
Object Oriented Programming 

©1999-2009  Dr. Feza BUZLUCA www.buzluca.info/oop 10.1 

EXCEPTIONS 
Exceptions provide a systematic, object-oriented approach to handle runtime errors 
generated by C++ classes.  

To qualify as an exception, such errors must occur as a result of some action taken 
within a program and they must be the ones the program itself can discover.  

For example, a constructor in a user-written string class might generate an exception 
if the application tries to initialize an object with a string that’s too long. 

Similarly, a program can check if a file was opened or written successfully and 
generate an exception if it was not.  

Let’s look at how the process was handled in the past. 

In C language programs, an error 
is often signaled by returning a 
particular value from the function 
in which it occurred. 

For example, many math functions 
return a special value to indicate 
an error, and disk file functions 
often return NULL or 0 to signal 
an error. 

Each time you call one of these 
functions, you check the return 
value. 

if( somefunc() == ERROR_RETURN_VALUE )  
         // handle the error or call error-handler function 
else 
         // proceed normally  
if( anotherfunc() == NULL ) 
         // handle the error or call error-handler function  
else  
         // proceed normally  
if( thirdfunc() == 0 ) 
         // handle the error or call error-handler function  
else    // proceed normally  



Object Oriented Programming 

©1999-2009  Dr. Feza BUZLUCA www.buzluca.info/oop 10.2 

Also, it’s not practical for some functions to return an error value. 

For example, imagine a min() function that returns the minimum of two values. 
All possible return values from this function represent valid outcomes. 
There’s no value left to use as an error return. 

 

The problem becomes more complex when classes are used because errors may 
take place without a function being explicitly called. 

For example, suppose an application defines objects of a class: 

 SomeClass obj1, obj2, obj3;  
How will the application find out if an error occurred in the class constructor? 

The constructor is called implicitly, so there’s no return value to be checked.  

Surrounding each function call with an if...else statement and inserting 
statements to handle the error (or to call an error-handler routine) makes the 
listing long and hard to read. 

The problem with this approach is that every single call to such a function 
must be examined by the program. 



Object Oriented Programming 

©1999-2009  Dr. Feza BUZLUCA www.buzluca.info/oop 10.3 

If an error is detected in a member function, this member function informs the 
application that an error has occurred. 
When exceptions are used, this is called throwing an exception.  

In the application, a separate section of code is installed to handle the error. 

This code is called an exception handler or catch block: it catches the exceptions 
thrown by the member function. 

Any code in the application that uses objects of the class is enclosed in a try block.  

The exception mechanism uses three new C++ keywords: throw, catch, and try.  

Exception Syntax 

Throwing an exception: 
Syntax of a function f that throws an exception: 
 

   return_type f( parameters ) { 
        if ( exception_condition ) throw exceptioncode; 
             // normal operation  
        return expression; 
    } 
 

Here exceptioncode can be any variable or constant of any built-in type (as 
char, int, char *) or it can also be an object that defines the exception. 



Object Oriented Programming 

©1999-2009  Dr. Feza BUZLUCA www.buzluca.info/oop 

The catch block must immediately 
follow the try block. 

Try block. 

10.4 

Example; a fraction function: It takes the numerator and denominator as 
parameters, calculates the result of the fraction and returns it back.  
If the denominator is zero an exception must be thrown. 

float fraction(int num, int denom) 
{ 
     if(denom==0) throw "Divide by zero";   
     return static_cast<float>(num) / denom; 
} 
int main() 
{ 
     int numerator, denominator; 
     cout << endl << "Enter the numerator "; 
     cin >> numerator; 
     cout << endl << "Enter the denominator "; 
     cin >> denominator; 
     try{ 
         cout << fraction(numerator, denominator); 
     } 
     catch (const char * result){ 
          cout << endl << result; 
    } 
   cout << endl << "End of Program"; 
   return 0; 
} 

See Example: e10_1.cpp 



Object Oriented Programming 

©1999-2009  Dr. Feza BUZLUCA www.buzluca.info/oop 10.5 

In a catch block you may catch only the type of the exception-code, if the code 
itself is not necessary. 

catch (const char *){ 
          cout << endl << "ERROR";              // The thrown data is unknown    
} 

A function may throw more then one exceptions. For example if we don't 
want negative denominators, we can write the fraction function as follows:  

float fraction(int num, int denom) 
{ 
     if(denom == 0) throw "Divide by zero";   
     if(denom < 0) throw "Negative denominator"; 
     return static_cast<float>(num) / denom; 
} 

A function may also throw exceptions of different types. 
float fraction(int num, int denom) 
{ 
     if(denom == 0) throw "Divide by zero";                 // throws char * 
     if(denom < 0) throw "Negative denominator";        // throws char * 
     if(denom > 1000) throw -1;                                 // throws int 
     return static_cast<float>(num) / denom; 
} 



Object Oriented Programming 

©1999-2009  Dr. Feza BUZLUCA www.buzluca.info/oop 10.6 

If a function throws exceptions of different types, then a separate catch 
block must be written for each exception type. 

try { 
         cout << fraction(numerator , denominator); 
} 
catch (const char * result) {                    // Catch block for exceptions of type char *  
          cout << endl << result; 
} 
catch (int) {                   // Catch block for exceptions of type int   (value is not taken)  
          cout << endl << "ERROR"; 
} See Example: e10_2.cpp 

Like built-in data types, objects can also be thrown and caught as exceptions. 
Examine the example e10_3.cpp. In this program we have a class: Stack. This 
class includes two functions push and pop. If an error occurs, these functions 
throw an object of class Error.  

See Example: e10_3.cpp 



Object Oriented Programming 

©1999-2009  Dr. Feza BUZLUCA www.buzluca.info/oop 10.7 

Exceptions are necessary to find out if an error occurred in the class constructor. 
Constructors are called implicitly and there’s no return value to be checked.  

Example: The creator of the String class does not allow the contents of the 
String to be longer than 10 characters. 

class String{ 
 enum { MAX_SIZE = 10 };     // MAX_SIZE is a constant 
 int size; 
 char *contents; 
 public: 
 String(const char *);          // Constructor 
 void print() const;             // A member function 
 ~String();                         // Destructor 
}; 
 

String::String(const char *in_data) 
{ 
 size = strlen(in_data); 
 if (size > MAX_SIZE) throw "String too long"; 
 contents = new char[size +1];            // +1 for null character 
 strcpy(contents, in_data); 
 } 

Exceptions and Constructors 



Object Oriented Programming 

©1999-2009  Dr. Feza BUZLUCA www.buzluca.info/oop 10.8 

int main() 
{ 
 char input[20];                                // To take strings from keyboard 
 String *str;     // Pointer to objects 
 bool again;     // loop condition 
 do{ 
  again = false; 
  cout << " Enter a string: "; 
  cin >> input; 
  try{ 
      str= new String(input);               // calls the constructor 
  } 
  catch (const char *){ 
       cout << "String is too long" << endl; 
       again = true; 
  } 
 }while(again); 
 str->print();           // The creation of the object is guaranteed
 delete str; 
       return 0; 
} 

The only way to exit the do-while loop is giving strings shorter than 10 
characters. Otherwise the object is not created. See Example: e10_4.cpp 


