
1

Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttps://akademi.itu.edu.tr/en/buzluca/

http://www.buzluca.info

OBJECT-ORIENTED PROGRAMMING

IN C++

Feza BUZLUCA

Istanbul Technical University

Computer Engineering Department

https://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

This work is licensed under a Creative Commons

Attribution-NonCommercial-NoDerivatives 4.0 International License. (CC BY-NC-ND 4.0)

https://creativecommons.org/licenses/by-nc-nd/4.0/

https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode

Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttps://akademi.itu.edu.tr/en/buzluca/

http://www.buzluca.info
1.2

Main Objectives of the Course :

• To introduce Object-Oriented Programming and Generic Programming

• To show how to use these programming schemes with the C++ programming
language to build “good” (high-quality) programs.

INTRODUCTION

Need for high-quality design and good programming methods:

Today, almost every electronic device includes a computer system controlled by
software.

Software plays a vital role in our daily lives.

Problems:

• Software project costs (especially maintenance costs) are high.

Maintenance: Changes (requirement changes or bug fixes) and extensions
must be made to the software system after it has been delivered to the
customer.

• Software errors may cause financial losses, loss of lives and jobs.

2

Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttps://akademi.itu.edu.tr/en/buzluca/

http://www.buzluca.info
1.3

• A software bug with the UK’s NHS (National Health Service) in 2018 put over
10,000 patients at risk of getting the wrong medication.

• As a result of a bug in American Airlines' Holiday Scheduling Software, a large
number of its pilots were able to take time off at the same time during the
Christmas holiday season in 2017.

Over fifteen thousand flights were rescheduled since there weren't any pilots
to fly them.

• In 2019, the Boeing 737 Max crash was caused by flaws in software design and
not by the pilots or the airline’s performance.

• Tesla recalled 12,000 cars in 2021 after finding a glitch in its Full-Self Driving
beta software.

A software bug caused vehicles to falsely detect forward collisions, triggering
the automatic emergency braking (AEB) system and bringing them to a sudden
stop.

Source:
https://www.softwaretestingmagazine.com/knowledge/5-real-life-consequences-of-software-bugs-why-high-

quality-standards-are-so-important/

https://www.testdevlab.com/blog/10-biggest-software-bugs-and-tech-fails-of-2021

Examples of software failures:

Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttps://akademi.itu.edu.tr/en/buzluca/

http://www.buzluca.info
1.4

The ability to deliver a software system

1. that meets quality needs of different stakeholders (user, developer,
customer …)

o Functionality
o Performance (speed, accuracy, etc.)
o Efficiency (processor, memory, network, etc.)
o Reliability (error free)
o Security (access control)
o Maintainability (modify, extend, reuse)
o …

2. on time,
3. within budget.

Once the systems are operational, the challenges of being on time, on budget,
and with the expected quality do not disappear.
They need to be sustained and evolved to meet changing needs and changing
environments.

Goal of a software development Project:

Some of the
software quality
attributes

Just writing a code that runs somehow is not sufficient!

You should consider the quality needs of the system's stakeholders.

3

Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttps://akademi.itu.edu.tr/en/buzluca/

http://www.buzluca.info

Expectations of different stakeholders (Quality needs):

Source: D. Falessi, G. Cantone, R. Kazman, and P. Kruchten, “Decision-making techniques
for software architecture design,” ACM Computing Surveys, vol. 43, pp. 1-28, Oct. 2011. 1.5

Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttps://akademi.itu.edu.tr/en/buzluca/

http://www.buzluca.info

ISO (the International Organization for Standardization) and IEC (the
International Electrotechnical Commission) prepared standards for quality models.

You may find definitions of the quality attributes of a software system in the
following standard.

ISO/IEC 25010: Systems and software Quality Requirements and Evaluation
(SQuaRE) - System and software quality models

This standard includes two quality models.
A) Quality in use model:

This is the external quality of the system; the impact on stakeholders (customers,
direct and indirect users, etc.) in specific contexts of use.
B) Product Quality:

These characteristics relate to the software development team.

Details of the quality models are out of the scope of this course.

They will be covered in BLG 468E "Object-Oriented Modeling and Design" (8th
semester) and BLG 625 "Software Design Quality " (graduate) courses.

This course will give only a brief insight into a software system's quality
attributes that must always be considered during software development.

Quality characteristics of a software system

1.6

4

Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttps://akademi.itu.edu.tr/en/buzluca/

http://www.buzluca.info
1.7

Internal

Software developer

External

User

• A program must do its job correctly (effectiveness).
• A program must perform as fast as necessary (Time constraints).

• It must not waste system resources (processor time, memory, disk capacity, network
capacity) too much (efficiency).

• It must be reliable (trustful).
• It must be useful, usable, and have enough documentation (easy to learn and use).
• It must be easy to update (extend, adapt) the program (flexibility).

• It must be functionally complete and correct.
• It must be efficient (time behavior, resource utilization, capacity).
• Source code must be readable and understandable (comments, documentation).
• It must be easy to extend and update (change) the program according to new

requirements and adapt it to new environments.

• It must be easy to test the program to find and correct errors.
• Modules of the program must be reusable in further projects.

Quality Attributes of a Software (External and Internal)

While designing and coding a program (and learning a programming language),
these quality attributes must always be considered.

License: https://creativecommons.org/licenses/by-nc-nd/4.0/

Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttps://akademi.itu.edu.tr/en/buzluca/

http://www.buzluca.info
1.8

Why Object-Oriented Technology?

Expectations are,

• Reducing the effort, complexity, and cost of development.

• Reducing the cost of maintenance (finding bugs, correcting them, improving
the system).

• Reducing the cost of extending the system (adding new features).

• Reducing the effort to adapt an existing system (quicker reaction to changes
in the business environment) (flexibility).

• Reducing the effort to use existing modules in a new project (reusability).

• Increasing the reliability of the system (fewer failures.)

Object-oriented programming technique enables programmers to build high-quality
programs.

While you design and code a program, you must consider these expectations.

If there are multiple options when writing a program, you should choose one that
meets these expectations.

5

Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttps://akademi.itu.edu.tr/en/buzluca/

http://www.buzluca.info

Object-Orientation

Programming Language

(C++)

Task/Problem
Need/Requirements

Analysis/Planning

Modeling/Design

Implementation
(Coding)

Testing
Evaluation Product

Documentation

Software Development Process

1.9

Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttps://akademi.itu.edu.tr/en/buzluca/

http://www.buzluca.info
1.10

• Analysis: Gaining a clear understanding of the problem. (Role: Analyst)
Understanding requirements. Understanding what the user wants. Requirements
may change during (or after) the development of the system!
It is about understanding the system (the problem). What should the system do?

• Design: Identifying the concepts (entities) and their relations involved in a
solution. (Role: Software architect, designer)
Here, our design style is object-oriented. So entities are objects (classes).
This stage has a strong effect on the quality of the software.

• Implementation (Coding): The solution (model) is expressed in a program. (Role:
Developer)
Coding is connected with the programming language. In this course, we will use
C++.

• Documentation: Each phase of a software project must be clearly explained.

• Evaluation: Testing, measurement, performance analysis, quality assessment.
The behavior of each object and the whole program for possible cases must be
examined. (Role: Quality assurance, Tester)

Details of the software development process are covered in the "Software
Engineering" course.

Basic steps of the software development process

6

Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttps://akademi.itu.edu.tr/en/buzluca/

http://www.buzluca.info
1.11

The Unified (Software Development) Process - UP

The Unified Process is a popular iterative software development process for
building object-oriented systems. It promotes several best practices.

• Iterative: Development is organized into a series of short, fixed-length (for
example, three-week) mini-projects called iterations; the outcome of each is a
tested, integrated, and executable partial system.

Each iteration includes its own requirements analysis, design, implementation,
and testing activities.

• Incremental, evolutionary

• Risk-driven

Requirements

Analysis

Design

Implement.

Test

Prod.
An iteration step
4 weeks for example

Requirements

Analysis

Design

Implement

Test

Product

Iterations are
Fixed in length.

The system
grows

incrementally

Time

Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttps://akademi.itu.edu.tr/en/buzluca/

http://www.buzluca.info
1.12

Like any human language, a programming language provides a way to express
concepts.
Program development involves creating models of real-world situations and
building computer programs based on these models.
Computer programs may contain computer-world representations of the things
(objects) that constitute the solutions to real-world problems.

What is programming? Steps of software development

Analyst/ Software Architect / Developer
(Software Engineer)

Object-Oriented Prog.
Programming Language

Real World

Problem
Domain

Abstraction
Modeling

Design
Implementation

Design PatternsDesign Principles
Use cases, Analysis

Program

Solution World

Software
Domain

Problem Scenarios Domain model Design model Program (code) Software
(product)

7

Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttps://akademi.itu.edu.tr/en/buzluca/

http://www.buzluca.info
1.13

A possible road in your professional life

If you will work in the world of software development

Programmer/
Developer

Software
Architect

Source:
http://www.planetgeek.ch

Source:
http://www.smashingapps.com/

Project
Leader/Manager

Writes the code.
Designs the architecture.

Coaches the team.

Decides.

Management duties.

Not only about software

Source:
http://www.businessadministr
ationinformation.com/

License: https://creativecommons.org/licenses/by-nc-nd/4.0/

Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttps://akademi.itu.edu.tr/en/buzluca/

http://www.buzluca.info
1.14

Learning a Programming Language

• Knowledge about a programming language's grammar rules (syntax) is not
enough to write “good” programs.

• The essential thing to do when learning to program is to focus on concepts
(design and programming techniques) and not get lost in language-technical
details.

• Rather than the programming language's rules, the programming scheme must
be understood.

Understanding design techniques comes with time and practice.

• Learn and use design principles and design patterns.

• Always consider quality characteristics (understandability, flexibility, …).

8

Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttps://akademi.itu.edu.tr/en/buzluca/

http://www.buzluca.info

The main objective of this course is not to teach a programming language.
However, examples are given in C++.

Properties of the C++ programming language:

• C++ supports object-oriented and generic programming.

• Performance (especially speed) of programs written with C++ is high.

• It is helpful in low-level programming environments where direct control of
hardware is necessary.

Embedded systems and compilers are created with the help of C++.

• C++ gives the user control over memory management (also increases the
programmer's responsibility “with authority comes responsibility").

• C++ is used by hundreds of thousands of programmers in every application
domain.

- Hundreds of libraries support this use,

- hundreds of textbooks, several technical journals, and many conferences.

• C++ programmers can quickly adapt to other object-oriented programming
languages such as Java or C#.

1.15

Why C++?

Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttps://akademi.itu.edu.tr/en/buzluca/

http://www.buzluca.info

• Game (engine) development: Speed and control over hardware are crucial.
Examples: Fortnite and Unreal Engine

• Graphics and user interface programs

• Systems programming: Operating systems, device drivers. Here, direct
manipulation of hardware under real-time constraints is essential.

• High-performance applications: Scientific computing and financial modeling.

• Embedded systems: For example, systems for cars and medical devices.
It is possible to implement relatively small and efficient programs that can run
on limited hardware resources.

1.16

The applications domain of C++:

Examples of applications written in C++:
• Apple's Mac OS X,
• Adobe Systems,
• Backend services of Facebook,
• Google's Chrome browser,
• Microsoft Windows operating systems, MS Office, Visual Studio
• Mozilla Firefox, Thunderbird,
• MySQL
are written in part or in their entirety with C++.

9

Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttps://akademi.itu.edu.tr/en/buzluca/

http://www.buzluca.info
1.17

C++ Standards

Official: ISO/IEC JTC1 (Joint Technical Committee 1) / SC22 (Subcommittee 22)
/ WG21 (Working Group 21): JTC1/SC22/WG21

The current C++ standard is ISO/IEC 14882:2023 (C++23) (to be published).

The next planned standard is C++26.

When these lecture notes were written (January 2024), the most recently
published standard was ISO/IEC 14882:2020 (C++20).

Working drafts of C++23 are also available.

You can get the standard in İTÜ campus from the website of the British
Standards Online: http://bsol.bsigroup.com/

Information about C++ standards: https://isocpp.org/std/the-standard

Be aware of programming standards and use compilers that support the current
one.

For example, you can use GCC, Clang, or Visual Studio.

C++ is standardized by the working group WG 21 of the
International Organization for Standardization (ISO) and the
International Electrotechnical Commission (IEC).

Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttps://akademi.itu.edu.tr/en/buzluca/

http://www.buzluca.info
1.18

Imperative/Procedural Programming Technique

• Pascal, C, BASIC, Fortran, and similar traditional programming languages are
imperative languages.

That is, each statement (command) in the language tells the computer to do
something.

• In a imperative/ procedural language, the emphasis is on doing things
(functions/procedures).

SHARED

(GLOBAL)

DATA

Main program Functions
• A program is divided into functions

(procedures) and—ideally, at least—
each function has a clearly defined
purpose and a clearly defined
interface to the other functions in
the program.

10

Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttps://akademi.itu.edu.tr/en/buzluca/

http://www.buzluca.info
1.19

Problems with the Imperative/Procedural Programming

• Procedural programs (functions and data structures) do not model the real
world very well.

The real world does not consist of only functions. The real world consists of
objects.

• Data is undervalued; emphasis is on functions.

Data is, after all, the reason for a program’s existence.

The essential parts of a program about a school, for example, are not functions
that display the data or functions that check for correct input, etc.

Essential parts are student, teacher, and course data.

• Data items and related functions are scattered around the program (not in the
same module as objects).

• Global data can be corrupted by functions that have no business changing it.

• Creating new (user-defined) data types is complex.

Imperative programming also has some advantages, and it is also possible to write
good programs using procedural programming (e.g., C programs).

However, object-oriented programming offers programmers many advantages to
enable them to write high-quality programs.

License: https://creativecommons.org/licenses/by-nc-nd/4.0/

Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttps://akademi.itu.edu.tr/en/buzluca/

http://www.buzluca.info
1.20

The Object-Oriented Approach

The real world (problem) consists of objects.

The software system (solution) also consists of objects.

Computer programs may contain computer-world representations of the things
(objects) that constitute the solutions to real-world problems.

The close match between objects in the programming sense and objects in the
real world increases the quality of the design.

Real-world objects

and relations

Software objects

and relations

Low representational gap

The fundamental principle of object-oriented programming is
the "low representational gap."

What kinds of things become objects in object-oriented programs?
• Human entities: Employees, customers, salespeople, workers, manager
• Graphics program: Point, line, square, circle, ...
• Mathematics: Complex numbers, matrix
• Computer user environment: Windows, menus, buttons
• Data-storage constructs: Customized arrays, stacks, linked lists

11

Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttps://akademi.itu.edu.tr/en/buzluca/

http://www.buzluca.info

If you look at a university system, there are many functions and a lot of
complexity.

• Students have IDs, they attend courses, they take grades, and their GPAs are
calculated.

• Instructors give courses, perform some industrial and scientific projects,
have administrative duties, and their salaries are calculated each month.

• Courses are offered in specific time slots in a classroom. They have a plan.

Considered this way, looking at every element at once and focusing on functions,
a university system becomes very complex.

Object-oriented modeling:

If you wrap what you see in the problem up into objects, the system is easier to
understand and handle.

• There are students, instructors, courses, and classrooms.

• These objects have behaviors, abilities, or responsibilities.

• There are relations between them.

1.21

Example:

Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttps://akademi.itu.edu.tr/en/buzluca/

http://www.buzluca.info
1.22

To solve a problem in an object-oriented language, the programmer should
consider three factors:

1. What are the objects that make up the problem domain?

Student, course, instructor, classroom, etc.

2. What are the responsibilities of objects?

Students can calculate their GPAs; instructors can enter grades;
classrooms can express their capacities, etc.

3. What are the relations between objects?

Students take courses; students contain a list of courses; a master's
student is a special type of student, and courses are given in classrooms.

Thinking in terms of objects:

Student

ID

calculateGPA()

assigned
Classroom

Capacity

getCapacity()

Course

CRN

getCode()

takes *

{List}

Internal mechanisms and parts that work together are wrapped into a class.

(The Unified Modeling Language (UML) is a useful tool to express the model.)

12

Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttps://akademi.itu.edu.tr/en/buzluca/

http://www.buzluca.info

Real-world objects have two parts:
1. Attributes (property or state: characteristics that can change),
2. Behavior (or abilities: things they can do or responsibilities).

Examples:

• Object: Student
Attributes: ID, Name, Birthdate, List of taken courses, …
Behavior (responsibilities): Calculating her GPA, listing the course names

• Object: Classroom
Attributes: Capacity, timetable
Behavior (responsibilities): Entering the date of the course into the timetable,
showing the schedule, and listing course names given in this classroom.

Software objects (classes) also have two parts like real-world objects:
1. Data represent attributes,
2. Functions (methods) represent behavior.

What is an object?

1.23

Data

Functions (methods)
Software
object

Attributes

Behavior

Real-world
object

Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttps://akademi.itu.edu.tr/en/buzluca/

http://www.buzluca.info

Encapsulation: To create software models of real-world objects, data, and the
functions that operate on that data are combined into a single program entity.

Data represent the attributes (state), and functions represent the behavior of an
object.

Data and its functions are said to be encapsulated into a single entity (class).

An object’s functions, called member functions in C++, typically provide the only
way to access its data.

The data is usually hidden (private), so it is safe from accidental alteration.

If you want to modify the data in an object, you know exactly what functions
interact with it: the member functions in the object. No other functions can
access the data.

This simplifies writing, debugging, and maintaining the program.

Encapsulation and data hiding are key terms in the description of object-oriented
languages.

The other essential concepts of the OOP are inheritance and polymorphism,
which are explained in subsequent chapters.

Key Terms The Object-Oriented Approach: Encapsulation - Data Hiding

1.24

13

Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttps://akademi.itu.edu.tr/en/buzluca/

http://www.buzluca.info
1.25

A point on a plane has two attributes; x-y coordinates.

A point's abilities (behavior, responsibilities) are moving on the plane, appearing
on the screen, and disappearing.

These responsibilities are determined by the requirements of the stakeholders.

We can create a model for two-dimensional points with the following parts:

• Two integer variables (x , y) to represent x and y coordinates

• A function to move the point: move ,

• A function to print the point on the screen: print ,

• A function to hide the point: hide .

Example of an Object: A Point in a graphics program

Once the model (class) of the point has been
built and tested, it is possible to create and
activate many point objects from this model.

In the example on the right, point1, point2,
and point3 are three different objects of the
same class (model) Point.

Point point1, point2, point3;

:

point1.move(50,30);

point1.print();

point2.move(0,100);

Point

+ void move(int, int)

- x, y: Integer

+ void print()

+ void hide()

Model (class) of a point:

UML

License: https://creativecommons.org/licenses/by-nc-nd/4.0/

Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttps://akademi.itu.edu.tr/en/buzluca/

http://www.buzluca.info
1.26

A C++ program typically consists of a number of
objects that communicate with each other by calling
one another’s member functions (messaging).

move

print

hide

The Model of an Object

Main program
Objects

message message

message

message

message

Data (attributes)

Functions (abilities, behaviors, responsibilities)x

y

Structure of an object-oriented program in C++:

14

Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttps://akademi.itu.edu.tr/en/buzluca/

http://www.buzluca.info
1.27

• The object-oriented approach provides tools for the programmer to represent
elements in the problem space (Low representational gap).

• We refer to the elements in the problem space (real world) and their
representations in the solution space (program) as “objects.”

• OOP allows you to describe the problem in terms of the problem rather than in
terms of the computer where the solution will run.

• So when you read the code describing the solution, you also read words
expressing the problem.

• Some benefits of the OOP if the techniques are applied properly:

– Understandability: It is easy to understand a good program. Consequently, it is
easy to analyze the program in case of failures and modify it if necessary.

– Low probability of errors
– Flexibility: Adding new modules (parts of the software system) or modifying

existing modules is easy.
– Reusability: Existing modules can be used in new projects.

– Teamwork: Modules can be written by different team members and integrated
easily.

Conclusion 1 (Good news)

Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttps://akademi.itu.edu.tr/en/buzluca/

http://www.buzluca.info

• Programming is fun, but it is related (only) to the implementation phase of
software development.

• Development of quality software is a bigger job, and besides programming
skills, other capabilities are also necessary.

• This course will cover OO basics: Encapsulation, data hiding, inheritance, and
polymorphism.

• Although OO basics are important building blocks, a software architect must
also be aware of design principles and software design patterns, which help
us develop high-quality software.

See the chess vs. software analogy in the following slides.

• Design principles and patterns are covered in another course:

Object Oriented Modeling and Design (8th semester).

http://www.ninova.itu.edu.tr/tr/dersler/bilgisayar-bilisim-fakultesi/2097/blg-468e/

Conclusion 2 (Bad news)

1.28

15

Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttps://akademi.itu.edu.tr/en/buzluca/

http://www.buzluca.info

Chess:

1. Learning basics:

Rules and physical requirements of the game, the names of all the pieces,
and the way that pieces move and capture.

At this point, people can play chess, although they will probably not be
outstanding players.

2. Learning principles:

The value of protecting the pieces, the relative value of those pieces, and
the strategic value of the center squares.

At this point, people can become good players in chess.

3. Studying the games of other masters (Patterns):

Buried in those games are patterns that must be understood, memorized,
and repeatedly applied until they become second nature.

At this point, people can be masters of chess.

1.29

Analogy: Learning to play chess – Learning to design software

Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttps://akademi.itu.edu.tr/en/buzluca/

http://www.buzluca.info

Software:

1. Learning basics:

The rules of the languages, data structures, algorithms, and OOP basics.

At this point, one can write programs, albeit not always very "good" ones.

2. Learning principles:

Object-oriented modeling and design.

Importance of abstraction, information hiding, cohesion, dependency
(coupling) management, etc.

3. Studying the designs of other masters (Patterns):

Deep within those designs are patterns that can be used in other designs.

Those patterns must be understood, learned, and repeatedly applied until they
become second nature.

This chess analogy has been borrowed from Douglas C. Schmidt

He states that it is courtesy of Robert Martin.

Learning to play chess – Learning to design software (cont'd)

1.30

