
Object Oriented Programming

©1999-2008 Dr. Feza BUZLUCA www.buzluca.info/oop 11.1

Templates
C++ supports code reuse in different ways. Inheritance (is-a) and composition
(has-a, nested objects) provide a way to reuse object code.

The template feature in C++ provides way to reuse source code.

Function Templates

Suppose you want to write a function that returns the absolute value of a number.
Ordinarily, this function would be written for a particular data type:
 int abs(int n) // absolute value of ints
 {
 return (n<0) ? -n : n; // if n is negative, return -n
 }
Here the function is defined to take an argument of type int and to return a value
of this same type. But now suppose you want to find the absolute value of a type
long. You need to write a completely new function:
 long abs(long n) { // absolute value of longs
 return (n<0) ? -n : n;
 }
And again, for type float:
 float abs(float n){ // absolute value of floats
 return (n<0) ? -n : n;
 }

Object Oriented Programming

©1999-2008 Dr. Feza BUZLUCA www.buzluca.info/oop 11.2

The body of the function is the same in each case, but they must be separate
functions because they handle variables of different types.

It’s true that in C++ these functions can all be overloaded to have the same
name, but you must nevertheless write a separate definition for each one.

In the C language, which does not support overloading, functions for different
types can’t even have the same name. In the C function library, this leads to
families of similarly named functions, such as abs(), fabs(), fabsl(), labs(), cabs(),
and so on.

Rewriting the same function body over and over for different types wastes
time as well as space in the listing.

Also, if you find you’ve made an error in one such function, you’ll need to
remember to correct it in each function body.

Failing to do this correctly is a good way to introduce inconsistencies into your
program.

It would be nice if there were a way to write such a function just once and have
it work for many different data types.

This is exactly what function templates do for you.

Object Oriented Programming

©1999-2008 Dr. Feza BUZLUCA www.buzluca.info/oop 11.3

// template used for absolute value function

template <class T> // function template
T abs(T n)
{
 return (n < 0) ? -n : n;
}

int main()
{
 int int1 = 5;
 int int2 = -6;
 long lon1 = 70000L;
 long lon2 = -80000L;
 double doub1 = 9.95;
 double doub2 = -10.15;
 // calls instantiate functions
 cout << abs(int1) << endl; // abs(int)
 cout << abs(int2) << endl; // abs(int)
 cout << abs(lon1) << endl; // abs(long)
 cout << abs(lon2) << endl; // abs(long)
 cout << abs(doub1) << endl; // abs(double)
 cout << abs(doub2) << endl; // abs(double)

Example:

Object Oriented Programming

©1999-2008 Dr. Feza BUZLUCA www.buzluca.info/oop 11.4

The template keyword signals the compiler that I’m about to define a function
template.

The keyword class, within the angle brackets, might just as well be called type. As
you’ve seen, you can define your own data types using classes, so there’s really no
distinction between types and classes.

The variable following the keyword class (T in this example) is called the template
argument.

What does the compiler do when it sees the template keyword and the function
definition that follows it?

The function template itself doesn’t cause the compiler to generate any code. It
can’t generate code because it doesn’t know yet what data type the function will
be working with. It simply remembers the template for possible future use.

Code is generated (compiled) according to the function call statement. This
happens in expressions such as abs(int1) in the statement:

 cout << abs(int1);

The key innovation in function templates is to represent the data type used by the
function not as a specific type such as int, but by a name that can stand for any
type. In the function template above, this name is T.

Object Oriented Programming

©1999-2008 Dr. Feza BUZLUCA www.buzluca.info/oop 11.5

Notice that the amount of RAM used by the program is the same whether I use
the template approach or write three separate functions.

What I’ve saved is having to type three separate functions into the source file.
This makes the listing shorter and easier to understand.

Also, if I want to change the way the function works, I need make the change in
only one place in the listing instead of three.

So it generates a specific version of the abs(T n) function for type int,
substituting int wherever it sees the name T in the function template.

int  T

This is called instantiating the function template, and each instantiated version of
the function is called a template function.

With which data types can a template function work?

Data type must support operations performed in the function. For example in the
abs function two operators are used: (n < 0) and -n .

Each data type, which supports these operators can be used with the abs function.

When the compiler sees a function call, it knows that the type to use is int.

See Example: e11_1.cpp

Object Oriented Programming

©1999-2008 Dr. Feza BUZLUCA www.buzluca.info/oop 11.6

Template Arguments may be Objects

For example a template function MAX can find maximum of two integers, floating
point numbers or complex numbers. Integers and floats are built-in types,
complex is a user defined type (class).

class ComplexT{ // A class to define complex numbers
 float re, im;
 public:
 : // other member functions
 bool operator>(const ComplexT&) const ; // header of operator> function
};

/* The Body of the function for operator > */
bool ComplexT::operator>(const ComplexT& z) const
{
 float f1 = re * re + im * im;
 float f2 = z.re * z.re + z.im * z.im;
 return f1 > f2;
}

Object Oriented Programming

©1999-2008 Dr. Feza BUZLUCA www.buzluca.info/oop 11.7

// template function
template <class type>
const type & MAX(const type &v1, const type & v2)
{
 if (v1 > v2) return v1;
 else return v2;
}

int main()
{
 int i1=5, i2= -3;
 char c1='D', c2='N';
 float f1=3.05, f2=12.47;
 ComplexT z1(1.4, 0.6), z2(4.6, -3.8);
 cout << MAX(i1,i2) << endl;
 cout << MAX(c1,c2) << endl;
 cout << MAX(f1,f2) << endl;
 cout << MAX(z1,z2) << endl; // operator << must be overloaded to print ComplexT
 return 0;
}

See Example: e11_2.cpp

Object Oriented Programming

©1999-2008 Dr. Feza BUZLUCA www.buzluca.info/oop 11.8

Function Templates with Multiple Arguments

// function returns index number of item, or -1 if not found template
template <class atype>
int find(const atype* array, atype value, int size)
{
 for(int j = 0; j < size; j++)
 if(array[j] == value) return j;
 return -1;
}

char chrArr[] = {'a', 'c', 'f', 's', 'u', 'z'}; // array
char ch = 'f'; // value to find
int intArr[] = {1, 3, 5, 9, 11, 13};
int in = 6;
double dubArr[] = {1.0, 3.0, 5.0, 9.0, 11.0, 13.0};
double db = 4.0;

Let’s look at another example of a function template. This one takes three
arguments: two template arguments and one basic type.

The purpose of this function is to search an array for a specific value. The function
returns the array index for that value if it finds it, or -1 if it can’t find it.

The arguments are a pointer to the array, the value to search for, and the size of
the array.

Object Oriented Programming

©1999-2008 Dr. Feza BUZLUCA www.buzluca.info/oop 11.9

int main()
{
 cout << "\n 'f' in chrArray: index=" << find(chrArr, ch, 6);
 cout << "\n 6 in intArray: index=" << find(intArr, in, 6);
 cout << "\n 4 in dubArray: index=" << find(dubArr, db, 6);
 return 0;

}
Here, the name of the template argument is atype.
The compiler generates three versions of the function, one for each type used to
call it.
Template Arguments Must Match:
When a template function is invoked, all instances of the same template argument
must be of the same type.
For example, in find(), if the array name is of type int, the value to search for must
also be of type int. You can’t say

 int intarray[] = {1, 3, 5, 7}; // int array
 float f1 = 5.0; // float value
 int value = find(intarray, f1, 4); // ERROR!

because the compiler expects all instances of atype to be the same type. It can
generate a function find(int*, int, int);

but it can’t generate find(int*, float, int);

Object Oriented Programming

©1999-2008 Dr. Feza BUZLUCA www.buzluca.info/oop 11.10

You can use more than one template argument in a function template.
For example, suppose you like the idea of the find() function template, but you aren’t
sure how large an array it might be applied to. If the array is too large, then type long
would be necessary for the array size instead of type int.
On the other hand, you don’t want to use type long if you don’t need to. You want to
select the type of the array size, as well as the type of data stored, when you call the
function.
 template <class atype, class btype>
 btype find(const atype* array, atype value, btype size)
 {
 for(btype j = 0; j < size; j++) // note use of btype
 if(array[j] == value) return j;
 return static_cast<btype>(-1);
 }
Now you can use type int or type long (or even a user-defined type) for the size,
whichever is appropriate.
The compiler will generate different functions based not only on the type of the array
and the value to be searched for, but also on the type of the array size.

short int result , si = 100;
int invalue = 5;
result = find(intArr, invalue, si)

More Than One Template Argument

long lonresult, li = 100000;
float fvalue = 5.2;
lonresult = find(floatArr, fvalue, li)

Object Oriented Programming

©1999-2008 Dr. Feza BUZLUCA www.buzluca.info/oop 11.11

Two such arguments, if there were six basic types that could reasonably be used for
each one, would allow the creation of up to 36 functions.
This can take up a lot of memory if the functions are large. On the other hand, you
don’t instantiate a version of the function unless you actually call it.

Why Not Macros?
Old-time C programmers may wonder why we don’t use macros to create different
versions of a function for different data types. For example, the abs() function could
be defined as
#define abs(n) ((n<0) ? (-n) : (n))
This has a similar effect to the function template, because it performs a simple text
substitution and can thus work with any type. However, macros aren’t used much in
C++. There are several problems with them.
They don’t perform any type checking. There may be several arguments to the macro
that should be of the same type, but the compiler won’t check whether or not they
are.
Also, the type of the value returned isn’t specified, so the compiler can’t tell if you’re
assigning it to an incompatible variable.
In any case, macros are confined to functions that can be expressed in a single
statement. There are also other, more subtle, problems with macros.
On the whole, it’s best to avoid them.

Note that multiple template arguments can lead to many functions being instantiated
from a single template.

Object Oriented Programming

©1999-2008 Dr. Feza BUZLUCA www.buzluca.info/oop 11.12

class Stack {
 int st[MAX]; // array of ints
 int top; // index number of top of stack
 public:
 Stack(); // constructor
 void push(int var); // takes int as argument
 int pop(); // returns int value
 };
If I wanted to store data of type long in a stack, I would need to define a completely
new class:
 class LongStack {
 long st[MAX]; // array of longs
 int top; // index number of top of stack
 public:
 LongStack(); // constructor
 void push(long var); // takes long as argument
 long pop(); // returns long value
 };

Class Templates
The template concept can be applied to classes as well as to functions.
Class templates are generally used for data storage (container) classes. Stacks and
linked lists, are examples of data storage classes.
The previous examples of these classes could store data of only a single basic type. The
Stack class in the program that is presented below, could store data only of type int:

Object Oriented Programming

©1999-2008 Dr. Feza BUZLUCA www.buzluca.info/oop 11.13

Solution with a class template:

template <class Type>
class Stack{
 enum {MAX=100};
 Type st[MAX]; // stack: array of any type
 int top; // number of top of stack
 public:
 Stack(){top = 0;} // constructor
 void push(Type); // put number on stack
 Type pop(); // take number off stack
};

template<class Type>
void Stack<Type>::push(Type var) // put number on stack
{
 if(top > MAX-1) // if stack full,
 throw "Stack is full!"; // throw exception
 st[top++] = var;
}

Object Oriented Programming

©1999-2008 Dr. Feza BUZLUCA www.buzluca.info/oop 11.14

template<class Type>
Type Stack<Type>::pop() // take number off stack
{
 if(top <= 0) // if stack empty,
 throw "Stack is empty!"; // throw exception
 return st[--top];
}

 // s2 is object of class Stack<long>
 Stack<long> s2;
 // push 2 longs, pop 2 longs
 try{
 s2.push(123123123L);
 s2.push(234234234L);
 cout << "1: " << s2.pop() << endl;
 cout << "2: " << s2.pop() << endl;
 }
 // exception handler
 catch(const char * msg) {
 cout << msg << endl;
 }
 return 0;
} // End of program

int main()
{
 // s1 is object of class Stack<float>
 Stack<float> s1;
 // push 2 floats, pop 2 floats
 try{
 s1.push(1111.1);
 s1.push(2222.2);
 cout << "1: " << s1.pop() << endl;
 cout << "2: " << s1.pop() << endl;
 }
 // exception handler
 catch(const char * msg) {
 cout << msg << endl;
 }

See Example:e11_3.cpp

Object Oriented Programming

©1999-2008 Dr. Feza BUZLUCA www.buzluca.info/oop 11.15

UML Notation for Template Classes and Objects:

 Stack

- st : Type[100]

...

Template

parameter

Type

intStack

:Stack<int>

A template class:

An object of template Stack.
In this example intStack object is an
integer Stack .

