce bugs.

Reusability

Object Oriented Programming

©1999-2006 Dr. Feza BUZLUCAwww.buzluca.info/oop 6.2

A powerful new approach to reusability that appears in object-oriented programming is the
class library.
Because a class more closely models a real-world entity, it needs less modification than
functions do to adapt it to a new situation.
Once a class has been created and tested, it should (ideally) represent a useful unit of code.
This code can be used in different ways again.

1. The simplest way to reuse a class is to just use an object of that class directly. The
standard library of the C++ has many useful classes and objects.
For example, cin and cout are such built in objects. Another useful class is string , which is
used very often in C++ programs.

2. The second way to reuse a class is to place an object of that class inside a new class. We
call this “creating a member object.” Your new class can be made up of any number and type
of other objects, in any combination that you need to achieve the functionality desired in
your new class. Because you are composing a new class from existing classes, this concept is
called composition (or more generally, aggregation). Composition is often referred to as a
“has-a” relationship. See the example e410.cpp

3. The third way to reuse a class is inheritance, which is described next. Inheritance is
referred to as a "is a" or "a kind of" relationship.

Reusability in object oriented programming:

Object Oriented Programming

©1999-2006 Dr. Feza BUZLUCAwww.buzluca.info/oop 6.3

An Example for Using Classes of the Standard Library: Strings
While a character array can be fairly useful, it is quite limited. It’s simply a
group of characters in memory, but if you want to do anything with it you must
manage all the little details.
The Standard C++ string class is designed to take care of (and hide) all the low-
level manipulations of character arrays that were previously required of the C
programmer.
To use strings you include the C++ header file <string>. Because of operator
overloading, the syntax for using strings is quite intuitive (natural).
#include <string> // Standard header file of C++ (inc. string class)
#include <iostream>
using namespace std;
int main() {
 string s1, s2; // Empty strings
 string s3 = "Hello, World."; // Initialized
 string s4("I am"); // Also initialized
 s2 = "Today"; // Assigning to a string
 s1 = s3 + " " + s4; // Combining strings
 s1 += " 20 "; // Appending to a string
 cout << s1 + s2 + "!" << endl;
 return 0;
} See Example: e61.cpp

Object Oriented Programming

©1999-2006 Dr. Feza BUZLUCAwww.buzluca.info/oop 6.4

You can assign to any string object using ‘=’. This replaces the previous
contents of the string with whatever is on the right-hand side, and you don’t
have to worry about what happens to the previous contents – that’s handled
automatically for you.

To combine strings you simply use the ‘+’ operator, which also allows you to
combine character arrays with strings. If you want to append either a string
or a character array to another string, you can use the operator ‘+=’.

Finally, note that cout already knows what to do with strings, so you can just
send a string (or an expression that produces a string, which happens with
s1 + s2 + "!" directly to cout in order to print it.

The first two strings, s1 and s2, start out empty, while s3 and s4 show two
equivalent ways to initialize string objects from character arrays (you can
just as easily initialize string objects from other string objects).

Object Oriented Programming

©1999-2006 Dr. Feza BUZLUCAwww.buzluca.info/oop 6.5

OOP provides a way to modify a class without changing its code. This is
achieved by using inheritance to derive a new class from the old one. The old
class (called the base class) is not modified, but the new class (the derived
class) can use all the features of the old one and additional features of its
own.

A "Kind of" or "is a" Relationship
We know that PCs, Macintoshes and Cray are kinds of computers; a worker, a
section manager and general manager are kinds of employee. If there is a "kind
of" relation between two objects then we can derive one from other using the
inheritance.

Generalization – specialization
By the help of inheritance we can create more “special” classes from general classes.
Employee -> worker -> manager (Manager is a worker, worker is an employee.) Vehicle ->
air vehicle -> helicopter

 Inheritance Syntax
The simplest example of inheritance requires two classes: a base class and a derived
class. The base class does not need any special syntax. The derived class, on the other
hand, must indicate that it’s derived from the base class. This is done by placing a colon
after the name of the derived class, followed by a keyword such as public and then the
base class name.

Inheritance

Object Oriented Programming

©1999-2006 Dr. Feza BUZLUCAwww.buzluca.info/oop 6.6

Example: Modeling teachers and the principal (director) in a school.
First, assume that we have a class to define teachers, then we can use this
class to model the principal. Because the principal is a teacher.

class Teacher{ // Base class
 protected: // means public for derived class members
 string name;
 int age, numOfStudents;
 public:
 void setName (const string & new_name){ name = new_name; }
};

class Principal : public Teacher{ // Derived class
 string school_name; // Additional members
 int numOfTeachers;
 public:
 void setSchool(const string & s_name){ school_name = s_name; }
};

Object Oriented Programming

©1999-2006 Dr. Feza BUZLUCAwww.buzluca.info/oop 6.7

int main()
{
 Teacher t1;
 Principal p1;
 p1.setName(" Principal 1");
 t1.setName(" Teacher 1");
 p1.setSchool(" Elementary School");
 return 0;
}

string name
int age,numOfStudents
void setName(const string &)

Teacher

string school_name
int numOfTeachers
void setSchool(const string &)

Principal

PLUS

An object of a derived class inherits all the
member data and functions of the base class.
Thus the child (derived) object p1 contains
not only data items school_name,
numOfTeachers, but data items name;
age,numOfStudents as well.
The p1 object can also access, in addition to
its own member function setSchool(), the
member function from Parent (Base), which is
setName().
Private members of the base class are inherited by the derived class, but
they are not visible in the derived class. The derived class may access them
only through the public interface of the base class.

Object Oriented Programming

©1999-2006 Dr. Feza BUZLUCAwww.buzluca.info/oop 6.8

Redefining Members (Name Hiding)
Some members (data or function) of the base class may not be suitable for the
derived class. These members should be redefined in the derived class.
For example, assume that the Teacher class has a print function that prints
properties of teachers on the screen.
But this function is not sufficient for the class Principal, because principals have
more properties to be printed. So the print function must be redefined.

class Teacher{ // Base class
 protected:
 string name;
 int age, numOfStudents;
 public:
 void setName (const string & new_name) { name = new_name; }
 void print() const;
};

void Teacher::print() const // Print method of Teacher class
{
 cout << "Name: " << name<< " Age: " << age << endl;
 cout << "Number of Students: " << numOfStudents << endl;
}

Object Oriented Programming

©1999-2006 Dr. Feza BUZLUCAwww.buzluca.info/oop 6.9

class Principal : public Teacher{ // Derived class
 string school_name;
 int numOfTeachers;
 public:
 void setSchool(const string & s_name) { school_name = s_name; }
 void print() const; // Print function of Principal class
};

void Principal::print() const // Print method of principal class
{
 cout << "Name: " << name << " Age: " << age << endl;
 cout << "Number of Students: " << numOfStudents << endl;
 cout << "Name of the school: " << school_name << endl;
}

print() function of the Principal class overrides (hides) the print() function of the
Teacher class.
Now the Principal class has two print() functions. The members of the base class can
be accessed by using the scope operator (::).
void Principal::print() const // Print method of Principal class
{
 Teacher::print(); // invokes the print function of the teacher class
 cout << "Name of the school: " << school_name << endl;
} See Example: e62.cpp

Object Oriented Programming

©1999-2006 Dr. Feza BUZLUCAwww.buzluca.info/oop 6.10

class A{
 public:
 int ia1,ia2;
 void fa1();
 int fa2(int);
};
class B: public A{
 public:
 float ia1; // overrides ia1
 float fa1(float); // overrides fa1
};

Examples:

int main()
{
 B b;

b.ia1=4; // B::ia1

float y=b.fa1(3.14); // B::fa1
b.fa1(); // ERROR! fa1 function in B hides the function of A
b.A::fa1(); // OK

 b.A::ia1=1; // OK
 return 0;
}

 int j=b.fa2(1); //A::fa2

b.ia2=3; // A::ia2 if ia2 is public in A

See Example: e63.cpp

If you modify the signature and/or the
return type of a member function from
the base class then the derived class
has two member functions with the
same name. But this is not overloading,
it is overriding.

If the author of the derived class
redefines a member function, it means
he or she changes the interface of the
base class. In this case the member
function of the base class is hidden.

Overloading vs. Overriding

Object Oriented Programming

©1999-2006 Dr. Feza BUZLUCAwww.buzluca.info/oop 6.11

Access Control

Remember, when inheritance is not involved, class member functions have
access to anything in the class, whether public or private, but objects of
that class have access only to public members.

Once inheritance enters the picture, other access possibilities arise for
derived classes. Member functions of a derived class can access public and
protected members of the base class, but not private members. Objects
of a derived class can access only public members of the base class.

Access Specifier Accessible from Accessible from Accessible from
Own Class Derived Class Objects (Outside Class)

public yes yes yes

protected yes yes no

private yes no no

Object Oriented Programming

©1999-2006 Dr. Feza BUZLUCAwww.buzluca.info/oop 6.12

class Teacher{ // Base class
 private: // only members of Teacher can access
 string name;
 protected: // Also members of derived classes can
 int age, numOfStudents;
 public: // Everyone can access
 void setName (const string & new_name){ name = new_name; }
 void print() const;
};

class Principal : public Teacher{ // Derived class
 private: // Default
 string school_name;
 int numOfTeachers;
 public:
 void setSchool(const string & s_name) { school_name = s_name; }
 void print() const;
 int getAge() const { return age; } // It works because age is protected
 const string & get_name(){ return name;} // ERROR! because name is private
};

Object Oriented Programming

©1999-2006 Dr. Feza BUZLUCAwww.buzluca.info/oop 6.13

 t1.numOfStudents = 100; // ERROR! (protected)
 t1.setName("Ali Bilir"); // OK (public)
 p1.setSchool(" stanbul Lisesi");İ // OK (public)

int main()
{
 Teacher t1;
 Principal p1;

 return 0;
}

Protected vs. Private Members

In general, class data should be private. Public data is open to modification by
any function anywhere in the program and should almost always be avoided.
Protected data is open to modification by functions in any derived class.
Anyone can derive one class from another and thus gain access to the base
class’s protected data. It’s safer and more reliable if derived classes can’t
access base class data directly.
But in real-time systems, where speed is important, function calls to access
private members is a time-consuming process. In such systems data may be
defined as protected to make derived classes access data directly and faster.

Object Oriented Programming

©1999-2006 Dr. Feza BUZLUCAwww.buzluca.info/oop 6.14

Private data: Slow and reliable
class A{ // Base class
 private:
 int i; // safe
 public:
 void access(int new_i){ // public interface to access i
 if (new_i > 0 && new_i <= 100)
 i=new_i;
 }
};

class B:public A{ // Derived class
 private:
 int k;
 public:
 void set(new_i, new_k){
 A::access(new_i); // reliable but slow
 :
 }
};

Protected data: Fast, author of the derived
class is responisble
class A{ // Base class
 protected:
 int i; // derived class can access directly
 public:
 :
};

class B:public A{ // Derived class
 private:
 int k;
 public:
 void set(new_i,new_k){
 i=new_i; // fast
 :
 }
};

Object Oriented Programming

©1999-2006 Dr. Feza BUZLUCAwww.buzluca.info/oop 6.15

Private Inheritance
class Base
 { };
class Derived : private Base {

This is called private inheritance. Now public members of the base class are
private members of the derived class. Objects of the derived class can not
access members of the base class. Member functions of the derived class
can still access public and protected members of the base class.

Public Inheritance

In inheritance, you usually want to make the access specifier public.
class Base
 { };
class Derived : public Base {

This is called public inheritance (or sometimes public derivation). The
access rights of the members of the base class are not changed. Objects
of the derived class can access public members of the base class. Public
members of the base class are also public members of the derived class.

Object Oriented Programming

©1999-2006 Dr. Feza BUZLUCAwww.buzluca.info/oop 6.16

private

public

protected

Class A

private

public

protected

Class B: public A

private

public

protected

Class C: private A

ObjA

ObjB ObjC

Not allowed

Object Oriented Programming

©1999-2006 Dr. Feza BUZLUCAwww.buzluca.info/oop 6.17

Redefining Access Specifications

class Base{
 private:
 int k;
 public:
 int i;
 void f();
};

class Derived : private Base{ // All members of Base are private now
 int m;
 public:
 using Base::f; // f() is public again , i is still private
 void fb1();
};

Access specifications of public members of the base class can be redefined in
the derived class.
When you inherit privately, all the public members of the base class become
private. If you want any of them to be visible, just say their names (no arguments
or return values) along with the using keyword in the public section of the
derived class: int main(){

 Base b;
 Derived d;
 b.i=5; // OK public in Base
 d.i=0; // ERROR private inheritance
 b.f(); // OK
 d.f(); // OK
 return 0;
};

Object Oriented Programming

©1999-2006 Dr. Feza BUZLUCAwww.buzluca.info/oop 6.18

Some functions will need to do different things in the base class and the
derived class. They are the overloaded = operator, the destructor, and all
constructors.
Consider a constructor. The base class constructor must create the base class
data, and the derived class constructor must create the derived class data.
Because the derived class and base class constructors create different data,
one constructor cannot be used in place of another. Constructor of the base
class can not be the constructor of the derived class.
Similarly, the = operator in the derived class must assign values to derived class
data, and the = operator in the base class must assign values to base class data.
These are different jobs, so assignment operator of the base class can not be
the assignment operator of the derived class.

Special Member Functions and Inheritance

Object Oriented Programming

©1999-2006 Dr. Feza BUZLUCAwww.buzluca.info/oop 6.19

Constructors and Inheritance
When you define an object of a derived class, the base class constructor will
be called before the derived class constructor. This is because the base class
object is a subobject—a part—of the derived class object, and you need to
construct the parts before you can construct the whole.

See Example: e64.cpp

If the base class has a constructor that needs arguments, this constructor
must be called before the constructor of the derived class.

class Teacher{ // Base class
 string name;
 int age, numOfStudents;
 public:
 Teacher(const string & new_name): name(new_name) // Constructor of base
 { } // Body of the constructor is empty
};

class Principal : public Teacher{ // Derived class
 int numOfTeachers;
 public:
 Principal(const string &, int); // Constructor of derived class
};

Object Oriented Programming

©1999-2006 Dr. Feza BUZLUCAwww.buzluca.info/oop 6.20

// Constructor of the derived class
// constructor of the base is called before the body of the constructor of the derived class
Principal::Principal(const string & new_name, int numOT):Teacher(new_name)
{
 numOfTeachers = numOT;
}

int main()
{
 Principal p1("Ali Bilir", 20); // An object of derived class is defined
 return 0;
}

If the base class has a constructor, which must take some arguments, then the
derived class must also have a constructor that calls the constructor of the base
with proper arguments. See Example: e65.cpp

Remember, the constructor initializer can also be used to initialize members.

// Constructor of the derived class
Principal::Principal(const string & new_name, int numOT)
 :Teacher(new_name), numOfTeachers(numOT)
 { } // body of the constructor is empty

Object Oriented Programming

©1999-2006 Dr. Feza BUZLUCAwww.buzluca.info/oop 6.21

Destructors and Inheritance
Destructors are called automatically. When an object of the derived class goes out of
scope, the destructors are called in reverse order: The derived object is destroyed
first, then the base class object.

class B { // Base class
 public:
 B() { cout << "B constructor" << endl; }
 ~B() { cout << "B destructor" << endl; }
};

class C : public B { // Derived class
 public:
 C() { cout << "C constructor" << endl; }
 ~C() { cout << "C destructor" << endl; }
};

int main()
{
 cout << "Start" << endl;
 C ch; // create an object of derived class
 cout << "End" << endl;
 return 0;
}

See Example: e66.cpp

Object Oriented Programming

©1999-2006 Dr. Feza BUZLUCAwww.buzluca.info/oop

int main()
{
 C c(1, 1.1, 2, 2.2, 3, 3.3);
 cout << endl << "Data in c = ";
 c.display();
 return 0;
}

class A
{
 private:
 int intA;
 float floA;
 public:
 A(int i, float f) : intA(i), floA(f) //initialize A
 { cout << "Constructor A" << endl; }
 void display()
 { cout << intA << ", " << floA << "; "; }
 ~A() { cout << "Destructor A" << endl; }
};

class B : public A
{
 private:
 int intB;
 float floB;
 public:
 B(int i1, float f1, int i2, float f2) :
 A(i1, f1), // initialize A
 intB(i2), floB(f2) // initialize B
 { cout << "Constructor B" << endl; }
 void display()
 {
 A::display();
 cout << intB << ", " << floB << "; ";
 }
 ~B() { cout << "Destructor B" << endl; }
};

class C : public B
{
 private:
 int intC;
 float floC;
 public:
 C(int i1, float f1, int i2, float f2, int i3, float f3) :
 B(i1, f1, i2, f2), // initialize B
 intC(i3), floC(f3) // initialize C
 { cout << "Constructor C" << endl; }
 void display()
 {
 B::display();
 cout << intC << ", " << floC;
 }
 ~C() { cout << "Destructor C" << endl; }
};

See Example: e67.cpp

Constructors and Destructors in a Chain of Classes

Object Oriented Programming

©1999-2006 Dr. Feza BUZLUCAwww.buzluca.info/oop 6.23

In main(), we create an object of type C, initialize it to six values, and display it.
When a constructor starts to execute, it is guaranteed that all the subobjects
are created and initialized.
Incidentally, you can’t skip a generation when you call an ancestor constructor in
an initialization list. In the following modification of the C constructor:
C(int i1, float f1, int i2, float f2, int i3, float f3) :
 A(i1, f1), // ERROR! can't initialize A
 intC(i3), floC(f3) // initialize C
 { }
the call to A() is illegal because the A class is not the immediate base class of C.
You never need to make explicit destructor calls because there’s only one
destructor for any class, and it doesn’t take any arguments. The compiler ensures
that all destructors are called, and that means all of the destructors in the
entire hierarchy, starting with the most-derived destructor and working back to
the root.

Each class has one int and one float data item. The constructor in each class takes
enough arguments to initialize the data for the class and all ancestor classes.
This means two arguments for the A class constructor, four for B (which must
initialize A as well as itself), and six for C (which must initialize A and B as well as
itself). Each constructor calls the constructor of its base class.

A C class is inherited from a B class, which is in turn inherited from a A class.

Object Oriented Programming

©1999-2006 Dr. Feza BUZLUCAwww.buzluca.info/oop 6.24

Assignment Operator and Inheritance
Assignment operator of the base class can not be the assignment operator
of the derived class. Recall the String example.

class String{
 protected:
 int size;
 char *contents;
 public:
 const String & operator=(const String &); // assignment operator
 : // Other methods
};

const String & String::operator=(const String &in_object)
{
 size = in_object.size;
 delete[] contents; // delete old contents
 contents = new char[size+1];
 strcpy(contents, in_object.contents);
 return *this;
}

Object Oriented Programming

©1999-2006 Dr. Feza BUZLUCAwww.buzluca.info/oop 6.25

class String2 : public String{ // String2 is derived from String
 int size2;
 char *contents2;
 public:
 const String2 & operator=(const String2 &); // assignment operator for String2
 : // Other methods
};

// **** Assignment operator for String2 ****
const String2 & String2::operator=(const String2 &in_object)
{
 size = in_object.size; // inherited size
 delete[] contents;
 contents = new char[size + 1]; // inherited contents
 strcpy(contents, in_object.contents);
 size2 = in_object.size2;
 delete[] contents2;
 contents2 = new char[size2 + 1];
 strcpy(contents2, in_object.contents2);
 return *this;
}

Example: Class String2 is derived from class String. If an assignment operator is
necessary it must be written

Object Oriented Programming

©1999-2006 Dr. Feza BUZLUCAwww.buzluca.info/oop 6.26

//** Assignment operator **
const String2 & String2::operator=(const String2 & in_object)
{
 String::operator=(in_object); // call the operator= of String (Base)
 cout<< "Assignment operator of String2 has been invoked" << endl;
 size2 = in_object.size2;
 delete[] contents2;
 contents2 = new char[size2 + 1];
 strcpy(contents2, in_object.contents2);
 return *this;
}

See Example: e68.cpp

In previous example, data members of String (Base) class must be protected.
Otherwise methods of the String2 (Derived) can not access them.
The better way to write the assignment operator of String2 is to call the
assignment operator of the String (Base) class.
Now, data members of String (Base) class may be private.

In this method the assignment operator of the String is called with an argument
of type (String2 &). Actually, the operator of String class expects a parameter of
type (String &).
This does not cause a compiler error, because as we will see in Section 7, a
reference to base class can carry the address of an object of derived class.

Object Oriented Programming

©1999-2006 Dr. Feza BUZLUCAwww.buzluca.info/oop 6.27

Composition: has a relation vs. Inheritance: is a relation

Every time you place instance data in a class, you are creating a “has a”
relationship. If there is a class Teacher and one of the data items in this class
is the teacher’s name, I can say that a Teacher object has a name.
This sort of relationship is called composition because the Teacher object is
composed of these other variables.
Remember the class ComplexFrac. This class is composed of two Fraction
objects.
Composition in OOP models the real-world situation in which objects are
composed of other objects.

Inheritance in OOP mirrors the concept that we call generalization in the real
world. If I model workers, managers and researchers in a factory, I can say
that these are all specific types of a more general concept called an employee.
Every kind of employee has certain features: name, age, ID num, and so on.
But a manager, in addition to these general features, has a department that
he/she manages. A researcher has an area on which he/she studies.

In this example the manager has not an employee. The manager is an employee

Object Oriented Programming

©1999-2006 Dr. Feza BUZLUCAwww.buzluca.info/oop 6.28

You can use composition & inheritance together. The following example shows
the creation of a more complex class using both of them.

class A {
 int i;
public:
 A(int ii) : i(ii)
{}
 ~A() {}
 void f() const
{}
};

class B {
 int i;
public:
 B(int ii) : i(ii) {}
 ~B() {}
 void f() const {}
};

class C : public B { // Inheritance, C is B
 A a; // Composition, C has A
public:
 C(int ii) : B(ii), a(ii) {}
 ~C() {} // Calls ~A() and ~B()
 void f() const { // Redefinition
 a.f();
 B::f();
 }
};

C inherits from B and has a member object (“is composed of”) of type A. You can
see the constructor initializer list contains calls to both the base-class
constructor and the member-object constructor.
The function C::f() redefines B::f(), which it inherits, and also calls the base-
class version. In addition, it calls a.f(). Notice that the only time you can talk
about redefinition of functions is during inheritance; with a member object you
can only manipulate the public interface of the object, not redefine it. In
addition, calling f() for an object of class C would not call a.f() if C::f() had not
been defined, whereas it would call B::f(). See Example: e69.cpp

Object Oriented Programming

©1999-2006 Dr. Feza BUZLUCAwww.buzluca.info/oop 6.29

Multiple inheritance occurs when a class inherits from two or more base classes,
like this:

Multiple Inheritance

int main()
{
 Deriv d;
 d.a = 4; // Deriv::a
 float y = d.fa1(3.14); // Deriv::fa1
 int i = d.fc(); // Base2::fc
 return 0;
}

class Base1{ // Base 1
 public:
 int a;
 void fa1();
 char *fa2(int);
};

class Base2{ // Base 2
 public:
 int a;
 char *fa2(int, const char*);
 int fc();
};

class Deriv : public Base1 , public Base2{
public:
 int a;
 float fa1(float);
 int fb1(int);
};

Base1 Base2

Deriv

+ +

char * c = d.fa2(1);
is not valid.
In inheritance functions are not
overloaded. They are overridden.
You have to write
char * c = d.Base1::fa2(1);
or
char * c = d.Base2::fa2(1,"Hello");

See Example: e610.cpp

Object Oriented Programming

©1999-2006 Dr. Feza BUZLUCAwww.buzluca.info/oop 6.30

Repeated Base Classes

class Gparent
 { };
class Mother : public Gparent
 { };
class Father : public Gparent
 { };
class Child : public Mother, public Father
 { };

Both Mother and Father inherit from Gparent, and Child inherits from both
Mother and Father. Recall that each object created through inheritance contains
a subobject of the base class. A Mother object and a Father object will contain
subobjects of Gparent, and a Child object will contain subobjects of Mother and
Father, so a Child object will also contain two Gparent subobjects, one inherited
via Mother and one inherited via Father.

This is a strange situation. There are two subobjects when really there should
be one.

Child

Gparent

Mother Father

Object Oriented Programming

©1999-2006 Dr. Feza BUZLUCAwww.buzluca.info/oop 6.31

class Gparent
{
 protected:
 int gdata;
 };
and you try to access this item from Child:
class Child : public Mother, public Father
 {
 public:
 void Cfunc()
 {
 int temp = gdata; // ERROR: ambiguous
 }
 };

Suppose there’s a data item in Gparent:

The compiler will complain that the reference to gdata is ambiguous. It
doesn’t know which version of gdata to access: the one in the Gparent
subobject in the Mother subobject or the one in the Gparent subobject in the
Father subobject.

Object Oriented Programming

©1999-2006 Dr. Feza BUZLUCAwww.buzluca.info/oop 6.32

Virtual Base Classes
You can fix this using a new keyword, virtual, when deriving Mother and Father
from Gparent :

class Gparent
 { };
class Mother : virtual public Gparent
 { };
class Father : virtual public Gparent
 { };
class Child : public Mother, public Father
 { };

The virtual keyword tells the compiler to inherit only one subobject from a class
into subsequent derived classes. That fixes the ambiguity problem, but other
more complicated problems arise that are too complex to delve into here.
In general, you should avoid multiple inheritance, although if you have
considerable experience in C++, you might find reasons to use it in some situations.

See Example: e611.cpp

Conclusion
The most important feature of the inheritance is that we can reuse the base
class without changing its code.
We can add new members, redefine existing members and redefine accesses
specifications without touching the base class.

