
Object Oriented Programming

©1999-2008 Dr. Feza BUZLUCA www.buzluca.info/oop 12.1

Most computer programs exist to process data. The data may represent a wide
variety of real-world information: personnel records, inventories, text documents,
the results of scientific experiments.

Whatever it represents, data is stored in memory and manipulated in similar ways.

C++ classes provide a mechanism for creating a library of data structures. Since
the development of C++, most compiler vendors and many third-party developers
have offered libraries of container classes to handle the storage and processing
of data.

The Standard Template Library (STL) is the standard approach for storing and
processing data.

It is a powerful library intended to satisfy the vast bulk of your needs for
containers and algorithms, but in a completely portable fashion. This means that
your programs are easier to port to other platforms.

The STL is likely to be more tested and scrutinized than a particular vendor’s
library. Thus, it will benefit you greatly to look first to the STL for containers and
algorithms, before looking at vendor-specific solutions.

THE STANDARD TEMPLATE LIBRARY (STL)

Object Oriented Programming

©1999-2008 Dr. Feza BUZLUCA www.buzluca.info/oop 12.2

The STL contains several kinds of entities. The three most important are
 containers, algorithms, and iterators.

• A container (collection) is a way that stored data is organized in memory.

Examples are stack, linked list, the array. The STL containers are implemented by
template classes so they can be easily customized to hold different kinds of data.

• Algorithms are procedures that are applied to containers to process their data in
various ways.

For example, there are algorithms to sort, copy, search, and merge data. In the
STL, algorithms are represented by template functions. These functions are not
member functions of the container classes.

• Iterators are a generalization of the concept of pointers: They point to elements
in a container.

You can increment an iterator, as you can a pointer, so it points in turn to each
element in a container.
Iterators are a key part of the STL because they connect algorithms with
containers. The STL iterators are implemented by classes.

This chapter does not describe the STL in details. There are very good on-line
sources of STL documentation in HTML format.
For example: http://www.sgi.com/tech/stl/

Object Oriented Programming

©1999-2008 Dr. Feza BUZLUCA www.buzluca.info/oop 12.3

#include<vector>
#include<algorithm>
using namespace std;

int main(){
 vector <int> v; // vector (array) of integers
 vector <float> f; // vector (array) of floats
 : // some operations on arrays (fill)
 sort (v.begin(), v.end()); // sort is an algorithm int the STL
 sort (f.begin(), f.end());
 : // other operations on arrays
}

In STL vector is a container (template class).
sort is an algorithm (template function).
begin() and end() are member functions of vector . They returns iterators
(pointers) to the first and last element of the array.

Example:

Container

Template class
Algorithm

Template function

Object Oriented Programming

©1999-2008 Dr. Feza BUZLUCA www.buzluca.info/oop 12.4

Containers in the STL fall into two categories: sequential and associative.

The sequential containers are vector, list, and deque.

The associative containers are set, multiset, map, and multimap.

In addition, several containers are called abstract data types, which are specialized
versions of other containers. These are stack, queue, and priority_queue.

Sequential containers: Elements of the sequential containers can be accessed by
position, for example, by using an index. An ordinary C/C++ array is an example of a
sequence container.

One problem with an ordinary C/C++ array is that you must specify its size at
compile time, that is, in the source code. You must specify an array large enough to
hold what you guess is the maximum amount of data.

When the program runs, you will either waste space in memory by not filling the
array or run out of space.

The STL provides the vector container to avoid these difficulties.

The STL provides the list container, which is based on the idea of a linked list.

The third sequence container is the deque, which can be thought of as a
combination of a stack and a queue. A deque combines these approaches so you can
insert or delete data from either end. The word “deque” is derived from Double-
Ended QUEue.

Containers:

Object Oriented Programming

©1999-2008 Dr. Feza BUZLUCA www.buzluca.info/oop 12.5

Ordinary C++ array Fixed size Quick random access (by index number).
 Slow to insert or erase in the middle.
 Size cannot be changed at runtime.
vector Relocating,
 expandable array Quick random access (by index number).
 Slow to insert or erase in the middle.
 Quick to insert or erase at end.

list Doubly linked list Quick to insert or delete at any location.
 Quick access to both ends.
 Slow random access.
deque Like vector,
 but can be accessed
 at either end Quick random access (using index number).
 Slow to insert or erase in the middle.
 Quick to insert or erase (push and pop) at
 either the beginning or the end.

Basic Sequential Containers:

Container Characteristic Advantages and Disadvantages

Object Oriented Programming

©1999-2008 Dr. Feza BUZLUCA www.buzluca.info/oop 12.6

An associative container is not sequential; instead it uses keys to access data.
The keys, typically numbers or stings, are used automatically by the container to
arrange the stored elements in a specific order.
For example if m is an STL map that stores students names and uses students
numbers as a key, then the statement,

string name = m[498601];

initializes name to string value in m associated with the key 498601.

There are two kinds of associative containers in the STL: maps and sets. A map
associates a key with a value. For example student's number and student's name.
A set is similar to a map, but it stores only the keys; there are no associated
values. For example only the number of students.

The map and set containers allow only one key of a given value to be stored. This
makes sense in, say, a phone book where you can assume that multiple people don’t
have the same number.
On the other hand, the multimap and multiset containers allow multiple keys. In
an English dictionary, there might be several entries for the word “set,” for
example.

Associative containers:

Object Oriented Programming

©1999-2008 Dr. Feza BUZLUCA www.buzluca.info/oop 12.7

Container Characteristics Advantages and Disadvantages

Map Associates key with element Only one
key of each value allowed

Quick random access (by key).
Inefficient if keys not evenly
distributed.

Multimap Associates key with element Multiple
key values allowed

Quick random access (by key).
Inefficient if keys not evenly
distributed.

Set Stores only the keys themselves
Only one key of each value allowed

Quick random access (by key).
Inefficient if keys not evenly
distributed.

Multiset Stores only the keys themselves
Multiple key values allowed

Quick random access (by key).
Inefficient if keys not evenly
distributed.

Basic associative containers are: map ,set, multimap, multiset.

Object Oriented Programming

©1999-2008 Dr. Feza BUZLUCA www.buzluca.info/oop 12.8

include <vector>
:
vector<ComplexT> cvect; // create a vector of complex numbers

include <list>
:
list<Teacher> teacher_list; // create a list of Teachers

include <map>
:
map<int,string> IntMap; // create a map of ints and strings

include <multiset>
:
multiset<employee> machinists; // create a multiset of employees

Notice that there’s no need to specify the size of STL containers. The
containers themselves take care of all memory allocation.

Instantiating an STL container object is easy. First, you must include an
appropriate header file. Then you use the template format with the kind of
objects to be stored as the parameter. Examples might be

Object Oriented Programming

©1999-2008 Dr. Feza BUZLUCA www.buzluca.info/oop 12.9

Algorithms are template functions of the STL, carrying out complex operations
such as sorting and searching. They are not members of any template class.
However, containers also need member functions to perform simpler tasks that are
specific to a particular type of container.
Some member functions common to all containers:

Member Functions

size() Returns the number of items in the container.

empty() Returns true if container is empty.

max_size() Returns size of the largest possible container.

begin() Returns an iterator to the start of the container for iterating
forward through the container.

end() Returns an iterator to the past-the-end location in the container,
used to end forward iteration.

rbegin() Returns a reverse iterator to the end of the container for iterating
backward through the container.

rend() Returns a reverse iterator to the beginning of the container, used
to end backward iteration. See Example e12_1.cpp

Object Oriented Programming

©1999-2008 Dr. Feza BUZLUCA www.buzluca.info/oop 12.10

Vectors:
• Smart arrays.
• They manage storage allocation for you, expanding and contracting the size of
the vector as you insert or erase data.
• You can use vectors much like arrays, accessing elements with the [] operator.
• Such random access is very fast with vectors.
• It’s also fast to add (or push) a new data item onto the end (the back) of the
vector.
• When this happens, the vector’s size is automatically increased to hold the new
item.

Member Functions of Sequential Containers

See Example e12_2.cpp

See Example e12_3.cpp

See Example e12_4.cpp

Some member functions:
 constructors,
 push_back(),
 size(),
 operator [],
 swap(),
 empty(),
 back(),
 pop_back(),
 insert(),
 erase()

Object Oriented Programming

©1999-2008 Dr. Feza BUZLUCA www.buzluca.info/oop 12.11

• Doubly linked list.
• Each element contains a pointer not only to the next element but also to the
preceding one.
• The container stores the address of both the front (first) and the back (last)
elements, which makes for fast access to both ends of the list.
Some member functions:
 push_front(),
 front(),
 pop_front
 reverse(),
 merge(),
 unique()

Lists:

See e12_5.cpp

See e12_6.cpp

Deques:
• A deque is a variation of a vector.
• Like a vector, it supports random access using the [] operator.
• Unlike a vector (but like a list), a deque can be accessed at the front as well as the
back.
• It’s a sort of double-ended vector, supporting push_front(), pop_front(), and
front().
•Memory is allocated differently for vectors and queues. A vector always occupies a
contiguous region of memory. A deque, on the other hand, can be stored in several
noncontiguous areas; it is segmented. See e12_7.cpp

The insert() and erase()
member functions are used for
list insertion and deletion, but
they require the use of
iterators, so we will see these
functions later.

Object Oriented Programming

©1999-2008 Dr. Feza BUZLUCA www.buzluca.info/oop 12.12

Iterators are "smart" pointers to items in containers.

In general, the following holds true of iterators:

• Given an iterator iter, *iter represents the object the iterator points to
(alternatively, iter-> can be used to reach the object the iterator points to).

• ++iter or iter++ advances the iterator to the next element. The notion of
advancing an iterator to the next element is consequently applied: several
containers have a reversed iterator type, in which the iter++ operation actually
reaches an previous element in a sequence.

• For the containers that have their elements stored consecutively in memory
pointer arithmetic is available as well. This counts out the list, but includes the
vector, queue, deque, set and map. For these containers iter + 2 points to the
second element beyond the one to which iter points.

The STL containers include typedefs to define iterators. They also produce
iterators (i.e., type iterator) using member functions begin() and end() and, in
the case of reversed iterators (type reverse_iterator), rbegin() and rend().

Iterators:

vector<string> vs; // vs is an array of strings
vector<string>::iterator iter; // iter is an iterator of vs
iter = vs.begin(); // iter points to the first element of vs
++iter; // iter points to the next element

Object Oriented Programming

©1999-2008 Dr. Feza BUZLUCA www.buzluca.info/oop 12.13

In containers that provide random-access iterators (vector and queue), it’s
easy to iterate through the container using the [] operator. Containers such
as lists, which don’t support random access, require a different approach.

Data access:

int main() {
 int arr[] = { 2, 4, 6, 8 }; // array of ints
 list<int> iList(arr, arr+4); // list initialized to array
 list<int>::iterator it; // iterator to list-of-ints
 for(it = iList.begin(); it != iList.end(); it++) cout << *it << ' ';
 return 0;
}

An equivalent approach, using a while loop instead of a for loop, might be

it = iList.begin();
while(it != iList.end())
 cout << *it++ << ' ';

2 4 6 8

begin() end()

Object Oriented Programming

©1999-2008 Dr. Feza BUZLUCA www.buzluca.info/oop 12.14

Data insertion:

int main() {
 list<int> iList(5); // empty list holds 5 ints
 list<int>::iterator it; // iterator
 int data = 0; // fill list with data
 for(it = iList.begin(); it != iList.end(); it++)
 *it = data += 2;
 for(it = iList.begin(); it != iList.end(); it++) cout << *it << ' '; // display list
 return 0;
}

The first loop fills the container with the int values 2, 4, 6, 8, 10, showing that
the overloaded * operator works on the left side of the equal sign as well as on
the right. The second loop displays these values.

See Example: e12_8.cpp

Example: Shapes with the STL: Inheritance and Polymorphism

Object Oriented Programming

©1999-2008 Dr. Feza BUZLUCA www.buzluca.info/oop 12.15

Constant iterators:

The STL defines const_iterator types to be able to visit a range of the elements
in a constant container. Whereas the elements of the list in the previous example
could have been altered, the elements of the vector in the next example are
immutable, and const_iterators are required:

void main() {
 int arr[] = { 2, 4, 6, 8 }; // array of ints
 const vector<int> v1(arr, arr+4); // vector initialized to array
 vector<int>::const_iterator it; // constant iterator to vector-of-ints
 for(it = v1.begin(); it != v1.end(); it++) cout << *it << ' ';
}

Suppose you want to iterate backward through a container from the end to the
beginning. You might think you could say something like
list<int>::iterator it; // normal iterator
it = iList.end(); // start at end
while(it != iList.begin()) // go to beginning
cout << *--i << ' '; // pre-decrement iterator

Reverse iterators:

To iterate backward, the better way is to use a reverse iterator.

Object Oriented Programming

©1999-2008 Dr. Feza BUZLUCA www.buzluca.info/oop 12.16

int main() {
 int arr[] = { 2, 4, 6, 8, 10 }; // array of ints
 list<int> iList(arr, arr+5); // list initialized to array
 list<int>::reverse_iterator revit; // reverse iterator
 revit = iList.rbegin(); // iterate backwards
 while(revit != iList.rend()) // through list,
 cout << *revit++ << ' '; // displaying output
 return 0;
}

Reverse iterators act like pointers to elements of the container, except that
when you apply the increment operator to them, they move backward rather
than forward.
You must use the member functions rbegin() and rend() when you use a reverse
iterator. (But don’t try to use them with a normal forward iterator.)
Confusingly, you’re starting at the end of the container, but the member
function is called rbegin(). Also, you must increment the iterator. Don’t try to
decrement a reverse iterator; revit-- doesn’t do what you want. With a
reverse_iterator, always go from rbegin() to rend() using the increment
operator.

Using the reverse operator

Object Oriented Programming

©1999-2008 Dr. Feza BUZLUCA www.buzluca.info/oop 12.17

• Template functions. They are not members of any class.
• These algorithms were designed to work with STL containers, but you can apply
them also to ordinary C++ arrays.
Examples:

Algorithms:

The find() Algorithm:
Function prototype: Iterator find(Iterator first, Iterator last, Type const &value);
Description: Element value is searched for in the range of the elements implied by the
iterator range [first, last). An iterator pointing to the first element found is returned.
If the element was not found, last is returned. The operator==() of the underlying
data type is used to compare the elements.

 #include <iostream>
 #include <algorithm> // must be included for algorithms
 using namespace std;
 int arr[] = { 11, 22, 33, 44, 55, 66, 77, 88 };
 void main() {
 int* ptr;
 ptr = find(arr, arr+8, 33); // find first 33
 cout << "First object with value 33 found at offset " << (ptr-arr) << endl;
 }

 The output from this program is
 First object with value 33 found at offset 2.

Object Oriented Programming

©1999-2008 Dr. Feza BUZLUCA www.buzluca.info/oop 12.18

#include <iostream>
#include <algorithm>
#include <list>
using namespace std;
void main() {
 list<int> iList(5); // empty list holds 5 ints
 list<int>::iterator it; // iterator
 int data = 0; // fill list with data
 for(it = iList.begin(); it != iList.end(); it++)
 *it = data += 2;
 it = find(iList.begin(), iList.end(), 8); // look for number 8
 if(it != iList.end()) cout << "\nFound 8";
 else cout << "\nDid not find 8."; }

Using the find() algorithm with containers

As an algorithm, find() takes three arguments. The first two are iterator values
specifying the range to be searched and the third is the value to be found.
Here I fill the container with the same 2, 4, 6, 8, 10 values as in the last example.
Then I use the find() algorithm to look for the number 8. If find() returns iList.end(),
I know it’s reached the end of the container without finding a match. Otherwise, it must
have located an item with the value 8. Here the output is
 Found 8

Object Oriented Programming

©1999-2008 Dr. Feza BUZLUCA www.buzluca.info/oop 12.19

class ComplexT{
 float re,im;
 public:
 set(float r, float i){re=r; im=i;}
 bool operator==(const ComplexT &c) const{
 return re==c.re && im==c.im;
 }
};

You can also use algorithms with user defined classes. But classes must include
necessary operators, which are used by algorithms. For example the find()
algorithm uses the operator==() of the underlying data type to compare the
elements.

See Example: e12_9.cpp

int main(){
 ComplexT z[3];
 z[0].set(1.1, 1.2);
 z[1].set(2.1, 2.2);
 z[2].set(3.1, 3.2);
 ComplexT zSearch;
 zSearch.set(2.1, 2.2);
 ComplexT *result;
 result=find(z, z+3, zSearch);
 if (result == z+3) cout << "Not found";
 else cout << "Found";
 return 0;
}

Object Oriented Programming

©1999-2008 Dr. Feza BUZLUCA www.buzluca.info/oop 12.20

Function prototypes:
 void sort(Iterator first, Iterator last);
 void sort(Iterator first, Iterator last, comp);

Description:
•The first prototype: the elements in the range [first, last) are sorted in
ascending order, using the operator<() of the underlying data type.
•The second prototype: the elements in the range [first, last) are sorted in
ascending order, using the comp function object to compare the elements.

Example:

#include <iostream>
#include <algorithm>
#include <string>
using namespace std;
int main()
{
 string words[]= {"november", "kilo", "mike", "lima","oscar", "quebec", "papa"};
 sort(words, words +7);
 for(int i =0 ; i<7; i++) cout << words[i] << endl;
 return 0;
}

Example: sort()

Object Oriented Programming

©1999-2008 Dr. Feza BUZLUCA www.buzluca.info/oop 12.21

void sort(Iterator first, Iterator last, comp);
In this case the elements in the range [first, last) are sorted in ascending(?) order,
using the comp function to compare the elements.
The comp function can be a user written function:

#include <iostream>
#include <algorithm>
#include <string>
using namespace std;
bool after(const string &left, const string &right)
{
 return left > right;
}

int main()
{
 string words[]= {"november", "kilo", "mike", "lima", "oscar", "quebec", "papa"};
 sort(words, words +7, after); // after is a pointer to a function
 for(int i =0 ; i<7; i++) cout << words[i] << endl;
 return 0;
}

In this example elements are sorted in descending order because of after function.

Other prototype of sort() uses a given function to compare arguments.

See Example: e12_10.cpp See Example: e12_11.cpp

Object Oriented Programming

©1999-2008 Dr. Feza BUZLUCA www.buzluca.info/oop 12.22

Some algorithms can take something called a function object as an argument. A
function object is actually an object of a template class that has a single member
function: the overloaded () operator. The names of these classes can be used as
function names.
In the header file functional there are many useful template classes which include a
single member function the overloaded function call () operator. For example, a
function object can be created from class greater to use with the sort algorithm:

#include <iostream>
#include <algorithm>
#include <string>
#include <functional>
using namespace std;

int main()
{ string words[]= {"november", "kilo", "mike", "lima", "oscar", "quebec", "papa"};
 sort(words, words +7, greater<string>()); // greater () is a function object
 for(int i =0 ; i<7; i++) cout << words[i] << endl;
 return 0;
}

In this example elements are sorted in descending order because of greater function
object.

Function Objects

template<class T>
struct greater {
 bool operator()(const T& x, const T& y) const
 {
 return x > y ;
 }
};

Object Oriented Programming

©1999-2008 Dr. Feza BUZLUCA www.buzluca.info/oop 12.23

Besides acting as smart pointers to items in containers, iterators serve another
important purpose in the STL. They determine which algorithms can be used with
which containers.

In some theoretical sense, you should be able to apply every algorithm to every
container. In fact, many algorithms will work with all the STL containers. However,
some algorithms are inefficient (i.e., slow) when used with some containers. The sort()
algorithm, for example, needs random access to the container it’s trying to sort;
otherwise, it would need to iterate through the container to find each element before
moving it, a time-consuming approach.

Similarly, to be efficient, the reverse() algorithm needs to iterate backward as well as
forward through a container.

Iterators provide an elegant way to match appropriate algorithms with containers. If
you try to use an algorithm that’s too powerful for a given container type, then you
won’t be able to find an iterator to connect them. If you try it, you will receive a
compiler error alerting you to the problem.

The STL defines five types of iterators to make this scheme work.

• InputIterators: InputIterators can read elements from a container. The
dereference operator is guaranteed to work as an rvalue in an expression, not as an
lvalue.

• OutputIterators: OutputIterators can be used to write to a container. The de-
reference operator is guaranteed to work as an lvalue in an expression, not as an rvalue.

Iterators and Algorithms

Object Oriented Programming

©1999-2008 Dr. Feza BUZLUCA www.buzluca.info/oop 12.24

• BidirectionalIterators: BidirectionalIterators allow the traversal of a container
in both directions, for reading and writing.
• RandomAccessIterators: RandomAccessIterators provide access to any element
of the container at any moment. An algorithm such as sort() requires a
RandomAccessIterator, and can therefore not be used with lists or maps, which
only provide BidirectionalIterators.

• ForwardIterators: ForwardIterators combine InputIterators and
OutputIterators. They can be used to traverse the container in one direction, for
reading and/or writing.

Iterator Step
Forward

Read Write Step
Back

Random
Access

++ value=*i *i=value -- [n]

Random-access iterator x x x x x

Bidirectional iterator x x x x

Forward iterator x x x

Output iterator x x

Input iterator x x

Operation

Object Oriented Programming

©1999-2008 Dr. Feza BUZLUCA www.buzluca.info/oop 12.25

If you confine yourself to the basic STL containers, you will be using only two
kinds of iterators. The vector and deque require a random-access iterator,
whereas the list, set, multiset, map, and multimap require only bi-directional
iterators.

When you define an iterator, you must specify what kind of container it will be
used for. For example, if you’ve defined a list holding elements of type int,

list<int> iList; // list of ints

then to define an iterator to this list you say

list<int>::iterator it; // iterator to list-of-ints

When you do this, the STL automatically makes this iterator a bi-directional
iterator because that’s what a list requires. An iterator to a vector or a deque, on
the other hand, is automatically created as a random-access iterator.

Object Oriented Programming

©1999-2008 Dr. Feza BUZLUCA www.buzluca.info/oop 12.26

Every algorithm, depending on what it will do to the elements in a container,
requires a certain kind of iterator. If the algorithm must access elements at
arbitrary locations in the container, it requires a random-access iterator. If it will
merely step forward through the iterator, it can use the less powerful forward
iterator.

Plugging iterators into ane algorithm:

Algorithm Input Output Forward Bidirectional Random Access

for_each x

find x

count x

copy x x

replace x

unique x

reverse x

sort x

nth_element x

merge x x

accumulate x

Object Oriented Programming

©1999-2008 Dr. Feza BUZLUCA www.buzluca.info/oop 12.27

Although each algorithm requires an iterator with a certain level of capability, a more
powerful iterator will also work. The replace() algorithm requires a forward iterator,
but it will work with a bi-directional or a random-access iterator as well.

•Instead of an InputIterator it is also possible to use a Forward-, Bidirectional- or
RandomAccessIterator.

•Instead of an OutputIterator it is also possible to use a Forward-, Bidirectional- or
RandomAccessIterator.

• Instead of a ForwardIterator it is also possible to use a Bidirectional- or
RandomAccessIterator.

•Instead of a BidirectionalIterator it is also possible to use a RandomAccessIterator.

From the previous tables, you can figure out whether an algorithm will work with a
given container. The table shows that the sort() algorithm, for example, requires a
random-access iterator. The only containers that can handle random-access iterators
are vectors and deques. There’s no use trying to apply the sort() algorithm to lists,
sets, maps, and so on.

Any algorithm that does not require a random-access iterator will work with any kind
of STL container because all these containers use bi-directional iterators, which is
only one grade below random access.

As you can see, comparatively few algorithms require random-access iterators. There-
fore, most algorithms work with most containers.

 Refer to file stl.html for memeber functions and algorithms of the STL.

Object Oriented Programming

©1999-2008 Dr. Feza BUZLUCA www.buzluca.info/oop 12.28

for_each() algorithm:
The for_each() algorithm allows you to do something to every item in a container. You
write your own function to determine what that “something” is. Your function can’t
change the elements in the container, but it can use or display their values.
Function prototype:
 func for_each(InputIterator first, InputIterator last, Function func);
Description:
Each of the elements implied by the iterator range [first, last) is passed in turn to the
function func. The function may not modify the elements it receives (as the used iterator
is an input iterator). If the elements are to be transformed, transform() should be used.
Example: for_each() is used to convert all the values of an array from inches to
centimeters and display them.

 void in_to_cm(float in) // convert and display as centimeters
 {
 cout << (in * 2.54) << ' ';
 }

 int main()
 { // array of inches values
 float array[] = { 3.5, 6.2, 1.0, 12.75, 4.33 };
 vector<float> inches (array, array+5); // vector of inches values
 for_each(inches.begin(), inches.end(), in_to_cm); // output as centimeters
 return 0;
 }

See Example:e12_12.cpp

Object Oriented Programming

©1999-2008 Dr. Feza BUZLUCA www.buzluca.info/oop 12.29

The two main categories of associative containers in the STL are maps and sets.
A map (sometimes called a dictionary or symbol table) stores key and value pairs.
The keys are arranged in sorted order.
A set is similar to a dictionary, but it stores only keys; there are no values.

In both a set and a map, only one example of each key can be stored. It’s like a
dictionary that forbids more than one entry for each word.
A multiset and a multimap are similar to a set and a map, but can include multiple
instances of the same key.

The advantages of associative containers are that, given a specific key, you can
quickly access the information associated with this key; it is much faster than by
searching item by item through a sequence container. On normal associative
containers, you can also quickly iterate through the container in sorted order.

Associative containers share many member functions with other containers.
However, some algorithms, such as lower_bound() and upper_bound(), exist only
for associative containers. Also, some member functions that do exist for other
containers, such as the push and pop family (push_back() and so on), have no
versions for associative containers.

Associative Containers

Object Oriented Programming

©1999-2008 Dr. Feza BUZLUCA www.buzluca.info/oop 12.30

The set class implements a set of (sorted) values. To use the set, the header file set
must be included: #include <set>

A set is filled with values, which may be of any container-acceptable type. Each
value can be stored only once in a set.

Set

See Example: e12_13.cpp

An important pair of member functions available only with associative containers is
the lower_bound() and upper_bound().

 set<string> city;
 set<string>::iterator iter; // iterator to set
 city.insert("Trabzon"); // insert city names
 :
 iter = city.begin(); // display set
 while(iter != city.end())
 cout << *iter++ << endl;

 string lower, upper; // display entries in range
 cout << "\nEnter range (example A Azz): ";
 cin >> lower >> upper;
 iter = city.lower_bound(lower);
 while(iter != city.upper_bound(upper))
 cout << *iter++ << endl;

The program first displays an
entire set of cities. The user is
then prompted to type in a pair of
key values, and the program will
display those keys that lie within
this range.

See Example: e12_14.cpp

Object Oriented Programming

©1999-2008 Dr. Feza BUZLUCA www.buzluca.info/oop 12.31

The map class implements a (sorted) associative array. To use the map, the header
file map must be included: #include <map>

A map is filled with Key/Value pairs, which may be of any container-acceptable
type.
The key is used for looking up the information belonging to the key. The associated
information is the Value. For example, a phonebook uses the names of people as the
key, and uses the telephone number and maybe other information as the value.
Basically, the operations on a map are the storage of Key/Value combinations, and
looking for a value, given a key. Each key can be stored only once in a map. If the
same key is entered twice, the last entered key/value pair is stored, and the pair
that was entered before is lost. Example: Cities and their plate numbers.

Map

void main()
{ // set of string objects
 map<string,int> city_num;
 city_num["Trabzon"] = 61; // insert city names and numbers
 city_num["Adana"] = 01;
 string city_name;
 cout << "\nEnter a city: ";
 cin >> city_name;
 if (city_num.end() == city_num.find(city_name))
 cout << city_name << " is not in the database" << endl;
 else
 cout << "Number of " << city_name << ": " << city_num[city_name];
}

See Example: e12_15.cpp

Object Oriented Programming

©1999-2008 Dr. Feza BUZLUCA www.buzluca.info/oop 12.32

It’s possible to use basic containers to create another kind of container called a
container adaptor. An adaptor is a sort of simplified or conceptual container that
emphasizes certain aspects of a more basic container; it provides a different
interface to the programmer.
The adaptors implemented in the STL are stacks, queues, and priority queues.
A stack restricts access to pushing and popping a data item on and off the top of
the stack.
In a queue, you push items at one end and pop them off the other end.
In a priority queue, you push data in the front in random order, but when you pop
the data off the other end, you always pop the largest item stored: The priority
queue automatically sorts the data for you.
Adaptors are template classes that translate functions used in the new container
(such as push and pop) to functions used by the underlying container.
Stacks, queues, and priority queues can be created from different sequence
containers, although the deque is often the most obvious choice.
You use a template within a template to instantiate a new container. For example,
here’s a stack object that holds type int, instantiated from the deque class:
 stack< int, deque<int> > int_stack;
By default, an STL stack adapts a deque. So you can define a stack as follows:
 stack< int > int_stack;
We could force a stack to adapt a vector with the definition:
 stack< int, vector<int> > int_stack;

Container Adaptors

