
1

Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttps://akademi.itu.edu.tr/en/buzluca

http://www.buzluca.info
3.1

Object Oriented Programming Concepts

The close match between objects in the programming sense and objects in the
real world increases the quality (understandability, readability) of the design.

To solve a problem in an object-oriented language, the programmer should
consider three factors:

1. What are the objects that make up the problem domain?

2. What are the responsibilities of objects?

3. What are the relations between objects?

Real-world objects

and relations

Software objects

and relations

Low representational gap

Remember: "The Object-Oriented Approach," slides 1.20 - 1.28.

Main approach:

The real world (problem) consists of objects.

The software system (solution) also consists of objects.

License: https://creativecommons.org/licenses/by-nc-nd/4.0/

Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttps://akademi.itu.edu.tr/en/buzluca

http://www.buzluca.info
3.2

Real-world object = Attributes (State) + Abilities (behavior, responsibility)
Software object = Data + Functions

What is an object?

Real-world objects have two parts:
1. Attributes (property or state: characteristics that can change),
2. Abilities (or behaviors: things they can do or responsibilities).

Software objects (classes) also have two parts like real-world objects:
1. Data represent attributes,
2. Functions (methods) represent behavior.

Data

Functions (methods)

Software
object

Attributes

Abilities

Real-world
object

2

Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttps://akademi.itu.edu.tr/en/buzluca

http://www.buzluca.info
3.3

Class is a user (programmer)-defined data type that is used to define objects.

• A class serves as a plan or a template.

• It specifies what data and functions will be included in objects of that class.

• Writing a class does not create any objects.

• A class is a description of similar objects.

Objects are instances (variables) of classes.

Class declaration in C++:

Classes and Objects

class ClassName

{

public:

// Members (data and functions) that are accessible from outside the class

...

private:

// Members (data and functions) that are not accessible from outside the class

...

};

Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttps://akademi.itu.edu.tr/en/buzluca

http://www.buzluca.info
3.4

Based on the requirements of the stakeholders, points should have the following
attributes and abilities (responsibilities):

Data: Attributes (states) based on requirements
• x and y coordinates. We can use two integer variables to represent these

attributes.

Functions: Abilities (responsibilities) based on requirements
• Points can move on the plane: move function
• Points can show their coordinates on the screen: print function
• Points can answer the question of whether they are on the zero point (0,0) or

not: isOnZero function

Attributes

Behavior,
responsibilities

class Point { // Declaration of the Point Class

public: // Open part

void move(int, int); // A function to move the points

void print(); // Print the coordinates on the screen

bool isOnZero(); // Is the point on the zero point(0,0)

private: // Data hiding

int m_x{}, m_y{}; // Attribute: x and y coordinates

}; // End of class declaration (Don't forget ;)

Declaration of the Point class

Example: A model (class) to define 2D points in a graphics program.

3

Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttps://akademi.itu.edu.tr/en/buzluca

http://www.buzluca.info
3.5

• Data and functions in a class are called members of the class.

• Convention: We add the prefix "m_" to the names of the member variables to
easily distinguish them from function parameters and local variables.

• In our example, first, the public members and then the private members are
written. It is also possible to write them in reverse order.

• We will discuss controlling access to members in the following subsection.

• Each of the member variables is initialized to 0. You do not have to initialize
member variables in this way.

• There are other ways of setting their values, as we will see in the next section
(constructors).

• If member variables of fundamental types are not initialized by some
mechanism, they will contain random values.

• In our example, only the prototypes (signatures, declarations) of the functions
are written in the class definition.

• The bodies may take place in other parts (in different files) of the program.

• If the body of a function is written in the class definition, then this function is
defined as an inline function.

Example Point class (contd):

Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttps://akademi.itu.edu.tr/en/buzluca

http://www.buzluca.info
3.6

// A function to move the points

void Point::move(int new_x, int new_y)

{

m_x = new_x; // assigns a new value to the x coordinate

m_y = new_y; // assigns a new value to the y coordinate

}

// To print the coordinates on the screen

void Point::print()

{

std::println("X= {} , Y= {}", m_x, m_y); // {}s are replacement fields

}

// is the point on the zero point(0,0)

bool Point::isOnZero()

{

return (m_x == 0) && (m_y == 0); // if x=0 AND y=0 returns true

}

// ***** Bodies of Member Functions *****

Example Point class (contd):

4

Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttps://akademi.itu.edu.tr/en/buzluca

http://www.buzluca.info
3.7

Now we have a type (model) to define point objects. We can create necessary
points (objects) using the model.

int main()

{

Point point1, point2; // 2 object are defined: point1 and point2

point1.move(100,50); // point1 moves to (100,50)

point1.print(); // point1's coordinates to the screen

point2.print(); // point2's coordinates to the screen

point1.move(20,65); // point1 moves to (20,65)

if(point1.isOnZero()) // is point1 on (0,0)?

std::println("point1 is on zero point(0,0)");

else

std::println("point1 is NOT on zero point(0,0)");

if(point2.isOnZero()) // is point2 on (0,0)?

std::println("point2 is on zero point(0,0)");

else

std::println("point2 is NOT on zero point(0,0)");

}

See Example e03_1a.cpp

Defining objects of the Point class:

License: https://creativecommons.org/licenses/by-nc-nd/4.0/

We see the benefit of writing std:: in this example.
Otherwise, the print functions of Point and the Standard Library may get confused.

(Single file)

Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttps://akademi.itu.edu.tr/en/buzluca

http://www.buzluca.info
3.8

C++ TERMINOLOGY
• A class is a grouping of data and functions.

A class is a type (a template, pattern, or model) used to create a variable that
can be manipulated in a program.

Classes are designed to give specific services.

• An object is an instance of a class, similar to a variable defined as an instance
of a type. An object is what you use in a program.

• A method (member function) is a function contained within the class.

You will find the functions used within a class often referred to as methods in
programming literature.

Classes fulfill their services (responsibilities) with the help of their methods.
• A message is the same thing as a function call. In object-oriented

programming, we send messages instead of calling functions.

For the time being, you can think of them as identical. Later, we will see that
they are, in fact, slightly different.

Messages are sent to objects to get some services from them.

• An attribute is a data member of a class that can take different values for
different instances (objects) of this class.
Example: Name of a student, coordinates of a point.

5

Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttps://akademi.itu.edu.tr/en/buzluca

http://www.buzluca.info
3.9

Defining Classes in Modules

In the previous example (e03_1a.cpp), the declaration of the Point class, the
bodies of its methods, and the main function are all written in the same file.

However, in a real project with a large code base, creating separate files for
related classes is a proper approach.

The definition of the class can be written in a module interface, and the bodies of
the methods can take place in the module implementation.

Example:

Module interface file shapes.ixx for the Point class:

export module shape; // module name can be different than the file name

export class Point { // Declaration/Definition of the Point Class

public: // Open part

void move(int, int); // A function to move the points

void print(); // Print the coordinates on the screen

bool isOnZero(); // Is the point on the zero point(0,0)

private: // Data hiding

int m_x{}, m_y{}; // Attribute: x and y coordinates

}; // End of class declaration

Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttps://akademi.itu.edu.tr/en/buzluca

http://www.buzluca.info
3.10

Defining Classes in Modules (contd)
Example (contd):

Module implementation file shapes.cpp for the Point class:

module shape; // The name of the module (not file name)

import std; // Standard module for println

void Point::move(int new_x, int new_y)

{

m_x = new_x;

m_y = new_y;

}

: //----- Bodies of other methods ------

The file that contains the main function:

import shape; // Importing the module

int main()

{

...

}

See Example e03_1b.zip (Point class is in a module)

To avoid accidentally using the same name in conflicting situations,
classes can be defined in namespaces.
Example: namespace my_lib See Example e03_1c.zip

6

Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttps://akademi.itu.edu.tr/en/buzluca

http://www.buzluca.info
3.11

Defining Methods as inline Functions

In the previous example (e03_1), only the prototypes of the member functions
are written in the class declaration. The bodies of the methods are defined
outside the class.

It is also possible to write bodies of methods in the class. Such methods are
defined as inline functions.

For example, the isOnZero method of the Point class can be defined as an
inline function as follows:

class Point{ // Declaration/Definition of Point Class

public:

// is the point on the zero point(0,0) inline function

bool isOnZero() {

return (m_x == 0) && (m_y == 0); // the body is in the class

}

: // Other methods of the class

private:

int m_x{}, m_y{}; // x and y coordinates

};

Do not write long methods in the class declaration. It decreases the readability
and performance of the program.

Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttps://akademi.itu.edu.tr/en/buzluca

http://www.buzluca.info
3.12

Defining Dynamic Objects
Classes can be used to define variables like built-in data types (int, float, char,
etc.) of the compiler.

For example, it is possible to define pointers to objects.

Example: We define three pointers (ptr1, ptr2, and ptr3) to objects of type Point.
int main()

{

Point *ptr1; // Defining the pointer ptr1 to objects of the Point

ptr1 = new Point; // Allocating memory for the object pointed by ptr1

Point *ptr2 = new Point; // Pointer definition and memory allocation

Point *ptr3 {new Point}; // Pointer definition and memory allocation

ptr1->move(50, 50); // 'move' message to the object pointed by ptr1

ptr2->print(); //'print' message to the object pointed by ptr2

if(ptr3->isOnZero()) // is the object pointed to by ptr3 on zero

std::println("The object pointed to by ptr3 is on zero.");

else

std::println("The object pointed to by ptr3 is NOT on zero.");

delete ptr1; // Releasing memory

delete ptr2;

delete ptr3;

}

7

Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttps://akademi.itu.edu.tr/en/buzluca

http://www.buzluca.info
3.13

Defining Arrays of Objects

We may define static and dynamic arrays of objects.

The example below shows a static array with ten elements of type Point.

Later, we will see how to define dynamic arrays of objects.

int main()

{

Point array[10]; // defining an array with ten objects

// 'move' message to the first element (indices 0)

array[0].move(15, 40); // point in[0] moves

// 'move' message to the second element (indices 1)

array[1].move(75, 35); // point in[0] moves

: // message to other elements

// 'print' message to all objects in the array

for (int i = 0; i < 10; i++){

array[i].print();

if (array[i].isOnZero())

std::println("The point in {} is on zero", i);

}

return 0;

}

License: https://creativecommons.org/licenses/by-nc-nd/4.0/

Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttps://akademi.itu.edu.tr/en/buzluca

http://www.buzluca.info
3.14

We can divide programmers into two groups:
• class creators: Those who create new data types (define classes)
• client programmers (class users, object creators): The class consumers who

define objects and use the data types in their applications.

The goal (and responsibility) of the class creator is to build a class that includes
all necessary properties and abilities.

The goal of the client programmer is to collect a toolbox full of classes to use for
rapid application development.

The class creator is responsible for controlling access to data.

The class creator sets the rules, and class users must follow them.

Information hiding:

• The class should expose only what’s needed to the client programmer (public)
and

• keeps everything else hidden (private).

The hidden parts are only necessary for the internal machinations of the data
type but not part of the interface that users need to solve their particular
problems.

Controlling Access to Members

8

Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttps://akademi.itu.edu.tr/en/buzluca

http://www.buzluca.info
3.15

• To keep client programmers’ hands off portions, they should not touch.

A client programmer does not need to be aware of (understand or learn) the
internal private part of a class to use it.

Learning only the public part (its interface) is sufficient.

• The client programmer cannot use the hidden part of a class.

It means the class creator can change the hidden portion without worrying
about its impact on anyone else.

• Information hiding also prevents accidental changes of attributes of objects.

• If attributes of an object get unexpected incorrect values, the usual suspects
are member functions.

This simplifies finding bugs.

Reasons for access control and its benefits:

Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttps://akademi.itu.edu.tr/en/buzluca

http://www.buzluca.info
3.16

• The primary purpose of public members is to present to the class's clients a
view of the services the class provides.

This set of services forms the public interface of the class.

Any function in the program may access public members.

• The private members are not accessible to the clients of a class. They form
the implementation of the class.

Private class members can be accessed only by members of that class.

In C++, there are three access specifier labels:

public:, private:, and protected: (we will see it when we discuss inheritance).

Access specifiers:

bool isOnZero()

void
print()

void
move(int,int)

Interface
publicmembers

m_x

m_y

Implementation
privatemembers

point1.move(100,45) point1.print()

if(point1.isOnZero()

)

Messages

9

Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttps://akademi.itu.edu.tr/en/buzluca

http://www.buzluca.info
3.17

class Point{ // Definition of the Point class with limits

public:

bool move(int, int); // A function to move points

void print(); // to print coordinates on the screen

private:

// Limits of x and y

// Constants are usually defined as static members! (See static members)

const int MIN_x{0};

const int MAX_x{500};

const int MIN_y{0};

const int MAX_y{300};

// x and y coordinates are initialized to their minimum values

int m_x{MIN_x}, m_y{MIN_y};

};

Requirement: According to stakeholder requirements, point objects may only move
within a predetermined window (500x300).

Therefore, coordinates may have limits; x must be between 0 and 500, while y is
between 0 and 300.

Remember: The class creator is responsible for controlling access to data.
Clients of this class cannot move a point object outside of a 500x300 window.

Example: Point class with limits

Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttps://akademi.itu.edu.tr/en/buzluca

http://www.buzluca.info
3.18

The new move function returns a Boolean value to inform the client programmer
whether or not the input values are accepted.

If the values fall within limits, they are accepted, the point moves, and the
function returns true.

If the values are not within limits, the point does not move, and the function
returns false.

Example: Point class with limits (contd)

bool Point::move(int new_x, int new_y)

{

if (new_x >= MIN_x && new_x <= MAX_x && // if new_x is within limits

new_y >= MIN_y && new_y <= MAX_y) // if new_y is within limits

{

m_x = new_x; // assigns a new value to x coordinate

m_y = new_y; // assigns a new value to y coordinate

return true; // new values are not accepted

}

return false; // new values are not accepted

}

10

Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttps://akademi.itu.edu.tr/en/buzluca

http://www.buzluca.info
3.19

Here is the main function:

int main()
{

Point point1; // point1 object is defined

int x, y; // Two variables to read some values from the keyboard

std::print(" Give x and y coordinates ");

cin >> x >> y; // Read two values from the keyboard

if (point1.move(x, y)) // Send move message and check the result

std::println("Input values are accepted");

else

std::println("Input values are NOT accepted");

point1.print(); // Print coordinates on the screen

}

Example: Point class with limits (contd)

It is not possible to assign a value to m_x or m_y directly outside the class.

point1.m_x = -10; //ERROR! m_x is private

See Example e03_2.cpp

License: https://creativecommons.org/licenses/by-nc-nd/4.0/

Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttps://akademi.itu.edu.tr/en/buzluca

http://www.buzluca.info
3.20

class Point{ // Definition of the Point class with lower limits

public:

: // public methods

private:

void reset(); // private method

:

};

Usually, data members are declared private, and methods are declared public.

However, methods may also be declared private if they are related solely to the
internal mechanism of the class.

Private methods can only be called by other methods of the class.

Client programmers (object creators) cannot use private methods.

Example:

Requirement: The x and y coordinates of point objects must not exceed zero.

If a client of the class enters negative values to the move method, the point
object resets its coordinates to zero.

Now, we will add a private reset method to the Point class that resets the
coordinates to zero.

Private methods (member functions):

See Example e03_3.cpp

11

Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttps://akademi.itu.edu.tr/en/buzluca

http://www.buzluca.info
3.21

The move method checks the input values.

bool Point::move(int new_x, int new_y)

{

// if the values are within the limits

if (new_x >= MIN_x && new_y >= MIN_y)

{

m_x = new_x; // assigns a new value to the x coordinate

m_y = new_y; // assigns a new value to the y coordinate

return true; // new values are accepted

}

reset(); // calls reset

return false; // new values are not accepted

}

Private methods (contd):

Client programmers (object creators) cannot call the reset method.

int main()
{

Point point1; // point1 object is defined

point1.reset(); // ERROR! reset is private

:

See Example e03_3.cpp

Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttps://akademi.itu.edu.tr/en/buzluca

http://www.buzluca.info
3.22

You can alternate public and private sections as often as you want and put them
in any order you wish.

Your class declarations become much easier to read and maintain if you
consistently group related members together.

The default access mode for a class is private.

If you start with the private part, you do not even need to write the private
label.

Example:

class Point{ // Definition of the Point

int m_x{}, m_y{}; // private part. x and y coordinates

public:

bool move(int, int); // A function to move points

void print(); // to print coordinates on the screen

};

Our preference is, however, to write the public part first.

The order of public and private members:

private: label is not necessary.
It is the default mode in a class

12

Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttps://akademi.itu.edu.tr/en/buzluca

http://www.buzluca.info
3.23

Convention:

• Put all public members first and all private members last.
As a class user, you are normally primarily interested in its public interface and
less so in its inner workings.
You want to know what you can do with a class, not how it works.
Therefore, we prefer to put the public interface first.

• We cluster related members and put variables after functions.

The order of public and private members (contd):

Grouping related members together:

class ClassName

{

public:

... // Group of related methods

private:

... // Related data members

public:

... // Group of methods

private:

... // Related data members

};

Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttps://akademi.itu.edu.tr/en/buzluca

http://www.buzluca.info
3.24

class and struct keywords have very similar meanings in C++.

They both are used to build types.

The only difference is their default access mode.

• The default access mode for a class is private.

• The default access mode for the struct is public.

We usually use structures in C++ programs to define simple compound types that
aggregate several variables.

Structures are usually simply encapsulating some publicly accessible member
variables (data).

Structures normally do not have many member functions.

You can, in principle, add private sections and member functions to a structure.

However, doing so is unconventional.

If your aim is not only aggregating data, then use a class.

struct Keyword in C++:

13

Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttps://akademi.itu.edu.tr/en/buzluca

http://www.buzluca.info
3.25

There will be situations where we want private member variables to be read or
modified from outside the class.

For example, the user of the Point class may need to know the current values of
the x and y coordinates.

Making these variables public is certainly not a good idea.

To allow private member variables to be read or modified from outside the class in
a controlled manner, the creator of the class must provide special public methods.

Accessors (Getters):

Methods that retrieve (return) the values of member variables are referred to as
accessor functions.

Convention: The accessor function for a data member is mostly called getMember().

Because of this, these functions are more commonly referred to simply as getters.

Example: Accessors for the Point class with lower limits

public:

int getX() { return m_x;} // Accessor for x coordinate

int getY() { return m_y;} // Accessor for y coordinate

int getMIN_x() { return MIN_x;} // Accessor for the limit of x

int getMIN_y() { return MIN_y;} // Accessor for the limit of y

Accessors and Mutators:

Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttps://akademi.itu.edu.tr/en/buzluca

http://www.buzluca.info
3.26

Methods that allow member variables to be modified are called mutators.

Convention: The accessor function for a data member is mostly called setMember().

Because of this, these functions are more commonly referred to simply as setters.

Since we provide a member function to manipulate data rather than making the
member variables public, we have the opportunity to perform integrity checks on
the values given by the class users.

Example: Setters for the Point class with lower limits

class Point{

public:

void setX(int new_x){

if (new_x >= MIN_x) m_x = new_x; // Accepts only valid values

}

void setY(int new_x){

if (new_y >= MIN_y) m_y = new_y; // Accepts only valid values

}

...

} The move method in our previous Point classes was a kind of mutator.

Remember: The class creator is responsible for controlling access to data. The
class creator sets the rules, and class users must follow them.

Mutators (Setters):

See Example e03_4.cpp

14

Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttps://akademi.itu.edu.tr/en/buzluca

http://www.buzluca.info
3.27

Sometimes, it is useful to allow non-member functions to access non-public
members of a class object.

The class creator may declare such a function to be a friend of the class.

A friend can access (to read and modify) any of the members of a class object,
regardless of their access specification.

Example: Friend Function

A non-member display function is declared as a friend of the Point class. It can
access private members of the Point class.

Friend Functions and Friend Classes

class Point{ // Declaration of the Point class

public:

friend void display(Point&); // non-member friend function

:

};

// Non-member function (outside of the Point class)

void display(Point &point){

std::print("x= {} y= {}", point.m_x, point.m_y);

}

int main()

{

Point point1;

point1.setX(10);

point1.setY(20);

display(point1);Not preferable! Private members are accessed directly.

Call by reference

License: https://creativecommons.org/licenses/by-nc-nd/4.0/

(const Point &point)

After we cover const objects

Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttps://akademi.itu.edu.tr/en/buzluca

http://www.buzluca.info
3.28

An entire class may also be declared to be a friend of another class.

All the methods of a friend class have unrestricted access to all the members of
the class of which it has been declared a friend.

Example: Friend Class

A GraphicTools class is declared as a friend of the Point class.

Friend Class:

class Point{ // Declaration of the Point class

public:

friend class GraphicTools; // Friend class

:

};

class GraphicTools {

public:

void moveToZero(Point& point) {

point.m_x = 0;

point.m_y = 0;

}
:

};

Another class (GraphicTools) can manipulate
private members of the Point class directly.
Not preferable!

int main()

{

Point point1;

point1.setX(10);

point1.setY(20);

// object of GraphicTools

GraphicTools tool;

tool.moveToZero(point1);

:

} point1 is on (0,0) now.

15

Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttps://akademi.itu.edu.tr/en/buzluca

http://www.buzluca.info
3.29

The friendship between classes is not a bidirectional relation.

Methods in the GraphicTools class can access all the members of the Point
class, but methods in the Point class have no access to the private members of
the GraphicTools class.

Friendship among classes is not transitive either; just because class A is a friend
of class B and class B is a friend of class C, it doesn’t follow that class A is a
friend of class C.

Caution:

• Friend declarations may undermine a fundamental principle of object-oriented
programming: data hiding.

• Therefore, they should only be used when absolutely necessary, and this
situation does not occur frequently.

• Use getters and setters, which provide safe access to class members.

Friend Functions and Friend Classes (contd)

