
Discrete Mathematics
Trees

H. Turgut Uyar Ayşegül Gençata Yayımlı Emre Harmancı

2001-2016

1 / 55

License

c© 2001-2016 T. Uyar, A. Yayımlı, E. Harmancı

You are free to:

I Share – copy and redistribute the material in any medium or format

I Adapt – remix, transform, and build upon the material

Under the following terms:

I Attribution – You must give appropriate credit, provide a link to the license,
and indicate if changes were made.

I NonCommercial – You may not use the material for commercial purposes.

I ShareAlike – If you remix, transform, or build upon the material, you must
distribute your contributions under the same license as the original.

For more information:
https://creativecommons.org/licenses/by-nc-sa/4.0/

Read the full license:

https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode

2 / 55

Topics

Trees
Introduction
Rooted Trees
Binary Trees
Decision Trees

Tree Problems
Minimum Spanning Tree

3 / 55

Tree

Definition
tree: connected graph with no cycle

examples

4 / 55



Tree Theorems

Theorem

T is a tree (T is connected and contains no cycle).
⇔

There is one and only one path
between any two distinct nodes in T .

⇔
T is connected, but if any edge is removed

it will no longer be connected.
⇔

T contains no cycle, but if an edge is added
between any pair of nodes one and only one cycle will be formed.

5 / 55

Tree Theorems

Theorem

|E | = |V | − 1

I proof method: induction on the number of edges

6 / 55

Tree Theorems

Proof: Base step.

I |E | = 0 ⇒ |V | = 1

I |E | = 1 ⇒ |V | = 2

I |E | = 2 ⇒ |V | = 3

I assume that |E | = |V | − 1 for |E | ≤ k

7 / 55

Tree Theorems

Proof: Induction step.

I |E | = k + 1

I remove edge (y , z):
T1 = (V1,E1), T2 = (V2,E2)

|V | = |V1|+ |V2|
= |E1|+ 1 + |E2|+ 1

= (|E1|+ |E2|+ 1) + 1

= |E |+ 1

8 / 55



Tree Theorems

Theorem

T is a tree (T is connected and contains no cycle).
⇔

T is connected and |E | = |V | − 1.
⇔

T contains no cycle and |E | = |V | − 1.

9 / 55

Tree Theorems

Theorem
In a tree, there are at least two nodes with degree 1.

Proof.

I 2|E | =
∑

v∈V dv

I assume: only 1 node with degree 1:
⇒ 2|E | ≥ 2(|V | − 1) + 1
⇒ 2|E | ≥ 2|V | − 1
⇒ |E | ≥ |V | − 1

2 > |V | − 1

10 / 55

Rooted Tree

I hierarchy between nodes

I creates implicit direction on edges: in and out degrees

I in-degree 0: root (only 1 such node)

I out-degree 0: leaf

I not a leaf: internal node

11 / 55

Node Level

I level of node: distance from root

I parent: adjacent node closer to root (only 1 such node)

I child: adjacent nodes further from root

I sibling: nodes with same parent

I depth of tree: maximum level in tree

12 / 55



Rooted Tree Example

I root: r

I leaves: x y z u v

I internal nodes: r p n t s q w

I parent of y : w
children of w : y and z

I y and z are siblings

13 / 55

Rooted Tree Example

Book
I C1

I S1.1
I S1.2

I C2
I C3

I S3.1
I S3.2

I S3.2.1
I S3.2.2

I S3.3

14 / 55

Ordered Rooted Tree

I siblings ordered from left to right

I universal address system

I root: 0

I children of root: 1, 2, 3, . . .

I v : internal node with address a
children of v : a.1, a.2, a.3, . . .

15 / 55

Lexicographic Order

I address A comes before address B if one of:

I A = x1x2 . . . xixj . . .
B = x1x2 . . . xixk . . .
xj comes before xk

I A = x1x2 . . . xi

B = x1x2 . . . xixk . . .

16 / 55



Lexicographic Order Example

I 0 - 1 - 1.1 - 1.2
- 1.2.1 - 1.2.2 - 1.2.3
- 1.2.3.1 - 1.2.3.2
- 1.3 - 1.4 - 2
- 2.1 - 2.2 - 2.2.1
- 3 - 3.1 - 3.2

17 / 55

Binary Trees

I T = (V ,E ) is a binary tree:
∀v ∈ V [dv

o ∈ {0, 1, 2}]

I T = (V ,E ) is a complete binary tree:
∀v ∈ V [dv

o ∈ {0, 2}]

18 / 55

Expression Tree

I binary operations can be represented as binary trees

I root: operator, children: operands

I mathematical expression can be represented as trees

I internal nodes: operators, leaves: variables and values

19 / 55

Expression Tree Examples

7− a a + b

20 / 55



Expression Tree Examples

7− a

5
(a + b)3

21 / 55

Expression Tree Examples

7− a

5
· (a + b)3

22 / 55

Expression Tree Examples

t +
u ∗ v

w + x − y z

23 / 55

Expression Tree Traversals

1. inorder traversal:
traverse left subtree, visit root, traverse right subtree

2. preorder traversal:
visit root, traverse left subtree, traverse right subtree

3. postorder traversal (reverse Polish notation):
traverse left subtree, traverse right subtree, visit root

24 / 55



Inorder Traversal Example

t + u ∗ v / w + x − y ↑ z

25 / 55

Preorder Traversal Example

+ t / ∗ u v + w − x ↑ y z

26 / 55

Postorder Traversal Example

t u v ∗ w x y z ↑ − + / +

27 / 55

Expression Tree Evaluation

I inorder traversal requires parantheses for precedence

I preorder and postorder traversals do not require parantheses

28 / 55



Postorder Evaluation Example

t u v ∗ w x y z ↑ − + / +
4 2 3 ∗ 1 9 2 3 ↑ − + / +

4 2 3 ∗
4 6 1 9 2 3 ↑
4 6 1 9 8 −
4 6 1 1 +
4 6 2 /
4 3 +
7

29 / 55

Regular Trees

I T = (V ,E ) is an m-ary tree:
∀v ∈ V [dv

o ≤ m]

I T = (V ,E ) is a complete m-ary tree:
∀v ∈ V [dv

o ∈ {0,m}]

30 / 55

Regular Tree Theorem

Theorem
T = (V ,E ): complete m-ary tree

I n: number of nodes

I l : number of leaves

I i : number of internal nodes

I n = m · i + 1

I l = n − i = m · i + 1− i = (m − 1) · i + 1

i =
l − 1

m − 1

31 / 55

Regular Tree Examples

I how many matches are played in a tennis tournament
with 27 players?

I every player is a leaf: l = 27

I every match is an internal node: m = 2

I number of matches: i = l−1
m−1 = 27−1

2−1 = 26

32 / 55



Regular Tree Examples

I how many extension cords with 4 outlets are required
to connect 25 computers to a wall socket?

I every computer is a leaf: l = 25

I every extension cord is an internal node: m = 4

I number of cords: i = l−1
m−1 = 25−1

4−1 = 8

33 / 55

Decision Trees

I one of 8 coins is counterfeit (heavier)

I find counterfeit coin using a beam balance

I depth of tree: number of weighings

34 / 55

Decision Trees

35 / 55

Decision Trees

36 / 55



Spanning Tree

I T = (V ′,E ′) is a spanning tree of G (V ,E ):
T is a subgraph of G
T is a tree
V ′ = V

I minimum spanning tree:
total weight of edges in E ′ is minimal

37 / 55

Kruskal’s Algorithm

1. G ′ = (V ′,E ′),V ′ = ∅,E ′ = ∅
2. select e = (v1, v2) ∈ E − E ′ such that:

E ′ ∪ {e} contains no cycle, and wt(e) is minimal

3. E ′ = E ∪ {e},V ′ = V ′ ∪ {v1, v2}
4. if |E ′| = |V | − 1: result is G ′

5. go to step 2

38 / 55

Kruskal’s Algorithm Example

I minimum weight: 1
(e, g)

I E ′ = {(e, g)}
I |E ′| = 1

39 / 55

Kruskal’s Algorithm Example

I minimum weight: 2
(d , e), (d , f ), (f , g)

I E ′ = {(e, g), (d , f )}
I |E ′| = 2

40 / 55



Kruskal’s Algorithm Example

I minimum weight: 2
(d , e), (f , g)

I E ′ = {(e, g), (d , f ), (d , e)}
I |E ′| = 3

41 / 55

Kruskal’s Algorithm Example

I minimum weight: 2
(f , g) forms a cycle

I minimum weight: 3
(c, e), (c, g), (d , g)
(d , g) forms a cycle

I E ′ = {(e, g), (d , f ), (d , e), (c, e)}
I |E ′| = 4

42 / 55

Kruskal’s Algorithm Example

I E ′ = {
(e, g), (d , f ), (d , e),
(c, e), (b, e)

}
I |E ′| = 5

43 / 55

Kruskal’s Algorithm Example

I E ′ = {
(e, g), (d , f ), (d , e),
(c, e), (b, e), (a, b)

}
I |E ′| = 6

44 / 55



Kruskal’s Algorithm Example

I total weight: 17

45 / 55

Prim’s Algorithm

1. T ′ = (V ′,E ′),E ′ = ∅, v0 ∈ V ,V ′ = {v0}
2. select v ∈ V − V ′ such that for a node x ∈ V ′

e = (x , v),E ′ ∪ {e} contains no cycle, and wt(e) is minimal

3. E ′ = E ∪ {e},V ′ = V ′ ∪ {x}
4. if |V ′| = |V |: result is T ′

5. go to step 2

46 / 55

Prim’s Algorithm Example

I E ′ = ∅
I V ′ = {a}
I |V ′| = 1

47 / 55

Prim’s Algorithm Example

I E ′ = {(a, b)}
I V ′ = {a, b}
I |V ′| = 2

48 / 55



Prim’s Algorithm Example

I E ′ = {(a, b), (b, e)}
I V ′ = {a, b, e}
I |V ′| = 3

49 / 55

Prim’s Algorithm Example

I E ′ = {(a, b), (b, e), (e, g)}
I V ′ = {a, b, e, g}
I |V ′| = 4

50 / 55

Prim’s Algorithm Example

I E ′ = {(a, b), (b, e), (e, g), (d , e)}
I V ′ = {a, b, e, g , d}
I |V ′| = 5

51 / 55

Prim’s Algorithm Example

I E ′ = {
(a, b), (b, e), (e, g),
(d , e), (f , g)

}
I V ′ = {a, b, e, g , d , f }
I |V ′| = 6

52 / 55



Prim’s Algorithm Example

I E ′ = {
(a, b), (b, e), (e, g),
(d , e), (f , g), (c, g)

}
I V ′ = {a, b, e, g , d , f , c}
I |V ′| = 7

53 / 55

Prim’s Algorithm Example

I total weight: 17

54 / 55

References

Required Reading: Grimaldi

I Chapter 12: Trees
I 12.1. Definitions and Examples
I 12.2. Rooted Trees

I Chapter 13: Optimization and Matching
I 13.2. Minimal Spanning Trees:

The Algorithms of Kruskal and Prim

55 / 55


