
Object Oriented Programming

©1999-2010 Dr. Feza BUZLUCA http://www.faculty.itu.edu.tr/buzluca

http://www.buzluca.info
9.1

The Unified Modeling Language - UML

The UML is a visual language for specifying, constructing, and documenting
the artifacts of a software.

The UML is not a method to design systems, it is used to visualize the
analysis and the design.

It makes easier to understand and document software systems.

It supports teamwork because UML diagrams are more understandable than
the program code.

There are different kinds of UML diagrams, which are used in different
phases of a software development process.

Here, we will discuss three types of these diagrams, which are used in design
and coding levels.

The current specification of the UML is available in the Web site of the
Object Management Group (OMG).
URL: http://www.omg.org/

In this course, the current specification of the UML, version 2.x, is used.

License: http://creativecommons.org/licenses/by-nc-nd/3.0/

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

Object Oriented Programming

©1999-2010 Dr. Feza BUZLUCA http://www.faculty.itu.edu.tr/buzluca

http://www.buzluca.info
9.2

A class diagram shows the structure of the classes and the relationships
between them.

Class Diagrams

 Student

name

number

getName()

Class Comment

Class Name

Attributes

Methods

If necessary, access modes and data types may also be shown.

 Student

- name: string

number: int

+ getName(): string

private

protected

public

return type

Object Oriented Programming

©1999-2010 Dr. Feza BUZLUCA http://www.faculty.itu.edu.tr/buzluca

http://www.buzluca.info
9.3

 Counter

- counter: int

- MAX: int = 100 {readOnly}

+ set(initial:int)

<<constructor>>

+Counter()

Static attribute

(underlined)

Static method

Constant

(constraint)

Stereotype

Comments : Comments in UML are placed in dog eared rectangles.

You can use comments to put anything you want in a diagram. You can use
comments to add application and program specific details.

Stereotypes: A stereotype is a way of extending the UML in a uniform way,
and remaining within the standard.

You indicate a stereotype using: <<stereotype name>>

Constraints: A constraint in the UML is a text string in curly braces ({usually

language specific}). The UML defines a language (Object Constrain Language –
OCL) that you can use for writing constraints.

Object Oriented Programming

©1999-2010 Dr. Feza BUZLUCA http://www.faculty.itu.edu.tr/buzluca

http://www.buzluca.info
9.4

A class diagram also shows the relationships between classes such as
association, aggregation, composition, and inheritance.

Relationship between classes

Association: A general type of relationship. Objects of a class can send messages
to objects of another class.

name of the association

 School

name

address

 Principal

name

schoolName

getName()

directs

Principal can send messages to
School objects.

Association names are used in
conceptual perspective
(analysis phase).
In software perspective
association names are
unnecessary.

directedSchool
 School

name

address

 Principal

name

schoolName

getName()

class Pricipal{
 private:
 School *directedSchool;
 :
};

name of data in Principal

Object Oriented Programming

©1999-2010 Dr. Feza BUZLUCA http://www.faculty.itu.edu.tr/buzluca

http://www.buzluca.info
9.5

 A

 B

Direction of messages is
unspecified. Both may send
messages to each other.

 A

 B

 X

A can send messages to B.
A get a service from B.
B can not send messages to A.

Direction of the message flow:

Multiplicity:
Multiplicity indicates the number of any possible combination of objects of one
class associated with objects from another class.
In other words, it shows the number of objects from that class, that can be
linked at runtime with one instance of the class at the other end of the
association line.

Instructor

 Course

teaches 1 *

An instructor teaches zero or more courses.
An association may also read in reverse order.
A course is given exactly by one instructor.

Multiplicity

Object Oriented Programming

©1999-2010 Dr. Feza BUZLUCA http://www.faculty.itu.edu.tr/buzluca

http://www.buzluca.info
9.6

A

 B

1 1..*

Multiplicity

{List}

Constraint

One object of class A is associated
with one ore more objects of class
B at a time.
Class A includes a list that can
contain one or more objects of
class B.

Zero or more, many
A

*

One or more A
1.. *

One to forty A
1..40

Exactly five A
5

A
3, 5, 8

Exactly 3, 5, or 8

Example:

Object Oriented Programming

©1999-2010 Dr. Feza BUZLUCA http://www.faculty.itu.edu.tr/buzluca

http://www.buzluca.info
9.7

Aggregation

 (empty diamond)

Aggregation, Composition: Both are a type of association. They are qualified by
a “ has a” relationship.

There is a small difference between them.

Aggregation: It indicates a “Whole/Part” relationship.

A department of the faculty has instructors.

Parts (instructors) can still exist even if the whole (the department) does not
exist.

The same part-object can belong to more than one objects a time.

 Department
1 1..*

 Instructor

License: http://creativecommons.org/licenses/by-nc-nd/3.0/

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

Object Oriented Programming

©1999-2010 Dr. Feza BUZLUCA http://www.faculty.itu.edu.tr/buzluca

http://www.buzluca.info
9.8

Examples: A human has a head. A car has an engine.

A composition relation implies that:

a) An instance of the part belongs to only one composite object.

b) An instance of the part must belong to one composite object. It can not exist
without the whole-object.

c) The composite is responsible for the creation and deletion of its parts. If
the composite is destroyed its parts must also be destroyed.

Composition

 (filled diamond)

 Human
1 1

 Head

Composition: Composition is a strong kind of aggregation where the parts cannot
exist independently of the "whole" object.

Object Oriented Programming

©1999-2010 Dr. Feza BUZLUCA http://www.faculty.itu.edu.tr/buzluca

http://www.buzluca.info
9.9

Inheritance: The white triangular arrow should point towards the class being
extended.

Teacher

Principal
Abstract classes and pure virtual (abstract) methods
are written with italic fonts.

The arrow should point upwards. This is not a rule
of UML, but it feels more logical and easier to read
in this form.

Shape

+draw()

Rectangle

+draw()

Circle

+draw()

Abstract class

(italic)

Pure virtual method

(italic)

Real method

Implementation of virtual draw

Object Oriented Programming

©1999-2010 Dr. Feza BUZLUCA http://www.faculty.itu.edu.tr/buzluca

http://www.buzluca.info
9.10

Example:

Class Teacher {
 private:
 Course * myCourses; //may be a linked list
 :
};

class Principal:public Teacher{
 private:
 School directedSchool;
 // or
 School *directedSchool;
};

1..*

Teacher

Principal School Student

Course

directedSchool 1 1

myCourses 1 * myCourses

1

1..*

1

{Vector}

{List}

Class School {
 private:
 vector<Student*> students;
 :
};

class Student{
 private:
 list<Course*> myCourses;
 :
};

Partial class diagram of a part of a system.

Object Oriented Programming

©1999-2010 Dr. Feza BUZLUCA http://www.faculty.itu.edu.tr/buzluca

http://www.buzluca.info
9.11

Interaction diagrams illustrate how objects interact via messages.
There are two common types: communication and sequence interaction diagrams.
Both can express similar interactions.
Sequence diagrams are more notationally rich, but communication diagrams have
their use as well, especially for wall sketching.

UML Interaction Diagrams

Communication diagrams:
They illustrate object interactions in a graph or network format, in which objects
can be placed anywhere on the diagram.

:ClassA

nb:ClassB

1: message2()

2: message3()

message1()

cd Example Diagram

Name of the diagram

cd: Communication

diagram Any instance

(object)

of Class A

Object nb

of ClassB

Object Oriented Programming

©1999-2010 Dr. Feza BUZLUCA http://www.faculty.itu.edu.tr/buzluca

http://www.buzluca.info
9.12

Direction of

 the message

First message

 (External)
parameter

First internal message

Link

Object
Creates a new object+

Constructor call

:Course

1: openCourse(crn)

1.1: create(crn)

: School :Teacher
 openCourse(crn)

Example:

class Teacher{
 private:
 Course * myCourse;
 public:
 void openCourse(int crn){ // openCourse method of the Teacher
 myCourse = new Course(crn); // An object of type Course is created
 // Other operations ...
 }
 // Other members ...
};

Object Oriented Programming

©1999-2010 Dr. Feza BUZLUCA http://www.faculty.itu.edu.tr/buzluca

http://www.buzluca.info
9.13

Sequence numbers of messages:

The external message is not numbered.

:ClassA
msg1()

:ClassB
1: msg2()

:ClassC

1.1: msg3()

2.1: msg5()
2: msg4()

:ClassD

2.2: msg6()

First Second

Third

Fifth

Sixth

Fourth

Nested message

It is sent in the

 method of msg2

A B C D

msg2()

1:
msg3()

1.1:

2:
msg5()

msg4()

msg6()

2.2:
2.1:

msg1()

License: http://creativecommons.org/licenses/by-nc-nd/3.0/

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

Object Oriented Programming

©1999-2010 Dr. Feza BUZLUCA http://www.faculty.itu.edu.tr/buzluca

http://www.buzluca.info
9.14

Messages to “self” or “this”:

A message can be sent from an object to itself.

1: create()
: School :Course {new}

«create»
1: make()

: School :Course {new}

Creation of Instances:

Any message can be used to create an instance, but there
is a convention in the UML to use a message named create
for this purpose (some use new).
If another message name is used, the message may be
annotated with a stereotype, like so: «create».
The create message may include parameters, indicating the
passing of initial values. This indicates, a constructor call
with parameters.

:AnyClass

msg1()

1: clear()

Object Oriented Programming

©1999-2010 Dr. Feza BUZLUCA http://www.faculty.itu.edu.tr/buzluca

http://www.buzluca.info
9.15

The message is only sent if the clause evaluates to true.

1 [color = red] : calculate()
:ClassA : ClassB

message1()

Conditional message

Mutually Exclusive Paths:
Message flows between objects may follow different paths according to some
conditions.
In the example there are two path according to condition "test" : a or b .

1a and 1b are mutually

exclusive paths
Unconditionally after

either msg2 or msg4

1a [test] : msg2()
:ClassA :ClassB

:ClassC

1a.1: msg3()

msg1()

:ClassD

1b [not test] : msg4()

1b.1: msg5()

:ClassE

2: msg6()

Conditional Messages:

Object Oriented Programming

©1999-2010 Dr. Feza BUZLUCA http://www.faculty.itu.edu.tr/buzluca

http://www.buzluca.info
9.16

Iteration or Looping:

iteration is indicated with a * and an optional

iteration clause following the sequence number

Iteration Over a Collection (Multiobject):

A common algorithm is to iterate over all members of a collection (such as a list or
map), sending a message to each.

In the UML, the term “multiobject” is used to denote a set of instances.

1 * [i:=1..N] : num := nextInt()
: Simulator :Random

runSimulation ()

1 * [i:=1..N] : grade := getGrade() : Student

avg := getAverage ()

courses[i]:

Course

This box represents one instance

from a collection of many

Course objects

optional

Object Oriented Programming

©1999-2010 Dr. Feza BUZLUCA http://www.faculty.itu.edu.tr/buzluca

http://www.buzluca.info
9.17

Sequence diagrams also illustrate the interactions between objects.
They clearly show sequence or time ordering of messages.

Sequence diagrams:

:ClassAInstance nb:ClassBInstance

message2()

message1()

message3()

sd Example

Any instance

(object)

of Class A

Object nb

of ClassB

Name of the diagram

sd: Sequence

diagram

Body (lifetime)

of the method
Lifeline of the

object

Object Oriented Programming

©1999-2010 Dr. Feza BUZLUCA http://www.faculty.itu.edu.tr/buzluca

http://www.buzluca.info
9.18

Example:

: School :Teacher

openCourse(crn)

openCourse(crn)

: Course
create(crn)

Creates a new object
Constructor call

Object

Message

Illustrating Reply or Returns:

A sequence diagram may optionally
show the return from a message as a
dashed open-arrowed line at the end
of an activation box.
There are two ways to show the
return result from a message:
1. Using the message syntax:
 returnVar := message (parameter)

2. Using a reply (return) message line.

: ClassA : ClassB

reply := getSomething()
msg1()

msg4()

msg5()

getSomething()

reply

New Object

Object Oriented Programming

©1999-2010 Dr. Feza BUZLUCA http://www.faculty.itu.edu.tr/buzluca

http://www.buzluca.info
9.19

Messages to “self” or “this”:

A message can be sent from an object to itself.

:Counter

msg1()
clear()

:Admin

:Course
create(crn)

....

<<destroy>>
X

Object Destruction:

In some circumstances it is desirable to show explicit
destruction of an object (as in C++, which does not have
garbage collection).
In this case delete operator is used and destructor of the
target object is called.
 The «destroy» stereotyped

message, with the large
X and short lifeline
indicates explicit object
destruction

License: http://creativecommons.org/licenses/by-nc-nd/3.0/

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

Object Oriented Programming

©1999-2010 Dr. Feza BUZLUCA http://www.faculty.itu.edu.tr/buzluca

http://www.buzluca.info
9.20

:A :B

calculate()

msg1()
msg x

msg y

opt [color = blue]

sd if-then

Label

Frame

if condition is true

Conditional Messages:

To support conditional and looping constructs, the UML uses frames.

Frames are regions or fragments of the diagrams; they have an operator or label
(such as loop or opt) and a guard (conditional clause).

In order to illustrate conditional messages an opt frame is placed around one or
more messages.

Object Oriented Programming

©1999-2010 Dr. Feza BUZLUCA http://www.faculty.itu.edu.tr/buzluca

http://www.buzluca.info
9.21

alt

:A :B

calculate()

msg1()

:C

calculate()

[x<10]

[else]

sd if-then-else

Mutually Exclusive Conditional Messages :
An alt frame is placed around the mutually exclusive alternatives.

Object Oriented Programming

©1999-2010 Dr. Feza BUZLUCA http://www.faculty.itu.edu.tr/buzluca

http://www.buzluca.info
9.22

Looping:

:Simulator :Random

hours := nextInt()

runSimulation()

:Programmer

work(hours)

[i:=1..N]

eat()

loop

Borders of

the for loop

Guard

Continuation

Object Oriented Programming

©1999-2010 Dr. Feza BUZLUCA http://www.faculty.itu.edu.tr/buzluca

http://www.buzluca.info
9.23

Iteration Over a Collection (Multiobject):

A common algorithm is to iterate over all members of a collection (such as a list or
map), sending a message to each.
In the UML, the term “multiobject” is used to denote a set of instances.

:Student
myCourses[i]

:Course

grade := getGrade()

avg := getAverage ()

loop [i<myCourses.size]

i++

An optional activation box

may contain arbitrary

language statements

Object Oriented Programming

©1999-2010 Dr. Feza BUZLUCA http://www.faculty.itu.edu.tr/buzluca

http://www.buzluca.info
9.24

:B :A

msg1()
msg1()

Interaction of diagrams :

sd interaction

Reference frames are used to simplify a diagram and factor out a portion into another
diagram, or if there is a reusable interaction occurrence.
It is like calling subroutines.

ref
Operation

:C

msg2()

:B :C
sd Operation

msg x()

msg z()

msg y()

