
Object Oriented Programming

©1999-2010 Dr. Feza BUZLUCA http://www.faculty.itu.edu.tr/buzluca

http://www.buzluca.info
8.1

POLYMORPHISM
There are three major concepts in object-oriented programming:
1. Encapsulation (Classes),

Data abstraction, information hiding (public: interface, private: implementation)
2. Inheritance,
 Is-a relation, reusability
3. Polymorphism

Run-time decision for function calls (dynamic method binding)

In real life, there is often a collection of different objects that, given identical
instructions (messages), should take different actions.

Take teacher and principal, for example.

Suppose the minister of education wants to send a directive to all personnel: “Print
your personal information!”.

Different kinds of staff (teacher or principal) have to print different information.

But the minister doesn’t need to send a different message to each group. One
message works for everyone because everyone knows how to print his or her
personal information.

Besides the minister don’t need to know the type of the person to whom the
message is to be sent.

License: http://creativecommons.org/licenses/by-nc-nd/3.0/

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

Object Oriented Programming

©1999-2010 Dr. Feza BUZLUCA http://www.faculty.itu.edu.tr/buzluca

http://www.buzluca.info
8.2

This sounds a little like function overloading, but polymorphism is a different,
and much more powerful, mechanism.

One difference between overloading and polymorphism has to do with which
function to execute when the choice is made.

With function overloading, the choice is made by the compiler (compile-time).

With polymorphism, it’s made while the program is running (run-time).

Typically, polymorphism occurs in classes that are related by inheritance.

In C++, polymorphism means that a call to a member function will cause a
different function to be executed depending on the type of object that gets the
message.

Polymorphism means “taking many shapes”.

The minister’s single instruction is polymorphic because it looks different to
different kinds of personnel.

The minister doesn’t need to know the type of the person to whom she/he
sends the message.

The sender of the message don’t need to know the type of the receiving object.

Object Oriented Programming

©1999-2010 Dr. Feza BUZLUCA http://www.faculty.itu.edu.tr/buzluca

http://www.buzluca.info
8.3

The first example shows what happens when a base class and derived classes all
have functions with the same name
and these functions are accessed using pointers but without using virtual functions
(without polymorphism).

Normal Member Functions Accessed with Pointers

class Teacher{ // Base class
 string name;
 int numOfStudents;
 public:
 Teacher(const string &, int); // Constructor of base
 void print() const;
};

class Principal : public Teacher{ // Derived class
 string SchoolName;
 public:
 Principal(const string &, int , const string &);
 void print() const;
};

Both classes have a function with the same name: print. But in this example these
functions are not virtual (not polymorphic).

Object Oriented Programming

©1999-2010 Dr. Feza BUZLUCA http://www.faculty.itu.edu.tr/buzluca

http://www.buzluca.info
8.4

// Only to test the show function
int main()
{
 Teacher t1("Teacher 1", 50);
 Principal p1("Principal 1", 40, "School");
 Teacher *ptr;
 char c;
 cout << "Teacher or Principal " ; cin >> c;
 if (c == 't') ptr = &t1;
 else ptr = &p1;
 show(ptr); // which print ??
 :

See Example: e81.cpp

The Principal class is derived from
class Teacher. Both classes have a
member function with the same name
print().

In main(), the program defines a
pointer to class Teacher.

The main program sometimes puts the
address of the Teacher object and
sometimes the address of a derived
class object (Principal) in the base
class pointer as in the line

ptr = &p1;

Remember that it’s all right to assign
an address of derived type to a
pointer of the base.

This address is sent to the function
show() over a pointer to base.

// Show is a system that operates on Teachers and Principals
void show (const Teacher * tp)
{
 tp->print(); // which print
}

Now the question is, when you execute the statement
tp->print();
what function is called? Is it Teacher::print() or Principal::print()?

Object Oriented Programming

©1999-2010 Dr. Feza BUZLUCA http://www.faculty.itu.edu.tr/buzluca

http://www.buzluca.info
8.5

class Teacher{ // Base class
 string name;
 int numOfStudents;
 public:
 Teacher(const string &, int); // Constructor of base
 virtual void print() const; // A virtual (polymorphic) function
};

class Principal : public Teacher{ // Derived class
 string SchoolName;
 public:
 Principal(const string &, int , const string &);
 void print() const; // It is also virtual (polymorphic)
};

The function in the base class (Teacher) is executed in both cases. The compiler
ignores the contents of the pointer ptr and chooses the member function that
matches the type of the pointer.

Virtual Member Functions Accessed with Pointers
Let’s make a single change in the program: Place the keyword virtual in front of
the declaration of the print() function in the base class.

See Example:e82.cpp

Object Oriented Programming

©1999-2010 Dr. Feza BUZLUCA http://www.faculty.itu.edu.tr/buzluca

http://www.buzluca.info
8.6

Now, different functions are executed, depending on the contents of ptr. Functions
are called based on the contents of the pointer, not on the type.

This is polymorphism at work. I’ve made print() polymorphic by designating it virtual.

Benefits of Polymorphism

Polymorphism provides flexibility.

In our example the show() function has no information about the type of object
pointed by the input parameter.

It can have the address of an object of any class derived from the Teacher class.

So this function can operate on any class derived from the Teacher.

If we add a new teacher type (a new class) to the system, for example
InternTeacher, we do not need to change the show function.

The same thing is true, if we discard a class derived from Teacher from the
system.

Object Oriented Programming

©1999-2010 Dr. Feza BUZLUCA http://www.faculty.itu.edu.tr/buzluca

http://www.buzluca.info
8.7

The Unified Modeling Language (UML) is explained in Chapter 9.

This is only a simple example.

UML Diagram of the Design

Teacher

print()

Principal

print()

Show
tp

Pointer tp in Show can
point to objects of Teacher

 and to objects of all classes
 derived from Teacher.

InternTeacher

print()

Inheritance

License: http://creativecommons.org/licenses/by-nc-nd/3.0/

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

Object Oriented Programming

©1999-2010 Dr. Feza BUZLUCA http://www.faculty.itu.edu.tr/buzluca

http://www.buzluca.info
8.8

// Only to test the show function
int main()
{
 Teacher t1("Teacher 1", 50);
 Principal p1("Principal 1", 40, "School");
 char c;
 cout << "Teacher or Principal " ; cin >> c;
 if (c == 't') show(t1);
 else show(p1);
 :

// Show is a system that operates on Teachers and Principals
void show (const Teacher & tp)
{
 tp.print(); // which print
}

Note that, in C++ it is preferred to use references instead of pointers by passing
parameters.

The same program can be written as follows:

Object Oriented Programming

©1999-2010 Dr. Feza BUZLUCA http://www.faculty.itu.edu.tr/buzluca

http://www.buzluca.info
8.9

How does the compiler know what function to compile? In e81.cpp, without
polymorphism, the compiler has no problem with the expression tp->print();

It always compiles a call to the print() function in the base class.

But in e82.cpp, the compiler doesn’t know what class the contents of tp may be a
pointer to. It could be the address of an object of the Teacher class or the Principal
class.

Which version of print() does the compiler call?

In fact, at the time it’s compiling the program, the compiler doesn’t “know” which
function to call. So instead of a simple function call, it places a piece of code there.

At runtime, when the function call is executed, code that the compiler placed in the
program finds out the type of the object whose address is in tp and calls the
appropriate print() function: Teacher::print() or Principal::print().

Selecting a function at runtime is called late binding or dynamic binding. (Binding
means connecting the function call to the function.)

Connecting to functions in the normal way, during compilation, is called early binding
or static binding.

Late binding requires a small amount of overhead (the call to the function might
take something like 10 percent longer) but provides an enormous increase in power
and flexibility.

Late Binding

Object Oriented Programming

©1999-2010 Dr. Feza BUZLUCA http://www.faculty.itu.edu.tr/buzluca

http://www.buzluca.info
8.10

Remember that, stored in memory, a normal object—that is, one with no virtual
functions—contains only its own data, nothing else.

When a member function is called for such an object, the address of the object is
available in the this pointer, which the member function uses (usually invisibly) to
access the object’s data.

The address in this is generated by the compiler every time a member function is
called; it’s not stored in the object.

How It Works

With virtual functions, things are more complicated. When a derived class with
virtual functions is specified, the compiler creates a table—an array—of function
addresses called the virtual table.

In the example e82.cpp, the Teacher and Principal classes each have their own virtual
table. There is an entry in each virtual table for every virtual function in the class.

Objects of classes with virtual functions contain a pointer to the virtual table (vptr)
of the class. These object are slightly larger than normal objects.

In the example, when a virtual function is called for an object of Teacher or Principal,
the compiler, instead of specifying what function will be called, creates code that
will first look at the object’s virtual table and then uses this to access the
appropriate member function address.

Thus, for virtual functions, the object itself determines what function is called,
rather than the compiler.

Object Oriented Programming

©1999-2010 Dr. Feza BUZLUCA http://www.faculty.itu.edu.tr/buzluca

http://www.buzluca.info
8.11

class Principal : public Teacher{ // Derived class
 string SchoolName;
 public:
 void read(); // Virtual function
 void print() const; // Virtual function
};

Example: Assume that the classes Teacher and Principal contain two virtual
functions.

class Teacher{ // Base class
 string name;
 int numOfStudents;
 public:
 virtual void read(); // Virtual function
 virtual void print() const; // Virtual function
};

&Teacher::read

&Teacher::print

Virtual Table of Teacher

&Principal::read

&Principal::print

Virtual Table of Principal

Object Oriented Programming

©1999-2010 Dr. Feza BUZLUCA http://www.faculty.itu.edu.tr/buzluca

http://www.buzluca.info
8.12

Objects of Teacher and Principal will contain a pointer to their virtual tables.
int main(){
 Teacher t1("Teacher 1", 50);
 Teacher t2("Teacher 2", 35);
 Principal p1("Principal 1", 45 , "School 1");
 :
}

vptr

Teacher 1

50

t1

vptr

Teacher 2

35

t2

vptr

Principal 1

45

School 1

p1

&Teacher::read

&Teacher::print

Virtual Table of Teacher

&Principal::read

&Principal::print

Virtual Table of Principal

MC68000-like assembly
counterpart of the statement
ptr->print(); Here ptr contains the
address of an object.

move.l ptr, this ; this to object
movea.l ptr, a0 ; a0 to object
movea.l (a0), a1 ; a1<-vptr
jsr 4(a1) ; jsr print

If the print() function would not a
virtual function:

move.l ptr, this ; this to object
jsr teacher_print
 or
jsr principal_print

Object Oriented Programming

©1999-2010 Dr. Feza BUZLUCA http://www.faculty.itu.edu.tr/buzluca

http://www.buzluca.info
8.13

Be aware that the virtual function mechanism works only with pointers to objects
and, with references, not with objects themselves.

Don’t Try This with Objects

int main()
{
 Teacher t1("Teacher 1", 50);
 Principal p1("Principal 1", 40, "School");
 t1.print(); // not polymorphic
 p1.print(); // not polymorphic
 return 0;
}

Calling virtual functions is a time-consuming process, because of indirect call
via tables. Don’t declare functions as virtual if it is not necessary.

Linked List of Objects and Polymorphism

The most common ways to use virtual functions are with an array of pointers to
objects and linked lists of objects.

Examine the example: See Example: e83.cpp

Remember, there is a list class in the standard library of the C++. You don’t
need to write a class to define linked lists.

License: http://creativecommons.org/licenses/by-nc-nd/3.0/

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

Object Oriented Programming

©1999-2010 Dr. Feza BUZLUCA http://www.faculty.itu.edu.tr/buzluca

http://www.buzluca.info
8.14

To write polymorphic functions we need to have derived classes.

But sometimes we don’t need to create any base class objects, but only derived class
objects. The base class exists only as a starting point for deriving other classes.

This kind of base class is called an abstract class, which means that no actual objects
will be created from it.

Abstract classes arise in many situations. A factory can make a sports car or a truck
or an ambulance, but it can’t make a generic vehicle.

The factory must know the details about what kind of vehicle to make before it can
actually make one.

Abstract Classes

It would be nice if, having decided to create an abstract base class, I could instruct
the compiler to prevent any class user from ever making an object of that class.

This would give me more freedom in designing the base class because I wouldn’t need
to plan for actual objects of the class, but only for data and functions that would be
used by derived classes.

There is a way to tell the compiler that a class is abstract: You define at least one
pure virtual function in the class.

A pure virtual function is a virtual function with no body. The body of the virtual
function in the base class is removed, and the notation =0 is added to the function
declaration.

Pure Virtual Functions

Object Oriented Programming

©1999-2010 Dr. Feza BUZLUCA http://www.faculty.itu.edu.tr/buzluca

http://www.buzluca.info
8.15

A Graphics Example

class GenericShape{ // Abstract base class
 protected:
 int x, y;
 public:
 GenericShape(int x_in, int y_in){ x = x_in; y = y_in; } // Constructor
 virtual void draw() const =0; // pure virtual function
};

class Line:public GenericShape{ // Line class
 protected:
 int x2,y2; // End coordinates of line
 public:
 Line(int x_in,int y_in,int x2_in,int y2_in):GenericShape(x_in,y_in), x2(x2_in),y2(y2_in)
 { }
 void draw()const; // virtual draw function
};
void Line::draw()const
{
 cout << "Type: Line" << endl;
 cout << "Coordinates of end points: " << "X1=" << x << " ,Y1=" << y <<
 " ,X2=" << x2 << " ,Y2=" << y2 << endl;
}

Object Oriented Programming

©1999-2010 Dr. Feza BUZLUCA http://www.faculty.itu.edu.tr/buzluca

http://www.buzluca.info
8.16

class Rectangle:public GenericShape{ // Rectangle class
 protected:
 int x2,y2; // coordinates of 2nd corner point
 public:
 Rectangle(int x_in,int y_in,int x2_in,int y2_in):GenericShape(x_in,y_in),
 x2(x2_in),y2(y2_in)
 { }
 void draw()const; // virtual draw
};
void Rectangle::draw()const
{
 cout << "Type: Rectangle" << endl;
 cout << "Coordinates of corner points: " << "X1=" << x << " ,Y1=" << y <<
 " ,X2=" << x2 << " ,Y2=" << y2 << endl;
}

class Circle:public GenericShape{ // Circle class
 protected:
 int radius;
 public:
 Circle(int x_cen,int y_cen,int r):GenericShape(x_cen,y_cen), radius(r)
 { }
 void draw() const; // virtual draw
};

Object Oriented Programming

©1999-2010 Dr. Feza BUZLUCA http://www.faculty.itu.edu.tr/buzluca

http://www.buzluca.info
8.17

int main() // A main function to test the system
{
 Line line1(1, 1, 100, 250);
 Circle circle1(100, 100, 20);
 Rectangle rectangle1(30, 50, 250, 140);
 Circle circle2(300, 170, 50);
 show(circle1); // show function can take different shapes as argument
 show(line1);
 show(circle2);
 show(rectangle1);
 return 0;
}

// A function to draw different shapes
void show(const Generic_shape &shape) //Can take references to different shapes
{ // Which draw function will be called?
 shape.draw(); // It 's unknown at compile-time
}

void Circle::draw()const
{
 cout << "Type: Circle" << endl;
 cout << "Coordinates of center point: " << "X=" << x << " ,Y=" << y << endl;
 cout << "Radius: " << radius << endl;
}

See Example: e84a.cpp

Object Oriented Programming

©1999-2010 Dr. Feza BUZLUCA http://www.faculty.itu.edu.tr/buzluca

http://www.buzluca.info
8.18 8.18

UML Diagram of the Design

GenericShape

draw()

Show
shape

Rectangle

draw()

Circle

draw()

Line

draw()

Arc

draw()

Virtual class
(italic)

Pure virtual
Function
(italic)

Object Oriented Programming

©1999-2010 Dr. Feza BUZLUCA http://www.faculty.itu.edu.tr/buzluca

http://www.buzluca.info
8.19

If we write a class for a new shape by deriving it from an existing class, we don’t
need to modify the show function. This function can also show the new shape.

class Arc:public Circle{ // Arc class
 protected:
 int sa, ea; // Start and end angles
 public:
 Arc(int x_cen,int y_cen,int r, int a1, int a2):Circle(x_cen,y_cen,r),
 sa(a1),ea(a2)
 {}
 void draw() const; // virtual draw
};

void Arc::draw()const
{
 cout << "Type: Arc" << endl;
 cout << "Coordinates of center point: " << "X=" << x << " ,Y=" << y << endl;
 cout << "Radius: " << radius << endl;
 cout << "Start and end angles: " << "SA=" << sa << " ,EA=" << ea << endl;
}

For example we can add an Arc class to our graphics library, which will not effect
the show function.

See Example: e84b.cpp

License: http://creativecommons.org/licenses/by-nc-nd/3.0/

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

Object Oriented Programming

©1999-2010 Dr. Feza BUZLUCA http://www.faculty.itu.edu.tr/buzluca

http://www.buzluca.info
8.20

Can constructors be virtual?

No, they can’t be.

When you’re creating an object, you usually already know what kind of
object you’re creating and can specify this to the compiler. Thus, there’s not
a need for virtual constructors.

Also, an object’s constructor sets up its virtual mechanism (the virtual
table) in the first place. You don’t see the code for this, of course, just as
you don’t see the code that allocates memory for an object.

Virtual functions can’t even exist until the constructor has finished its job,
so constructors can’t be virtual.

Virtual Constructors?

Object Oriented Programming

©1999-2010 Dr. Feza BUZLUCA http://www.faculty.itu.edu.tr/buzluca

http://www.buzluca.info
8.21

Virtual Destructors
See Example: e85.cpp

Recall that a derived class object typically contains data from both the base
class and the derived class. To ensure that such data is properly disposed of, it
may be essential that destructors for both base and derived classes are called.
But the output of e85.cpp is
 Base Destructor
 Program terminates

In this program bp is a pointer of Base type. So it can point to objects of Base
type and Derived type. In the example, bp points to an object of Derived class,
but while deleting the pointer only the Base class destructor is called.

This is the same problem you saw before with ordinary (nondestructor) functions.

If a function isn’t virtual, only the base class version of the function will be
called when it’s invoked using a base class pointer, even if the contents of the
pointer is the address of a derived class object.

Thus in e85.cpp, the Derived class destructor is never called. This could be a
problem if this destructor did something important.

To fix this problem, we have to make the base class destructor virtual.

Rewrite: e85.cpp

