Object-Oriented Programming License: https://creativecommons.org/licenses/by-nc-nd/4.0/

Relationships Between Objects
In the real world, there are relationships between objects.
Examples:
Students enroll in courses.
Classes have classrooms.
Professors have a list that contains the courses they offer.
The university consists of faculties, and faculties consist of departments.
The dean of the faculty is a professor.
A Ph.D. student is a kind of student.

The objects can cooperate (interact with each other) o perform a specific task.
Examples:

A professor can get the list of the students from the course object.

A student can get her grades from the related course objects.

A university can send an announcement to all faculties, and faculties can
distribute this announcement to their departments.

hti akademi.itu.edu.tr/en/buzluca . \ o S
buzluca.info >

Object-Oriented Programming
Relationships Between Objects (contd)

In object-oriented design (OOD), we try to lower the representational gap
between real-world objects and the software components.

This makes it easier to understand what the code is doing.

To represent real-world relationships, we also create relationships among
software objects.

Types of relationships in object-oriented design (OOD):

There are two general types of relationships, i.e., association and inheritance.
+ The association is also called a "has-a" ("uses") relationship.

+ The inheritance is known as an "is-a" relationship.

Example:

A course has a classroom.

The dean of the faculty is a professor.

Although association itself is not a has-a relationship, its subtypes aggregation
and composition are kinds of the has-a relationship.

In this section, we will cover association, aggregation, and composition.

The Inheritance (is-a) relationship will be covered in the coming sections.

r/en/buzluca ‘ 999 - 202 Feza BUZLUCA

Object-Oriented Programming

Association ("uses-a" relationship):

Association means objects of class A can send messages to (call methods of)
objects of another class B.

Objects of class A can use services given by class B.
Objects of A know objects of B, and they communicate with each other.
Class A has pointers (or references) to objects of class B.

The relationship may be unidirectional or bidirectional (where the two objects
are aware of each other).

If the relationship is bidirectional, class B also has pointers (or references) to
objects of class A.

There may be one-to-one, one-to-many, and many-to-many associations between
objects.

The objects that are part of the association relationship can be created and
destroyed independently.

Each of these objects has its own life cycle.
There is no “owner".

hti akademi.itu.edu.tr/en/buzluca . \ o S
buzluca.info >

Object-Oriented Programming

Association (contd):

Example:
Students register for courses.
+ A student object can have a list of active courses they registered for.

A course class can also have a list of the students taking that course
(bidirectional).

A student is associated with multiple courses. At the same time, one course is
associated with multiple students (many-to-many).

A student object can call methods of course classes, for example, to get the
grade.

If there is a bidirectional relation, the course class can also call the methods of
the student class.

Each of these objects has its own life cycle.

The department can create new courses. In this case, new students are not
created.

When a course is removed from the department's plan, the students are not
destroyed.

Students can add or drop courses.

r/en/buzluca ‘ 999 - 202 Feza BUZLUCA

Object-Oriented Programming

Example: Association between students and courses (contd):

UML Notation:

Course
myCourses *

>
name {List} | CRN

grades

ID
getName() getGrade()

Summary:
An association is a weak “using” relationship between two or more objects in
which the objects have their own lifetimes, and there is no owner.

2024 Feza BUZLUCA

Object-Oriented Programming
UML Class diagrams for association:
Direction of the message flow:

A

The direction of messages is unspecified. Both may send messages to each other.

Multiplicity:

Multiplicity indicates the humber of possible combinations of objects of one class

associated with objects from another class.

In other words, it shows the number of objects from that class that can be linked
at runtime with one instance of the class at the other end of the association line.

teaches *
=3

An instructor teaches zero or more courses (read from left to right).

An association may also be read in reverse order.
A course is given exactly by one instructor (read from right to left).

UTYBLELGE 1999-2024 Feza BUZLUCA
info

Object-Oriented Programming License: https://creativecommons.org/licenses/by-nc-nd/4.0/
Example: MUlBERERS One object of class A is associated

with one or more objects of class B

at a time.

Class A includes a list that can

contain one or more objects of

class B.

Zero or more, many

One or more

One to forty

Exactly five

3,5,8
Exactly 3, 5, or 8

mi.itu.edu.tr/en/buzluca ‘ 999 - 202 Feza BUZLUCA
luca.info

Object-Oriented Programming

Aggregation:

Aggregation is a specialized form of association between two or more objects.
It indicates a “Whole/Part” ("has-a") relationship.

Each object has its own life cycle, but ownership also exists.

The same part-object can belong to multiple objects at a time.

The whole (i.e., the owner) can exist without the part and vice versa.

The relation is unidirectional. The whole owns the part(s), but the part does not
own the whole.

Example:
A department of the faculty has professors.
+ A professor may belong o one or more departments at some universities.

+ Parts (professors) can still exist even if the whole (the department) does not
exist.

 If all professors retire or resign, the department can still exist and wait for
new professors.

+ A department may own a professor, but the professor does not own the
department.

Feza BUZLUCA

Object-Oriented Programming

Example (contd):
A department has professors.

In UML diagrams, we use an empty diamond to present the aggregation
relationship.

| A department has professors. |

| (Aggregation) .

| The department is the owner. | | A department can have zo
i or many Professors.

hti akademi.itu.edu.tr/en/buzluca
http: luca.info

Object-Oriented Programming

Example: An active course has a classroom.

Course ClassRoom | c1a:

assig;edRoom
crn e i
numOfStudents building

isAvailable() capacity };

getCapacity()

private:
ClassRoom* assi

If the owner is clear, we do not need to indicate it on diagrams.
We can also use an arrow to represent the aggregation, like for associations.
Remember: Aggregation is a special type of association where there is an owner.

assignedRoom
Course ClassRoom

In C++, the association and aggregation relationships are implemented nearly
similarly.

http://z oL 1999-2024 Feza BUZLUCA
http:

Object-Oriented Programming

Example: An active course has a classroom (contd)
class ClassRoom { // Declaration/definition of the Classroom
public:

unsigned int getCapacity() const { return m_capacity; }
private:

std::string m_building;

std::string m_id;

unsigned int m_capacity{}; // capacity initialized to zero

1

ConsTrucTergeTsTheaddressof
The assigned classroom
class Course {
public: Y
// Initialize crn, number of students, and the cLa\‘s‘ room
Course(const std::string&, unsigned int, const ClassRoom*);
bool isAvailable() const; // Are there available seats?
private:
. 5 // The course has a classroom
i Course has a pointer to
{ ClassRoom objects.

http:
htt buzluca.info

Object-Oriented Programming

Example: An active course has a classroom (contd)

// Constructor to initialize crn, number of students, and the classroom

Course: :Course(const std::string& in , unsigned int in_numOfStudents,
const ClassRoom*cl >

{} § inter i ' | A Course object does not create
i or delete ClassRoom objects. ‘
{ Each object has its own life cycle.
bool Course::isAvailable() const {
return m_classRoom->getCapacity() > m_numOfStudents;

| The Course object calls the

i method of the ClassRoom object | See Example e@6_1.cpp

int main(){ i .
ClassRoom (\'(fiassRooml{ "BBF", "5\5‘1‘0\ ", 100 }; // Classroom is created
Course BLG252E{-*23135", 110, &classRooml }; // Course is created
if (BLG252E.isAvailable()){

room_id = BLG252E.getClassRoom()->getId(); // Chain of function calls

ReTur‘ns the pomTer‘ to the | | getId() of the
lassRoom is called

1999 - 2024 Feza BUZLUCA

Object-Oriented Programming License: https://creativecommons.org/licenses/by-nc-nd/4.0/

Composition:

+ The Composition is also a specialized form of association and a specialized form
of aggregation.
Composition is a strong kind of “has-a“ relationship.

+ Itisalso called a "part-of" or "belongs-to" relationship.

Examples:

- University is composed of departments, or departments are parts of a university.
- A rectangle is composed of four points.

- Rooms belong to a house.

+ The objects' lifecycles are tied.
The part object (room) cannot exist without the owner/whole (house).
When the owner object is deleted, the part objects are also deleted.
Sometimes, the owner can still exist without some parts (members).
The whole and part objects are created together.

Constructors in C++ will ensure the creation of the parts when the owner is
created.

The relation is unidirectional.

emi.itu.edu.tr/en/buzluca
buzluca.info

Object-Oriented Programming
Compositon (contd):
In UML diagrams, the composition is represented by a filled diamond arrowhead.

1999 - 2024 Feza BUZLUCA

Object-Oriented Programming
Example: A triangle is composed of three Point objects.
| A Triangle object is |

| composed of three
{ Point objec

{ Member variables in
i the Triangle class

Triangle

) G = R
- = ' m_éor‘ner‘l,
Trinagle(int,int, [|
. . . . { m_corner2,
int,int,int,int) { I corneray Point(int, int)
print() ik print()
getPerimeter() operator-(const Point&):double
7 N K

{ Usually, we do not show the parameters

i and their types in UML class diagrams

i if they are unrelated to our design

| decisions. i
i The developer (programmer) can decide

i on them. ;

Calculate the distance
: between two points.

(Operat

1999 - 2024 Feza BUZLUCA

Object-Oriented Programming
]

Example: A triangle is composed of three Point objects (contd).

class Triangle {
public:
// Constructor with three points
Triangle(const Point&, const Point&, const Point&);

// Constructor with the coordinates of three corners
Triangle(int, int, int, int, int, int);

// Calculates and returns the perimeter of the triangle
double getPerimeter()const;
void print()const; // Prints the corners

private:

// Corners of the triangle
Point m_cornerl, m_corner2, m_corner3; // Composition

¥
Point objects (parts) are created in the constructors of the Triangle object

(whole, owner).

When the Triangle objects are destroyed, Point objects contained by them are
also destroyed.

du.tr/en/buzluca @@:@:@ 1999 - 2024 Feza BUZLUCA

info BY NC ND

Object-Oriented Programming

Example: A triangle is composed of three Point objects (contd).

Triangle objects in memory: .
riangle

Point m_cornerl

m_x

constructor(in,int) m_y

Copy Consructor ,
operator-() Point m_corner2

print() m_x
m_y
Triangle trianglel{1e, 20, 30, 40, 50, 60};

This statement creates a Triangle object
tiranglel that contains three Point objects
m_corner1(10,20), m_corner2(30,40), and
m_corner3(50,60).

These Point objects are created in the
constructor of the Triangle class when it runs for
the trianglel object.

Point m_corner3

m_x
m_y

constructor(int, int, int, int, int, int)
getPerimeter()
print()

When the trianglel object goes out of scope,

these Point objects will also be des‘rr'oed.

i.itu.edu.tr/en/buzluca 1999 - 2024 Feza BUZLUCA
buzluca.info]

Object-Oriented Programming

Example: A triangle is composed of three Point objects (contd)

The author of the Triangle class must call the constructors of the Point class
properly to create point objects.

In this example, we assume that the Point class has only the following two
constructors:

Point(int, int); // Constructor to initialize x and y coordinates
Point(const Point&); // Copy Constructor
The constructors of the Tringle class must call one of these constructors.

// Constructor with the coordinates of three corners
Triangle::Triangle(int cornerl_x, int cornerl_y, int corner2_ x,
int corner2_y, int corner3_x, int corner3_y)
:m_cornerl{ cornerl_x, cornerl_y }, m_corner2{ corner2_x, corner2_y },
m_corner3{ corner3_x, corner3_y }

{}

This constructor takes the x and y coordinates of three corner points (six integers)
and calls the constructor of the Point class three times, once for each corner point,

m)- akademiift cCHiCHEESEES @] 1999-2024 Feza BUZLUCA
http: ca)

Object-Oriented Programming License: https://creativecommons.org/licenses/by-nc-nd/4.0/
Example: A triangle is composed of three Point objects (contd)

The author of the Triangle class must call the constructors of the Point class
properly to create point objects.

// Constructor with three points
Triangle::Triangle(const Point& in_cornerl, const Point& in_corner2,
const Point& in_corner3)
:m_cornerl{ in_cornerl }, m_corner2{ in_corner2 },

m_corner3{ in_corner3 } iy copy constructo

i

This constructor takes references to three existing point objects and calls the
copy constructor of the Point class three times, once for each corner point.
The member points of the friangle are created as copies of the input points.

Since the Point class does hot contain a default constructor in this example, the
author of the Triangle class cannot create corner points as follows:

// Constructor that calls the default constructor of the Point
Triangle::Triangle():m_cornerl{}, m_corner2{}, m_corner3{} //Error!

{}

or
Triangle::Triangle(){} //Error! If the Point does not contain a default constructor

emi.itu.edu.tr/en/buzluca
buzluca.info

Object-Oriented Programming

Example: A triangle is composed of three Point objects (contd)

Objects of the Triangle can use public methods of its member points to fulfill
its tasks.

// Calculates and returns the perimeter of the triangle
double Triangle::getPerimeter()const {
return (m_corner2 - m_cornerl) + (m_corner3 - m_corner2)
+(m_cornerl - m_corner3);

}

// Prints the corners
void Triangle::print()const {
cout << "Corners of the triangle:" << endl;
m_cornerl.print();
m_corner2.print();
m_corner3.print();

}

See Example e@6_2.cpp

1999 - 2024 Feza BUZLUCA 6.20

10

Object-Oriented Programming License: https://creativecommons.org/licenses/by-nc-nd/4.0/

Default Constructors and Destructors in composition:

Remember, when the programmer does not write a constructor, the compiler
provides a default default constructor.

The default default constructor of the whole (owner) calls the default

constructor of the parts. See Example e@6_3a. cpp

If the Part class contains a programmer-written default constructor, the default

default constructor of the Whole calls it automatically.
See Example e@6_3b.cpp

When the whole object goes out of scope, the destructors are called in reverse
order, i.e., the Whole object is destroyed first, then the member objects (parts).

See Example e06_3c.cpp

i.itu.edu.tr/en/buzluca 1999 - 2024 Foza BUZLUCA
buzluca.info

Object-Oriented Programming

Dynamic Member objects (Pointers as members)

Instead of automatic objects, data members of a class may also be pointers to
objects of other classes (parts).

Example: The Triangle class contains pointers to Point objects.
class Triangle {
private:

// Pointers to corners of the triangle
Point *m_ptr_cornerl, *m_ptr_corner2, *m_ptr_corner3;

1

Now, only the pointers (addresses) of Point objects are included in the objects of
the Triangle.

Triangle object
Point *m_ptr_cornerl

Point *m_ptr_corner2

Point *m_ptr_corner3

AUl SDDNZLCs] 1999-2024 Feza BUZLUCA
http:) v

11

Object-Oriented Programming

Dynamic Member objects (Pointers as members) (contd)
If the relationship is aggregation, the owner should get the addresses of its
members as parameters to its constructors.

If the relationship is composition, the whole must create and initialize part objects
(memory allocation) in the constructor.

Example: The Triangle class contains pointers to Point objects.

Since the relationship is composition, the member objects must be created in the
constructor of the Triangle.

// Constructor with the coordinates of three corners
Triangle::Triangle(int cornerl_x, int cornerl_y,
int corner2_x,int corner2_y, int corner3_x, int corner3_y)
:m_ptr_cornerl{ new Point{corneril_x,cornerl_y} },
m_ptr_corner2{ new Point{corner2_x,corner2_y} },
m_ptr_corner3{ new Point{corner3_x,corner3_y} }

Object-Oriented Programming

Dynamic Member objects (Pointers as members) (contd)

If the relationship is composition and memory is allocated in the constructor, then
these memory locations must be released (in most cases) in the destructor.

Example: The Triangle class contains pointers fo Point objects.

// Destructor

Triangle::~Triangle()

{
delete m_ptr_cornerl;
delete m_ptr_corner2;
delete m_ptr_corner3;

The destruct
i is called.

See Example e@6_4.cpp

1999 - 2024 Feza BUZLUCA

12

Object-Oriented Programming License: https://creativecommons.org/licenses/by-nc-nd/4.0/

Summary: Asscociation, Aggregation, Compoisiton
Property Aggregation

Relationship type Otherwise Whole/part Whole/part
unrelated

Relationship verb
io

Members can belong Yes Yes
to multiple classes
-

N
Members' existence Ye:
idire

managed by owner

o
s
Directionality Unidirectional or Unidirectional idirectional
bidirectional

http://akademi.itu.edu.tr/en/buzluca

Feza BUZLUCA
http luca.info

Object-Oriented Programming

Visibility Between Objects
Visibility means that one object can "see" or have reference fo another object.

To send a message to another object, the sender must have a reference or a
pointer to the receiver object.

How can the Sender call Receiver's mR() method?

The sender must "see" the receiver.
m_r.mR();
m_rPtr->mR();

During the design of a system as a set of interacting objects, it is necessary to
ensure that the required visibility is achieved between objects to support message
interaction.

Types of visibility:

There are four ways that visibility can be established from object A to object B:
+ Attribute visibility: B is an attribute of A.

* Parameter visibility: B is a parameter of a method of A.

* Local visibility: B is a (hon-parameter) local object in a method of A.

+ Global visibility: B is in the global space of A.

ademi. en/buzluca @
v) Y

13

Object-Oriented Programming
Types of visibility:
Example:
In the example e@6_1.cpp, the Course class has a pointer to its classroom.

class Course{
private:
ClassRoom* assignedRoom; // The course has a classroom

s
In the main function, we create the object of the ClassRoom and send it to the

constructor of the Course object o establish the attribute visibility from the
Course object to the ClassRoom object.

Now the Course object can "see" the ClassRoom object.

ClassRoom:’;ctlassRoom_f[j["BBF", ““‘[\)516‘2\;', 100 } // ClassRoom object is created
Course BLG252E{™23135", 110, &classRooml }; // Visiblity
Example:

In the examples e@6_2.cpp and e@6_4.cpp corner points of the Triangle are
created in the constructor of the Triangle class.

There is attribute visibility from the Triangle fo the corner objects

mi.itu.edu.tr/en/buzluca
luca.info

Object-Oriented Programming
Example: Parameter visibility
Sending this as an argument to establish visibility:

In an object-oriented program, a class (Client) may get services from another
class (Server) by calling its methods.

The Server class may also need to access the members of the Client class fo give
these services.

If this is the case, the Client object can send its address (this) to the Server
object to enable the Server to (see) access the public members of the Client
object. Now, we have a bidirectional association (visibility)

Example:

We have a class called GraphicTools that contains tools that Point objects can
use.

For example, the method distanceFromZero of the GraphicTools calculates the
distance of a Point object from zero (@, 0).

We assume that the Point class does not have the ability to calculate distances.
The Point class may contain a pointer to the object of the GraphicTools.

The distanceFromzZero method of the GraphicTools can get the reference to a
Point object for which the distance is calculated.

other.

@ 24 Feza BUZLUCA
BY N D

14

Object-Oriented Programming

Example: Parameter visibility (contd)
class Point {
public:
/ /Constructor receives the address of the GraphicTools object for visibility
Point(int, int, GraphicTools*);
private:
GraphicTools * m_toolPtr; // Visibility to GrpahicsTool
s

double Point::distanceFromZero() const {
return m_toolPtr->distanceFromZero(*this); // sending this for visiblity

} .
The methods of the Point can access methods of the GraphicTools.

Since the method sends this pointer, the method of the GraphicTools can also
access methods of the Point class (bidirectional associaﬁqp).

double GraphicTools::distanceFromZero(const Point& in_point) const {
double local x = in_point.getX(); // Can call methods of the Point
double local_y = in_point.getY();
return sqrt(local_x * local x + local y * local y);

See Example e@6_5. cpp

i.itu.edu.tr/en/buzluca 1999 - 2024 Feza BUZLUCA 6.29
buzluca.info Y

Object-Oriented Programming

Example: Partial class diagram of an exemplary software system for a school.

5. Student

' Parameter visibility |
Dependency

'
L

AUl SDDNZLCs] 1999-2024 Feza BUZLUCA
http:) v

15

Object-Oriented Programming License: https://creativecommons.org/licenses/by-nc-nd/4.0/

Smart pointers:
Industrial software systems generally comprise many collaborating objects linked
together using pointers and references.

All these objects must be created, linked together (visibility), and destroyed at
the end.

The Standard Library of C++ includes smart pointers, which ensure all objects are
deleted in a timely manner.

A smart pointer is a wrapper class femplate that owns a raw pointer and overloads
necessary operators like * and -> .

Smart pointers are used like standard pointers.

Unlike standard pointers, they can destroy objects automatically when necessary.

C++ Standard Library smart pointers:

+ std::unique_ptr<type>: It ensures the object is deleted if it is not
referenced anymore.
std: :shared_ptr<type>: It is used when an object has (shared by) multiple
owners. It is a reference-counted smart pointer.
The raw pointer is not deleted until all shared_ptr owners have gone out of
scope or given up ownership.

We will cover smart pointers in detail in Chapter 10.

n/buzluca "1’9 1¢

Object-Oriented Programming

UML Interaction Diagrams
Interaction diagrams illustrate how objects interact via messages in runtime.
There are two common types: communication and sequence interaction diagrams.
Both can express similar interactions.
Sequence diagrams are more notationally rich, but communication diagrams also
have their use, especially for wall sketching.

Communication diagrams:
They illustrate object interactions in a graph or network format, where objects
can be placed anywhere on the diagram.

cd Example Diagra

Name of the diagram
cd: Communication .
diagram Any instance 1: message2

(object) 0 ¢
0y

of Class A 2: message3

nb:ClassB

1999 - 2024 Feza BUZLUCA

Object-Oriented Programming

Example:

A communication diagram that presents a message flow about offering a new

course at the beginning of a semester.

d en/buzluca
a.info

Object-Oriented Programming

Sequence numbers of messages:
The external message is not numbered.

Nested message
It is sent in the
method of msg2

tr/en/buzl
info

Feza BUZLUCA

17

Conditional Messages:
The message is only sent if the clause evaluates to true.

Iteration or Looping:

iteration is indicated with a * and an optional
iteration clause following the sequence numbe

| |runSimulation ()

Sequence diagrams:

Sequence diagrams also illustrate the interactions between objects.
They clearly show the sequence or time ordering of messages.

N\
Any instance Object nb
(object) of ClassB
Class A

message1()

sd: Sequence
diagram

\N
Lifeline of the

N
Body (lifetime)
of the method

18

Object-Oriented Programming License: https://creativecommons.org/licenses/by-nc-nd/4.0/

xample: 5
E mp Creates a new object
Constructor call

openCourse(crn)
[2

openCourse(crn)

Illustrating Reply or Returns:

A sequence diagram may optionally

show the return from a message as a
dashed open-arrowed line at the end

of an activation box.

There are two ways to show the return
result from a message:

1. Using the message syntax:

returnVar := message(parametér) .-
2. Using a reply (return) message line:”

Feza BUZLUCA

Object-Oriented Programming

Conditional Messages:
To support conditional and looping constructs, the UML uses frames.
Frames are regions or fragments of the diagrams; they have an operator or label
(such as loop or opt) and a guard (conditional clause).

To illustrate conditional messages, an opt frame is placed around one or more
messages.

tr/en/buzluca

1999 a BUZLUCA
info

19

20

