Discrete Mathematics

H. Turgut Uyar Aysegiil Gengata Yayimli

Trees

2001-2016

Emre Harmanci

License

@w (© 2001-2016 T. Uyar, A. Yayimh, E. Harmanci

You are free to:

» Share — copy and redistribute the material in any medium or format
» Adapt — remix, transform, and build upon the material
Under the following terms:
» Attribution — You must give appropriate credit, provide a link to the license,
and indicate if changes were made.
» NonCommercial — You may not use the material for commercial purposes.
» ShareAlike — If you remix, transform, or build upon the material, you must
distribute your contributions under the same license as the original.
For more information:
https://creativecommons.org/licenses/by-nc-sa/4.0/
Read the full license:
https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode

Topics

Trees
Introduction
Rooted Trees
Binary Trees
Decision Trees

Tree Problems
Minimum Spanning Tree

Tree

Definition
tree: connected graph with no cycle

examples

a a a./.

Tree Theorems

Theorem

T is a tree (T is connected and contains no cycle).
=
There is one and only one path
between any two distinct nodes in T.
=
T is connected, but if any edge is removed
it will no longer be connected.
=
T contains no cycle, but if an edge is added
between any pair of nodes one and only one cycle will be formed.

Tree Theorems

Theorem

E]=|V| -1

» proof method: induction on the number of edges

55

Tree Theorems

Proof: Base step.

» |[E|=0=|V|=1
> |E[=1=|V|=2
» [E|=2=1|V|=3
» assume that |E| = |V/|—1 for |E| < k

Tree Theorems

Proof: Induction step.

> |[E|=k+1

» remove edge (y, z):
T = (W, E), Ta= (2, E)

VI = [Vi[+ V2]
= |E|+1+|E|+1
= (|&|+|E|+1)+1
= |E|+1

Tree Theorems

Theorem

T is a tree (T is connected and contains no cycle).
=
T is connected and |E| = |V| — 1.
=
T contains no cycle and |E| = |V| — 1.

9/55

Tree Theorems

Theorem
In a tree, there are at least two nodes with degree 1.

Proof.

> 2‘E’:Zv€VdV

» assume: only 1 node with degree 1:
=2|E| >2(|V|-1)+1
=2|E| >2|V| -1
S B2 V-1 > |v| -1

10/55

Rooted Tree

> hierarchy between nodes

> creates implicit direction on edges: in and out degrees

> in-degree 0: root (only 1 such node)
» out-degree 0: leaf

» not a leaf: internal node

11 /55

Node Level

» level of node: distance from root

> parent: adjacent node closer to root (only 1 such node)
» child: adjacent nodes further from root

» sibling: nodes with same parent

» depth of tree: maximum level in tree

12 /55

Rooted Tree Example

vV v. vy

v

root: r
leaves: x y z u v
internal nodes: rpntsqw

parent of y: w
children of w: y and z

y and z are siblings

Rooted Tree Example

Book
/ \
o C|2 c3
/\ I
S1.1 S1.2 S31 S32 S33
S321 S322

Book
» C1
» S1.1
» S1.2
» C2
» C3

» S3.1
» S3.2

» S3.2.1
» 53.2.2

» 533

14 /55

Ordered Rooted Tree

» siblings ordered from left to right

» universal address system

» root: 0
» children of root: 1,2,3,...

» v: internal node with address a

children of v: a.1,a.2,a.3,...

Lexicographic Order

» address A comes before address B if one of:

> A=Xx1X0. .. XX} ...
B:X1X2...X,'Xk...
xj comes before x

| A:X1X2...X,'
B=x1x0...xjxx...

16 /55

Lexicographic Order Example

0
[
1/‘2\3 »0-1-11-12
® -121-122-123

o
\ ‘\ -1231-1232

e o020 o o 022 0 o -13-14-2
1.1/‘“.3 14 241 ‘ 31 3.2 51-929-991
e o @23 ® -3-31-32
121 1.2.2 ‘\ 2.2.1
e o
1.23.1 1232

17 /55

Binary Trees

» T =(V,E) is a binary tree:
Vv e V [d,° €{0,1,2}]

» T =(V,E) is a complete binary tree:
Vv e V [d,° €{0,2}]

18 /55

Expression Tree

v

binary operations can be represented as binary trees

v

root: operator, children: operands

v

mathematical expression can be represented as trees

v

internal nodes: operators, leaves: variables and values

19/55

Expression Tree Examples

a+b

20/55

Expression Tree Examples

7—a

(a+ b)®

21 /55

Expression Tree Examples

N

2 /55

Expression Tree Examples

u*xv

w+x—y*?

Expression Tree Traversals

1. inorder traversal:
traverse left subtree, visit root, traverse right subtree

2. preorder traversal:
visit root, traverse left subtree, traverse right subtree

3. postorder traversal (reverse Polish notation):
traverse left subtree, traverse right subtree, visit root

24 /55

Inorder Traversal Example

t+uxv/w+x—y 1z

25 /55

Preorder Traversal Example

+t/xuv+w—x1yz

26 /55

Postorder Traversal Example

tuv xwxyz 1 — + /+

N
N

Expression Tree Evaluation

» inorder traversal requires parantheses for precedence

» preorder and postorder traversals do not require parantheses

28 /55

Postorder Evaluation Example

tuv s wxyz | — + /+
423 %1923 17 — + /+

Regular Trees

» T =(V,E)is an m-ary tree:

4 2 3
46 192 3 7 vv eV [d® < m
46 1 9 8 — » T =(V,E) is a complete m-ary tree:
46 1 1 + Vv e V [d,° € {0, m}]
4 6 2 /
4 3 +
7
29 /55 30/55
Regular Tree Theorem Regular Tree Examples
Theorem
T = (V,E): complete m-ary tree
> n: number of nodes » how many matches are played in a tennis tournament
' ith 27 players?
» [: number of leaves W players
» i: number of internal nodes > every player is a leaf: | = 27
> n=m-i+1 > every match is an internal node: m =2
> l=n—i=m-i+1—i=(m—-1)-i+1 » number of matches: i:%:%:%
I=1

I:m—l

31/55

32/55

Regular Tree Examples

» how many extension cords with 4 outlets are required
to connect 25 computers to a wall socket?

> every computer is a leaf: | =25

> every extension cord is an internal node: m =4

e =1 _ 25-1 _
» number of cords: | = = =25 =38

33 /55

Decision Trees

» one of 8 coins is counterfeit (heavier)

» find counterfeit coin using a beam balance

» depth of tree: number of weighings

34 /55

Decision Trees

{1,2,3,4} - {5,6,7,8}

Decision Trees

{1,2,3} - {6,7,8}

i & &8 4 4 & {8 {7

{6} - {8}

{8}

Spanning Tree

» T = (V' E’') is a spanning tree of G(V, E):
T is a subgraph of G
T is a tree
Vi=V

> minimum spanning tree:
total weight of edges in E’ is minimal

37 /55

Kruskal's Algorithm

1. G =(V,E),V=0,E =0
2. select e = (v1,) € E — E’ such that:
E" U {e} contains no cycle, and wt(e) is minimal

3. EE=Eu{e}, V =V U{vi, v}
4. if |E'| = |V|—1: result is G’
5. go to step 2

38 /55

Kruskal's Algorithm Example

» minimum weight: 1
(e &)

> E'={(e,8)}

» |[E'|=1

39 /55

Kruskal's Algorithm Example

> minimum weight: 2

(d, e),(d, f)a(fzg)
> E'={(e. g).(d. f)}
> |E'|=2

40 /55

Kruskal's Algorithm Example

» minimum weight: 2

(d,e),(f,g)
» E'={(e,g),(d,f),(d,e)}
» |E'|=3

41 /55

Kruskal's Algorithm Example

> minimum weight: 2
(f,g) forms a cycle

> minimum weight: 3

(C7 e)? (C7g)7 (d7 g)
(d, g) forms a cycle

> |E =4

> E'={(e,8).(d,f),(d,e),(c,e)}

55

Kruskal's Algorithm Example

43 /55

Kruskal's Algorithm Example

44 /5

Kruskal's Algorithm Example

> total weight: 17

45 /55

Prim's Algorithm

[y

T = (V' E'),E' =0,vo € V, V' = {1}
2. select v € V — V/ such that for a node x € V/
e = (x,v), E" U{e} contains no cycle, and wt(e) is minimal
3. EE=EuU{e},V =V U{x}
4. if [V =|V]: resultis T’
5. go to step 2

46 /55

Prim's Algorithm Example

» E'=1)
> V= {a)
> |V =

47 /55

Prim's Algorithm Example

» E'={(a,b)}
» V' ={a, b}
> |V =2

48/5

Prim's Algorithm Example

» E' ={(a,b),(b,e)}
» V' ={a b e}
> |V =3

49 /55

Prim's Algorithm Example

» E'={(a,b),(b,€),(e,8)}
» V' ={a be g}
» V| =4

50 /55

Prim's Algorithm Example

» E = {(37 b)7 (b, e), (e,g), (d7 e)}
» V' ={a b,e g,d}
» V| =5

Prim's Algorithm Example

» E'={
b), (b, e), (e, &),
(d,e).(f,8)
}
» V' ={a b,e g, df}
» |[V/|=6

—~
2o

Prim's Algorithm Example

={
(a b), (b, e), (e, &),
}(d e),(f,g),(c.8)
» V' ={a b,e g,d, f,c}

> V=7

53 /55

Prim's Algorithm Example

> total weight: 17

54 /55

References

Required Reading: Grimaldi

» Chapter 12: Trees

» 12.1. Definitions and Examples
» 12.2. Rooted Trees

» Chapter 13: Optimization and Matching

» 13.2. Minimal Spanning Trees:
The Algorithms of Kruskal and Prim

55/55

