
1

Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

7.1

License: https://creativecommons.org/licenses/by-nc-nd/4.0/

INHERITANCE
Inheritance in Object-oriented design (OOD) represents the "is-a" ("kind-of")
relationship.

A "Kind of" or "is a" Relationship:

We know that desktop PCs, laptops, tablets, and servers are (kinds of) computers.

• All of them have some common properties, e.g., they have CPUs and memories.

• They also have some common abilities, e.g., running programs and storing data.

We can say "laptop is a computer" and "tablet is a kind of computer".

• Besides the common properties, they also have unique features.

For example, a server has a magnetic disk and can process big data, a tablet
has a touch-on screen, a smartphone can make phone calls, etc.

Other examples:

• Undergraduate students, master's students, and Ph.D. students are all students.

They have common attributes and abilities (behavior, responsibility).

• The dean of the faculty is a professor.

They have all the properties and abilities of a professor. Besides, the dean has
additional administrative duties.

Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

7.2

• With the help of inheritance, we can create more “special” types (classes) of
general types (classes).

• Special classes may have more members (data and methods) than general
classes.

o For example, the computer is a general type. All computers contain a CPU and
memory.

o A tablet is a special type of computer. In addition to CPU and memory, it
contains a touch-on screen.

o A server can run programs like all other computers. In addition, it can process
big data.

Other Examples:

• Employee ← worker ← manager: A worker is an employee; a manager is a worker.

• Vehicle ← air vehicle ← helicopter: The vehicle is general, and the helicopter is
special.

• Professor ← Dean: A dean is a professor; they can teach and research like a
regular professor.
In addition, they administrate faculty affairs.

Generalization – Specialization:
INHERITANCE (contd)

Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

7.3

• In OOP, inheritance enables the modification and extension of a class without
changing its code.

When we create more “special” types (classes) of general types, we can add new
properties and abilities (new members) to the more specialized classes.

In addition, we can also modify some features of the general type if necessary.

• The code of the existing class, called the base (parent) class, is not modified.

• However, the new class, called the derived (child) class, can

o use all the features of the old one,

o add new features (attributes and methods),

o modify some features of the base class.

For example, a manager is a worker.

Managers have all the workers' properties and some additional features.

Workers have a procedure to calculate their salaries.

Managers also have a procedure for salary calculation, but it may differ from
the workers' procedure.

The Manager type should modify the procedure derived from the general type
Worker.

Modification During Specialization:

Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

7.4

Inheritance (Class) Hierarchy

Base Class

Member functions
Member variables

Derived_1 Class

Base Class Subobject

Member functions
Member variables

Inherited from
the Base Class

Newly defined members.

Some of them can be modified versions of the
members inherited from the Base Class.

Derived_2 Class
This class contains a Derived_1 Class

subobject that includes the Base Class
subobject and its own members.

More General

More
Specialized

(Employee)

(Worker)

(Manager)

Own member functions
Own member variables

Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

7.5

Using inheritance, we can create various class (type) hierarchies:

Parent

Child1 Child2

GrandChild

UniversityStaff

Official AcademicStaff

Assistant Professor

Dean

Inheritance (Class) Hierarchy (contd)

Terminology:

The base (parent) class is the superclass of the
derived (child) class.

The derived (child) class is the subclass of the
base (parent) class.

Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

7.6

Inheritance (Class) Hierarchy (contd)

Multiple inheritance:

Student AcademicStaff

ResearchAssistant

Base_1 Base_2 Base_n...

• A research assistant is a student and an
academic staff.

• A research assistant has all the features
of a student and an academic staff.

Derived

• C++ supports multiple inheritance.
• Some programming languages, like Java and C#, use a different mechanism

(interfaces) instead of multiple inheritance.
• Multiple inheritance can introduce ambiguity and complexity in the code. It

must be used judiciously and only when necessary (slide 7.55).

Example:

2

Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

7.7

Aggregation, Composition: has a relation vs. Inheritance: is a relation

Although the objects of the derived class contain a subobject of the base class,
this is not a composition (not has-a relationship).

Remember, composition in OOP models the real-world situation in which objects
are composed (or part) of other objects.

For example, the triangle is composed of three points.

A triangle has points. A triangle is not a kind of point."

On the other hand, inheritance in OOP mirrors the concept that we call
generalization - specialization in the real world.

When we model a company's officials, workers, managers, and researchers, we
know that these are all specific types of a more general concept employee.

Every kind of employee has specific features: name, age, ID number, etc.

However, in addition to these general features, a researcher has a project they
work on.

We can say, "The researcher is an employee"; we cannot say, "The researcher
has an employee".

These relationships also have different effects in terms of programming.

We will cover these differences in the following slides.

License: https://creativecommons.org/licenses/by-nc-nd/4.0/ Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

7.8

The simplest example of inheritance requires two classes: a base class (parent
class, superclass) and a derived class (child class, subclass).

The base class does not need any special syntax. On the other hand, the derived
class must indicate that it is derived from the base class.

Inheritance in C++

Point

m_x
m_y

move(int, int)
print()

Example:

Assume that we need points with colors and related functions.

This is a specialized version of the Point class we already
defined.

We do not need to define a new ColoredPoint class from
scratch.

We can reuse the existing class Point and derive the new
ColoredPoint class from it by adding only the new features.

ColoredPoint is a Point.
ColoredPoint

m_color

setColor(Color)
getColor(): Color
changeBrightness()

// Derived Class

class ColoredPoint : public Point {

: // Additional features

};

UML:

is-a

is-a Explained in 7.18

Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

7.9

Example: ColoredPoint is a Point.

class Point { // Base Class (parent)

public:

Point() = default; // Default Constructor

// Getters and setters

:

bool move(int, int); // A method to move points

private:

int m_x{MIN_x}, m_y{MIN_y}; // x and y coordinates

};

class ColoredPoint : public Point { // Derived Class (child)

public:

ColoredPoint (Color); // Constructor of the colored point

Color getColor() const; // Getter

void setColor(Color); // Setter

private:

Color m_color; // Color of the point

};

The existing base class Point does not have any special syntax.
Another programmer might have written it, or it may be a class from the library.

Additional features

+ Inherited (added)

Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

7.10

Example: ColoredPoint is a Point (contd)

int main()

{

ColoredPoint col_point1{ Color::Green }; // A green point

col_point1.move(10, 20); // move function is inherited from base Point

col_point1.print(); // print function is inherited from base Point

col_point1.setColor(Color::Blue); // New member function setColor

if (col_point1.getColor() == Color::Blue) std::print("Color is Blue");

else std::print("Color is not Blue");

// Enumeration to define colors

enum class Color {Blue, Purple, Green, Red};

The objects of ColoredPoint, e.g., col_point1, can access public methods
inherited from Point (e.g., move and print) and newly defined public methods of
ColoredPoint (e.g., getColor).

Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

7.11

Example: ColoredPoint is a Point (contd)

Objects in Memory:

m_x
m_y

An object of Point:
Point objPoint;

m_x
m_y
m_color

An object of ColoredPoint:
ColoredPoint objColPoint;

move()
print()

setColor()
getColor()

ColoredPoint

Color m_color

setColor(Color)
Color getColor()

Point

int m_x, my

bool move(int, int)
void print()

See Example e07_1a.cpp

Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

7.12

Operator functions are also inherited

Example:
Assume that base class Point overloads the greater-than operator > to compare
the distance of a point from zero (0,0) with a double literal.

bool Point::operator>(double in_distance) const {

return sqrt(m_x * m_x + m_y * m_y) > in_distance;

}

This function is inherited by the derived class ColoredPoint and can be used by
its objects.

int main()

{

ColoredPoint col_point1{ Color::Green }; // A green point

if(col_point1 > 50) ... ;

else ... ;

:

}
The operator function
inherited from Point is
used for ColoredPoint.

See Example e07_1b.cpp

3

Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

7.13

Access Control

Remember: The private access specifier determines that members are

totally private to the class; they cannot be accessed outside of the class.

• Private members of the Base class cannot be accessed directly from the
Derived class that inherits them.

For example, m_x and m_y are private members of the Point class.

Private variables are inherited by the derived class ColoredPoint, but the
methods of ColoredPoint cannot access m_x and m_y directly.

void ColoredPoint::wrtX(int in_x) { m_x = in_x; } // Error! Private

• The derived class may access them only through the public interface of the
base class, e.g., setters or the move function provided by the creator of the
Point class.

void ColoredPoint::wrtX(int in_x) { setX(in_x); } // OK. Public

• The creator of the derived class (e.g., ColoredPoint) is a client programmer
(user) of the base class (e.g., Point).

• Remember the data-hiding principle. It allows you to preserve the integrity of
an object’s state.

It prevents accidental changes in the attributes of objects (see slide 3.14).

License: https://creativecommons.org/licenses/by-nc-nd/4.0/ Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

7.14

Access Control (contd)

Protected Members:

When we want to use inheritance, in addition to the public and private access
specifiers for base class members, we can declare members as protected.

Without inheritance, the protected keyword has the same effect as the private.

Protected members cannot be accessed outside the class except for functions
specified as friend functions.

If there is an inheritance, member functions of a derived class can access public
and protected members of the base class but not private members.

Objects of a derived class can access only public members of the base class.

Access Specifier Accessible from Accessible from Accessible from

in Base Own Class Derived Class Objects (Outside Class)

public yes yes yes

protected yes yes no

private yes no no

Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

7.15

Members of the base and derived class
can access

Only the members of the Point can access

Protected Members (contd):
Example:

The base class Point has an ID as a protected data member.

// Member function of the Derived Class ColoredPoint

// Colored Point access the protected member of the Base directly

void ColoredPoint::setAll(int in_x, int in_y, const string& in_ID,

Color in_color) {

setX(in_x); // calls the public method of the Base (Point)

setY(in_y); // calls the public method of the Base (Point)

// m_x = in_x; // Error! m_x is private in Point

m_ID = in_ID; // OK. It can access the protected member directly

m_color = in_color; // Its own member

}
See Example e07_2.cpp

All functions (also non-members) can access

class Point {

public:

:

protected:

string m_ID{}; // Protected member

private:

int m_x{}, m_y{};

};

Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

7.16

Remember the data hiding principle (see slide 3.14).

Public data is open to modification by any function anywhere in the program and
should almost always be avoided.

Protected vs. Private Members

Potential problems may be caused by protected members:

• Protected member variables have many of the same disadvantages as public ones.

• Anyone can derive one class from another and thus gain access to the base
class’s protected data.

• Extra code added to getter and setter functions in the base class to control
access becomes useless because derived classes can bypass it.

• When the derived classes directly manipulate the member variables of a base
class, changing the internal implementation of the base would also require
changing all the derived classes.

When to use them:

In applications where speed is important, such as real-time systems, function calls
to access private members are time-consuming.

In such systems, data may be defined as protected to allow derived classes to
access data directly and faster.

Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

7.17

Protected vs. Private Members (contd)

It is safer and more reliable if derived classes cannot access base class data
directly.

// Colored Point access the coordinates directly

void ColoredPoint::setAll(int in_x, int in_y, ...) {

m_x = in_x; // It can access the protected member directly

m_y = in_y; // It can access the protected member directly

}

colored_point1.setAll(-100, -500); // moves beyond the limits

See Example e07_3.cpp

Member variables of a class should always be private unless there is a good
reason not to do so.

If code outside of the class requires access to member variables, add public or
protected getter and/or setter methods to your class.

Example: The problem caused by protected members

• If the m_x and m_y members of the Point class are specified as protected,
the limit checks in the setters, and the move function becomes useless.

• Methods of the derived class ColoredPoint can modify the coordinates of a
point object directly and move it beyond the allowed limits.

Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

7.18

Base Class Access Specification
When we derive a new class from a base class, we provide an access specifier for
the base class.

Example:

class ColoredPoint : public Point {

};

• There are three possibilities for the base class access specifier:
public, protected, or private.

• The base class access specifier does not affect how the derived class accesses
the members of the base.

• It affects the access status of the inherited members in the derived class for
the users (objects or subclasses) of that class.

For example, if the base class specifier is public, the access status of the
inherited members remains unchanged.

Thus, inherited public members are public, and the objects of the derived
class can access them.

In the example e07_1.cpp, the objects of the ColoredPoint class can call the
public methods of the Point class.

col_point1.move(10, 20); // move is public in Point and ColoredPoint

Base class specifier
is public

4

Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

7.19

Base Class Access Specification

Public inheritance (or sometimes public derivation):

• The access status of the inherited members remains unchanged.

• Inherited public members are public, and inherited protected members are
protected in a derived class.

Protected inheritance (protected derivation):

• Both public and protected members of a base class are inherited as
protected members.

• They can be accessed if they are inherited in another derived (grandchild)
class.

• The objects of the derived class cannot access them.

Private inheritance (private derivation):

• When the base class specifier is private, inherited public and protected
members become private in the derived class.

• They are still accessible by member functions of the derived class but cannot
be accessed if they are inherited in another derived (grandchild) class.

• The objects of the derived class cannot access them either.

License: https://creativecommons.org/licenses/by-nc-nd/4.0/ Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

7.20

Base Class Access Specification (contd)

public Base Class

public members
protected members
private members

class Derived : public Base

Derived Class

public

protected

inherited but not accessible

protected Base Class

public members
protected members
private members

class Derived : protected Base

Derived Class

protected

protected

inherited but not accessible

private Base Class

public members
protected members
private members

class Derived : private Base

Derived Class

private

private

inherited but not accessible

Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

7.21

Base Class Access
Specification (contd)

private

public

protected

Class A

private

public

protected

Class B: public A

private

public

protected

Class C: private A

ObjA

ObjB ObjC

Not allowed

Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

7.22

Redefining Access Specifications:

• When you inherit privately, all the public members of the base class become
private for the users of the derived class.

• After a private derivation, the creator of the derived class can make public
members of the base class visible again by writing their names (no arguments or
return values) along with the using keyword into the public: section of the
derived class.

Example:

class Point { // Base Class (parent)

public:

bool move(int, int);

void print() const;

:

};

class ColoredPoint : private Point { // Private inheritance
public:

using Point::print; // print() of Point is public again

:

}; ColoredPoint cp;

cp.move(10, 20); // Error! move is private

cp.print(); // OK. Print is public again

Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

7.23

Example: Private inheritance

Problem:
• Assume that the Point class supports only lower limits, MIN_x and MIN_y.
• According to the requirements, the coordinates of a colored point must have

lower and upper limits.

Solution:

• The creator of the ColoredPoint class must
privately inherit members of the Point class
(specifically the setters and the move method) and
add upper limits.

So, the users (objects) of the ColoredPoint class
cannot call the move function or setters inherited
from Point, which only checks the lower limits.

• Now, the objects of the ColoredPoint class can only
call public methods provided by the creator of that
class, e.g., setAll() that checks the upper limits.

• Moreover, the creator of the derived class can
redefine the access specification of the print
method to make it visible again for the class users.

Point

+ MIN_x = 0
+ MIN_y = 0
m_x = MIN_x
m_y = MIN_y

+move(int, int)
+print()

ColoredPoint

+ MAX_x = 100
+ MAX_y = 200
m_color

+Point::print()
+setAll(int, int, ...)

<<private>>

{redefines}

Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

7.24

Example: Private Inheritance The ColoredPoint class has lower and upper limits

class ColoredPoint : private Point { //Private inheritance

public:

void setAll(int, int, const string&, Color);

using Point::print; // print() of Point is public again

// Upper Limits of x and y coordinates (new attributes)

static inline const int MAX_x{100}; // MAX_x = 100

static inline const int MAX_y{200}; // MAX_y = 200

private:

Color m_color; // Color of the point

};

// The derived class checks the upper limit values

void ColoredPoint::setAll(int in_x, int in_y,...){

if (in_x <= MAX_x) setX(in_x); // setX of Point checks the lower limits

if (in_y <= MAX_y) setY(in_y);

:

}

In this example, the Point class checks the lower limits, while the ColoredPoint
checks the upper ones.

There are clearly defined responsibilities for each class (separation of concerns).

5

Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

7.25

Example: The ColoredPoint class has lower and upper limits (contd)

int main()

{

ColoredPoint colored_point1{ Color::Green }; // A green point

// X = 200 is not accepted due to the upper limit

colored_point1.setAll(200, 200, "Colored Point1", Color::Red);

// X and Y coordinates are not accepted due to the lower limit

colored_point1.setAll(-10, -20, "Colored Point1", Color::Red);

colored_point1.print(); // OK print function of Point is public again

colored_point1.move(200, 200); // Error! move() from Point is private

colored_point1.setX(200); // Error! setX() from Point is private

:

}

See Example e07_4a.cpp

License: https://creativecommons.org/licenses/by-nc-nd/4.0/ Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

7.26

• After a public derivation, the creator of the derived class can make the
selected public members of the base class private (or protected).

• You cannot loosen the rules set by the class creator; you can only tighten them.
So, you cannot make private members of the base class public or protected.

See Example e07_4b.cpp

Redefining Access Specifications (contd):

class ColoredPoint : public Point { // Public inheritance

:

private:

using Point::move; // Non-constant method are private

using Point::setX;

using Point::setY;

:

};

int main(){

ColoredPoint colored_point1{ Color::Green }; // A green point

colored_point1.setX(200); // Error! setX function in ColoredPoint is private

colored_point1.move(200,200); // Error! move in ColoredPoint is private

colored_point1.Point::move(200, 200); // OK! Using the base name explicitly

Under public inheritance, the move in Point is still public.

Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

7.27

class Base {

public:

:

protected:

:

private:

:

};

class Derived1: public/protected/private Base {

:

};

Summary of Access Specification

These determine if the clients of the Base (objects and directly derived
classes) can access the members of the Base.

public: Objects of Base and methods of Derived1 can access

protected: Methods of Derived1 can access, not the Base objects

private: Only the members of the Base can access it.

These determine if the clients of the Derived1 (objects and directly derived classes)
can access the members inherited from the Base.

public: Objects of Derived1 can access public members inherited from the Base.

The methods of Derived2 can access public and protected members
inherited from the Base.

private: Only the methods of the Derived1 can access public and protected
members inherited from the Base.

class Derived2: public/... Derived1 {

:

};

int main(){

Base base_Object;

Derived1 derived1_Object;

Derived2 derived2_Object;

Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

7.28

Redefining the Members of the Base (Name Hiding)

Some base class members (data or function) may not be suitable for the derived
class. These members should be redefined in the derived class.

Example: The Point class has a print function that prints the properties of the
points on the screen.

However, this function is not sufficient for the class ColoredPoint because
colored points (specialized points) have more properties (e.g., color) to be printed.

So, the print function must be redefined in the ColoredPoint class.

class Point {

public:

void print() const; // prints coordinates on the screen

:

};

class ColoredPoint : public Point {

public:

void print() const; // redefines the print function

: // this function prints the color as well

}; ColoredPoint contains two print() functions
with the same signature but different bodies.

Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

7.29

Example (contd): Redefining the print function of the Point class

// ColoredPoint redefines the print function of Point

// This function prints the color as well

void ColoredPoint::print() const

{

Point::print(); // calls print inherited from Point to print x and y

... // Additional code for printing the color

}

The print() function of the ColoredPoint class hides the print() function of
the Point class.

Now, the ColoredPoint class has two print() functions. The base class members
with the same name can be accessed using the scope resolution operator (::).

int main()

{

ColoredPoint col_point1{ Color::Green }; // A green point

col_point1.print(); // print function of the ColoredPoint

col_point1.Point::print(); // print function inherited from Point

See Example e07_5.cpp
If the base class access
specifier is public

Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

7.30

Example:

Redefining the move function of the Point class under a private inheritance:

• In example e07_4a.cpp, according to the requirements, the coordinates of
colored points have lower and upper limits.

• Since the base class Point has only lower limits, the author of the ColoredPoint
class must privately inherit members of the Point class (specifically the setters
and the move method) and add upper limits and related methods to check them.

• When the access specifier of the base class is public,
i.e., class Derived:public Base, the objects of Derived can still access the
redefined public members of the Base using the scope resolution operator:: .

For example, in e07_5.cpp, the object col_point1 of the ColoredPoint class
can also access the print() function of the Point class.

col_point1.Point::print(); // calls the redefined method of the Base

• However, this is not preferable because the author of the derived redefines the
members of the base when they are not appropriate for the derived objects.

• We can inherit redefined members privately to prevent derived objects from
accessing them.

Preventing derived objects from accessing redefined members of the base:

6

Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

7.31

Example (contd):
Redefining the move function of the Point class under a private inheritance

• Since the access specifier of the base class Point is private now, the users
(objects) of the ColoredPoint class cannot call the move function or setters
inherited from Point that check only the lower limits.

• The author will redefine the move function to check both the lower and upper
limits.

class ColoredPoint : private Point { // Private inheritance

public:

bool move(int, int); // move of Point is redefined

void print() const; // print of Point is redefined

:

};

int main() {

ColoredPoint colored_point1{ Color::Green };// A green point

colored_point1.move(200, 2000); // move of ColoredPoint

colored_point1.print(); // print of ColoredPoint

colored_point1.Point::move(200, 200);// Error! Point is private base

colored_point1.setX(100); // Error! Point is private base

colored_point1.Point::print(); // Error! Point is private base

See Example e07_6.cpp

License: https://creativecommons.org/licenses/by-nc-nd/4.0/ Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

7.32

During redefinition, the parameters of the Base methods can be changed:

class Base { // Base Class

public:

void method() const; // Method of Base

protected:

int m_data1 {1}; // protected integer data member of Base

private:

int m_data2 {2}; // private integer data member of Base

};

class Derived : public Base { // Derived Class

public:

void method(int) const; // Method of Base is redefined

private:

std::string m_data1 { "ABC" }; // data members can be also redefined

int m_data2 {3}; // private data member of Base is redefined

};

The Derived class has two methods: void method() and void method(int).

It has four data members: int m_data1, string m_data1, int m_data2
inherited from Base, and int m_data2.

Example:

Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

7.33

Example (contd): Name Hiding

// A method of Derived

void Derived::method(int in_i) const {

std::print("m_data1 of Derived = {}", m_data1); // m_data of Derived

std::print("m_data1 of Base = {}", Base::m_data1; // OK. protected in
Base

std::print("m_data2 of Base = {}", Base::m_data2; // Error! private

Base::method(); // OK. method() of Base is public

}
Since m_data2 of Base is private, methods
of Derived cannot access Base::m_data2.

int main() {

Derived derived_object; // An object of Derived

derived_object.method(2); // method(int) of Derived

//derived_object.method(); // Error! Redefined, hidden

derived_object.Base::method(); // OK. method() of Base is public

}

Since the Derived class redefines (hides) the method() of the Base, its objects cannot
access the method of the Base directly (implicitly).

If the method in the Base is public, the objects can still access the redefined method
using the name Base.

Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

7.34

Overloading and Name Hiding in C++:
Overloading:

Remember, overloading occurs when two or more methods of the same class or
multiple nonmember methods in the same namespace have the same name but
different parameters (Slide 2.38).

Since the overloaded functions have different signatures, the compiler treats
them as distinct functions, so there is no uncertainty when we call them.

• Methods of the same class or nonmember methods in the same namespace
• Functions have the same names but different input parameters.

Name Hiding:

Name hiding occurs when a derived class redefines the methods of the base class.

The methods may have the same or different parameters, but they will have
different bodies.

• Only with inheritance
• Functions have the same names. The parameters can be the same or different.

Overriding:

Overriding of functions during inheritance helps us to achieve polymorphism, which
we will cover in Chapter 8. See Example e07_7.cpp

Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

7.35

Default Constructor:

If the Base class contains a default constructor, the Derived constructor calls it
automatically if another constructor is not invoked in the initialization list.

In this chapter's previous examples, the base class Point had a default
constructor, i.e., Point() = default.

Since the constructor of the derived class, ColoredPoint calls this default
constructor; we can compile and run these programs.

Constructors and Destructors in Inheritance

The order of construction:
• Firstly, the subobject inherited from the Base is constructed.
• Then the remaining part of the Derived object is initialized.

• Since a derived class's object has a base class's object inside it, the base
object must be created before the rest of the object.

• If that base class is derived from another class, the same applies.

ColoredPoint::ColoredPoint(Color in_color): m_color{in_color}

{ }
Since a base constructor with parameters such as
Point(10,20) is not invoked in the initialization list, the
default constructor of the Point is called implicitly.

Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

7.36

When the derived object goes out of scope, the destructors are
called in reverse order, i.e., the derived object is destroyed first,
then the subobject inherited from the Base.

Example:

Destructor:

See Example e07_8.cpp

Parent

Parent()
~Parent

Child

Child()
~Child()

GrandChild

GrandChild()
~ GrandChild()

• You never need to make explicit destructor calls because there is only one
destructor for any class, and it does not take any arguments.

• The compiler ensures that all destructors are called, which means all
destructors in the entire hierarchy, starting with the most-derived destructor
and working back to the root.

The Output:

Parent constructor

Child constructor

GrandChild constructor

Program terminates

GrandChild destructor

Child destructor

Parent destructor

int main()

{

GrandChild grandchild_object;

cout << "Program terminates";

return 0;

}

7

Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

7.37

• If the Base class contains constructors with parameters instead of a default
constructor, the Derived class must have a constructor that calls one of the
Base class's constructors in its initialization list.

Example:

• In this example, we assume that the base class Point has only one constructor
with two integer parameters and no default constructor:

Class Point{

Point(int, int); // Constructor to initialize x and y coordinates

• The constructors of the derived class ColoredPoint must call this constructor
in the initialization list.

Constructors with parameters:

ColoredPoint::ColoredPoint(int in_x, int in_y, Color in_color)

: Point{in_x, in_y}, m_color{in_color}

{ } See Example e07_9a.cpp

• Since the Point class does not contain a default constructor, the following
code will not compile.

ColoredPoint::ColoredPoint(Color in_color): m_color{in_color}

{ } Tries to call the default constructor of the Point. Error!

License: https://creativecommons.org/licenses/by-nc-nd/4.0/ Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

7.38

• If the Base class contains multiple constructors, the author of the Derived
class can call one of them in the initialization list of the derived constructors.

• The constructors with parameters are not invoked automatically like the default
constructor.

• The author of the Derived class must decide which base constructor to invoke
and supply it with the necessary arguments.

Example:

The base class Point has three constructors, i.e., a default constructor and two
constructors with parameters:

Class Point{

Point(); // Default constructor

Point(int); // Constructor assigns same value to x and y

Point(int, int); // Constructor to initialize x and y coordinates

The constructors of the derived class ColoredPoint can call any of these
constructors in the initialization list.

Constructors with parameters (contd):

Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

7.39

Class Point{

Point(); // Default constructor

Point(int); // Constructor assigns same value to x and y

Point(int, int); // Constructor to initialize x and y coordinates

:

};

Example (contd):

ColoredPoint::ColoredPoint(int in_x, int in_y, Color in_color)

: Point{in_x, in_y}, m_color{in_color}

{ }

ColoredPoint::ColoredPoint(Color in_color): Point{1}, m_color{in_color}

{ }

ColoredPoint::ColoredPoint()

{ }

See Example e07_9b.cpp

Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

7.40

Constructors and destructors in the inheritance with composition

Parent

m_data: Integer

m_part

: PartForParent

<<constructor>>

Parent

(Integer, Integer)

print()

m_part
PartForParent

m_data: Integer

<<constructor>>

PartForParent

(Integer)

print()

m_part
PartForChild

m_data: Integer

<<constructor>>

PartForChild

(Integer)

print()

Child

m_data: Integer

m_part

: PartForChild

<<constructor>>

Child

(Integer, Integer,

Integer, Integer)

print()

In OOD, "is-a" and "has-a" relationships
can occur together.

Remember: In composition, the
objects' lifecycles are tied (6.13).

In the design on the right, the Child
class contains a PartForChild object
and is derived from the Parent class,
which includes a PartForParent object.

• The Child's constructor must first
initialize the subobject inherited
from the Parent, then the part
object, and finally its data member.

• The constructor of the Parent must
first initialize the part object and
then its data member.

• The constructors of the parts must
initialize their data members.

In this example, a Child object
contains four integers (m_data).

Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

7.41

Constructors and destructors in the inheritance with composition

Example 1:

In this example, all classes have default constructors.

• We do not need to call constructors explicitly.

• Default constructors are called, and objects are initialized in the proper
order automatically.

See Example e07_10a.cpp
The order of construction:

PartForParent

Parent

PartForChild

Child

The order of destruction:

Child

PartForChild

Parent

PartForParent

Default Constructors:

Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

7.42

// *** Base Class

class Parent {

public:

Parent(int in_data1, int in_data2) : m_part{in_data1}, m_data{in_data2}

{} // The body of the constructor

...

private:

PartForParent m_part; // Parent contains (has) a part (composition)

int m_data{}; // data of Parent

};

Constructors and destructors in the inheritance with composition (contd)

Example 2:

In this example, all classes have constructors with parameters.

• Constructors of owners must initialize their parts.

• Constructors of child classes must initialize their parents.

Initialize the part
Initialize the data
member

Constructors with parameters:

8

Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

7.43

Example 2 (contd):

// *** The Derived Class

class Child : public Parent {

public:

Child(int in_data1, int in_data2, int in_data3, int in_data4)

: Parent{ in_data1, in_data2 }, m_part{ in_data3 }, m_data{ in_data4 }

{} // The body of the constructor

...

private:

PartForChild m_part; // Child contains (has) a part (composition)

int m_data{}; // data of Child

};

int main() {

Child child_object{ 1, 2, 3, 4 }; // An object of the Child

child_object.print();

:

The order in the list is not important.
Always the Parent subobject is initialized first.
Then the part is initialized.

See Example e07_10b.cpp

License: https://creativecommons.org/licenses/by-nc-nd/4.0/ Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

7.44

Example 2 (contd):

The order of construction:

PartForParent

Parent

PartForChild

Child

The order of destruction:

Child

PartForChild

Parent

PartForParent

m_part
PartForParent

m_data: Integer

<<constructor>>

PartForParent

(Integer)

print()

Parent

m_data: Integer

m_part

: PartForParent

<<constructor>>

Parent

(Integer, Integer)

print()

m_part
PartForChild

m_data: Integer

<<constructor>>

PartForChild

(Integer)

print()

Child

m_data: Integer

m_part

: PartForChild

<<constructor>>

Child

(Integer, Integer,

Integer, Integer)

print()

+2 +1

+4 +3

-3 -4

-1 -2

The construction and destruction
order is the same as in Example 1
with default constructors.

Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

7.45

Constructors and destructors in the inheritance with composition (contd)
Dynamic Member objects (Pointers as members)

Remember: Instead of automatic objects, data members of an owner class may
also be pointers to parts.

• If the relationship is composition, the whole must create and initialize part
objects in the constructor.

• To preserve the order of creation (first parts, then the whole), objects must
be created in the member initialization list of the constructor, not in the body.

Example 3a: Pointers as members. Dynamic objects are created in the member
initialization list

class Parent { // *** Base Class

public:

Parent(int in_data1, int in_data2)

: m_part{ new PartForParent {in_data1} },

m_data{in_data2}

{} // The body of the constructor

~Parent (){delete m_part;} // Destructor is required to release memory

private:

PartForParent * m_part; // Parent contains a pointer to the part

A dynamic part object is created

Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

7.46

Example 3a (contd): Pointers as members. Dynamic objects are created in the
member initialization list

// *** Derived Class

class Child : public Parent {

public:

Child(int, int, int, int); // Constructor of the Child

~Child() ; // Destructor of the Child

...

private:

PartForChild *m_part; // Child contains a pointer to the part

...

// Constructor of the Child

Child::Child(int in_data1, int in_data2, int in_data3, int in_data4)

: Parent{ in_data1, in_data2 }, // Intialize the Parent subobject

m_part{ new PartForChild {in_data3} }, // Create the part object

m_data{ in_data4 } // Initialize data memeber

{};

// Destructor of the Child

Child::~Child() {

delete m_part; // Delete the part object

};

See Example e07_10c.cpp

Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

7.47

Dynamic Member objects (Pointers as members)
Changing the order of construction

If the owner class has pointers to parts,

• The programmer can decide when the parts are to be created and destroyed.

• The dynamic objects can be created in the body of the constructor instead of in
the member initialization list.

In this case, the owner will be created first, then the parts.

• Data members of the owner can be used to initialize the parts because the
owner is created before its part.

Example 3b:

• Pointers as members. Dynamic objects are created in the body of the
constructor. The owner is created before the part.

• Data members of the owners are used to initialize the parts.

// Constructor of the Parent

Parent::Parent(int in_data1)

:m_data{ in_data1 } // The data member is initialized

{ // The body of the constructor

m_part = new PartForParent{ m_data }; // m_data is a data of the owner

} // The part object is created and initialized using the data member

See Example e07_10d.cpp

Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

7.48

Inheriting constructors

• Constructors must do different things in the base and derived classes.

The base class constructor must create the base class data, and the derived
class constructor must create the derived class data.

• Because the derived class and base class constructors create different data,
normally, one constructor cannot be used in place of another.

• Base class constructors are inherited in a derived class as regular member
functions but not as the constructors of the derived class.

• However, the author of the derived class can decide to use the base class's
constructor as the derived class's constructor.

• To inherit the base class constructor, we should put a using declaration in the
derived class.

Example: The ColoredPoint inherits constructors of the Point

class ColoredPoint : public Point {

public:

using Point::Point; // Inherits all constructors of the Point

:

};

9

Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

7.49

Example: The ColoredPoint inherits constructors of the Point

We assume that the Point class has two constructors.

class Point {

public:

Point(int, int); // Constructor with two integers to initialize x and y

Point(int); // Initializes x and y to the same value, e.g., (10,10)
:

}

class ColoredPoint : public Point {

public:

using Point::Point; // Inherits all constructors of the Point

:

};

int main()

{

ColoredPoint colored_point1{ 10, 20 };//Inherited constructor of the Point

ColoredPoint colored_point2{ 30 }; //Inherited constructor of the Point

The ColoredPoint class can also have its own constructors:
ColredPoint (int, int, Color); See Example e07_11.cpp

Without the using declaration,
these definitions will not compile.

License: https://creativecommons.org/licenses/by-nc-nd/4.0/ Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

7.50

The default copy constructor:

• Remember: If the class author does not write a copy constructor, the compiler
supplies one by default.

• The default copy constructor will simply copy the contents of the original into
the new object as a member-by-member copy.

• In most cases, this copy is sufficient.

Example:

What happens if we do not supply a copy constructor for our Point and
ColoredPoint classes?

The Copy constructor under inheritance

See Example e07_12a.cpp

This program runs correctly because the compiler supplies copy constructors for
both classes.

The default copy constructor of the ColoredPoint calls the default copy
constructor of the Point class, and all members are copied from the original
object into the new object.

Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

7.51

The programmer-defined copy constructor in the derived class:

Although not necessary in our example, the programmer can write copy
constructor for the ColoredPoint.

The Copy constructor under inheritance (contd)

ColoredPoint::ColoredPoint(const ColoredPoint& in_col_point)

: m_color{ in_col_point.m_color }

{}
See Example e07_12b.cpp

int main() {

ColoredPoint colored_point1{ 10, 20, Color::Blue}; // Constructor

ColoredPoint colored_point2{colored_point1}; // Copy constructor

• When we run this program, we see that the object colored_point2 is not the
exact copy of colored_point1 (coordinates are different).

• The ColoredPoint copy constructor does not call the Point copy constructor
automatically if we do not tell it to do so.

• The compiler knows it has to create a Point subobject but does not know which
constructor to use.

• If we do not specify a constructor, the compiler will call the default constructor
of the Point automatically.

It is not specified which
constructor of the Point to call.

Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

7.52

To fix the problem in the program e07_12b.cpp, we must call the Point copy
constructor in the initialization list of the ColoredPoint copy constructor.

The programmer-defined copy constructor in the derived class (contd):

ColoredPoint::ColoredPoint(const ColoredPoint& in_col_point)

: Point{in_col_point}, m_color{in_col_point.m_color}

{}

The Point copy constructor is called with the object of the ColoredPoint
(in_col_point) as an argument.

However, the input parameter of the Point copy constructor is a reference to
Point objects, i.e., Point(const Point &);

There is not a type mismatch, thanks to the is-a relationship.

Remember, ColoredPoint is a Point.

Therefore, ColoredPoint objects can be sent as arguments to the functions that
expect Point objects as parameters.

We will discuss this topic in detail later.

The copy constructor of
the Point

See Example e07_12c.cpp

Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

7.53

The Copy constructor and the assignment operator under inheritance (contd)

Example: Double String

• Assume that according to new requirements, we
need a string type with two contents'.

• We can derive the new class DoubleString
from the existing class String that we already
developed.

size

*contents t e x t \0

size2

*contents2 t e x t 2 \0

• Since the base and derived classes both contain pointers, we must supply copy
constructors and copy assignment operators for these classes.

• The DoubleString copy constructor must call the String copy constructor.

DoubleString::DoubleString(const DoubleString& in_object)

: String{ in_object }

The DoubleString assignment operator function must call the String assignment
operator.

const DoubleString& DoubleString::operator=(const DoubleString& in_object)

{

if (this != &in_object) { // checking for self-assignment

String::operator=(in_object); // call the operator of the String

: See Example e07_13.cpp

Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

7.54

Inheriting from the library

Just like from programmer-written classes, we can also derive new classes from
the classes in a library.

Example: A colored string

• Assume that according to requirements, we need strings with a color.

• We can derive a class ColoredString from the class std::string.

• This new class will inherit all members (constructors, operators, getters,
setters, etc.) of the std::string. So, we reuse the std::string.

• As you know, we can add new members and redefine inherited members.

class ColoredString : public std::string {...}

We can use objects of ColoredString like standard std::string objects.

int main() {

ColoredString firstString{ "First String", Color::Blue }; // Constructor

ColoredString secondString{ firstString }; // Copy constructor

secondString += thirdString; // += operator of std::strig

secondString.insert(12, "-"); // Insert "-" to the position 12

ColoredString fourthString; // Default constructor

fourthString = secondString; // Assignment operators

See Example e07_14.cpp

10

Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

7.55

Multiple inheritance occurs when a class inherits from two or more base classes.
Multiple Inheritance

class Base1{
public:

Base1();
~Base1();
void f1();
void f2();
void f3();
void f4();

};

class Base2{
public:

Base2();
~Base2();
void f1();
void f2(int);
void f3(int);

};

class Derived : public Base1 , public Base2{
public:
Derived();
~Derived();
void f1();
void f2(int, char);
void f5();

};

Base1 Base2

Derived

+ +

Remember:

• The derived class
includes all members of
both base classes.

For example, the class
Derived contains three
f1 and two f3 functions.

• In inheritance, functions
are not overloaded. They
are redefined or
overridden.

See Example: e07_15.cppint main() {
Derived d;
d.f1(); // Derived::f1
//d.f2(1); // Error!
d.Base2::f2(1); // Base2::f2
//d.f3(); // Error! Ambiguous
d.f4(); // Base1::f4

License: https://creativecommons.org/licenses/by-nc-nd/4.0/ Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

7.56

Repeated Base Classes
(The Diamond Problem)

Base1 and Base2 inherit from Common, and Derived inherits from Base1 and Base2.

Recall that each object created through inheritance contains a base class
subobject.

A Base1 object and a Base2 object will contain subobjects of Common, and a
Derived object will contain subobjects of Base1 and Base2, so a Derived object
will also contain two Common subobjects, one inherited via Base1 and one inherited
via Base2.

This is a strange situation. There are two subobjects when there should be only
one.

Derived

Common

Base1 Base2

ResearchAssistant

Person

name

Student AcademicStaff

Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

7.57

class Common

{

protected:

int common_data;

};

The derived objects will contain two common_data.

class Derived : public Base1, public Base2 {

public:

void setCommonData(int in) {

common_data = in; // ERROR! Ambiguous

Base1::common_data = in; // OK but confusing

Base2::common_data = in; // OK but confusing

}

};

Suppose there is a data item in Common:

Repeated Base Classes (The Diamond Problem) (contd)

class Base1 : public Common

{ };

class Base2 : public Common

{ };

The compiler will complain that the reference to common_data is ambiguous.

It does not know which version of common_data to access: the one in the Common subobject
in the Base1 subobject or the Common subobject in the Base2 subobject.

See Example: e07_16a.cpp

Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

7.58

Virtual Base Classes

You can fix this using a new keyword, virtual, when deriving Base1 and Base2
from Common :

class Common

{ };

class Base1 : virtual public Common

{ };

class Base2 : virtual public Common

{ };

class Derived : public Base1, public Base2

{ };

The virtual keyword tells the compiler to inherit only one subobject from a class
into subsequent derived classes.

That fixes the ambiguity problem, but other more complicated issues may arise
that are out of the scope of this course.

In general, you should avoid multiple inheritance, although if you have
considerable experience in C++, you might find reasons to use it in some situations.

See Example: e07_16b.cpp

Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

7.59

Pointers to objects and inheritance
Under public inheritance:

• If a class Derived has a public base class Base, then the address of a Derived
object can be assigned to a pointer to Base without explicit type conversion.

In other words, a pointer to Base can store the address of an object of Derived.

A pointer to Base can also point to objects of Derived.

For example, a pointer to Point can point to objects of Point and also to objects
of ColoredPoint.

A colored point is a point.

• The opposite conversion must be explicit for a pointer to Base to a pointer to
Derived.

A point is not always a colored point.

class Base {...};

class Derived : public Base {...};

int main() {

Derived d_obj;

Base *bp = &d_obj; // implicit conversion

Derived *dp = bp; // ERROR! Base is not Derived

dp = static_cast<Derived *>(bp); // explicit conversion

Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

7.60

• When a pointer to the Base class points to objects of the Derived class, only
the members inherited from the Base can be accessed via this pointer.

In other words, members just defined in the Derived class cannot be accessed
via a pointer to the Base class.

For example, a pointer to Point objects can store the address of an object of
the ColoredPoint type.

Using a pointer to the Point class, it is only possible to access the "point"
properties of a colored point, i.e., only the members that the ColoredPoint
inherits from the Point class.

• Using a pointer to the Derived type (e.g., ColoredPoint), it is possible to
access, as expected, all (public) members of the ColoredPoint (both
inherited from the Point and defined in the ColoredPoint).

See the example e07_17.cpp in the next slide.

We will investigate some additional issues about pointers under inheritance (such
as accessing overridden functions) in Chapter 8 (Polymorphism).

Accessing members of the Derived class via a pointer to the Base class:

11

Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

7.61

Example: Pointers to Point and ColoredPoint classes

class Point { // The Point Class (Base Class)

public:

bool move(int, int); // Points behavior

:

};

class ColoredPoint : public Point { // Derived Class, public inheritance

public:

void setColor(Color) // ColoredPoints behavior

:

};

int main(){

ColoredPoint objColoredPoint{ 10, 20, Color::Blue };

Point* ptrPoint = &objColoredPoint; // Point* ptr ← &ColoredPoint

ptrPoint->move(30, 40); // OK. Moving is Points behavior

ptrPoint->setColor(Color::Green); // ERROR! Setting the color is not

// Points behavior

ColoredPoint* ptrColoredPoint = &objColoredPoint; // ColoredPoint* ptr

ptrColoredPoint->move(100, 200); // OK. ColoredPoint is a Point

ptrColoredPoint->setColor(Color::Green); // OK. ColoredPoints behavior

See Example: e07_17.cpp

License: https://creativecommons.org/licenses/by-nc-nd/4.0/ Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

7.62

References to objects and inheritance

• Remember, like pointers, references can also point to objects.

We pass objects to functions as arguments, usually using their references for
two reasons:

a. To avoid copying large-sized objects, e.g., void function(const ClassName&);

b. To modify original objects in the function, e.g., void function(ClassName&);

• If a class Derived has a public base class Base, a reference to Base can also
point to objects of Derived.

If a function gets a reference to Base as a parameter, we can call this function,
sending a reference to the Derived object as an argument.

Remember, on slide 7.52, we call the copy constructor of the Point by sending
the object of the ColoredPoint (in_col_point) as an argument.

However, the input parameter of the Point copy constructor is a reference to
Point objects, i.e., Point(const Point &);

Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

7.63

References to objects and inheritance (contd)
Example:

Remember the example e06_5.cpp. We have a class called GraphicTools that
contains tools that can operate on Point objects.

For example, the method distanceFromZero of the GraphicTools calculates the
distance of a Point object from zero (0,0).

double GraphicTools::distanceFromZero(const Point&) const;

Since a colored point is a point, we can use this method of the GraphicTools also
for the ColoredPoint objects without modifying it.

Since the method's parameter in GraphicTools is a reference to Point objects,
we can call the same method without any modification by passing references to
ColoredPoint objects as arguments.

See Example: e07_18.cpp

int main() {

GraphicTools gTool; // A GraphicTools object

Point point1{ 10, 20 }; // A Point object

distance = gTool.distanceFromZero(point1); // ref. to Point object

ColoredPoint col_point1{ 30, 40, Color::Blue };// A ColoredPoint object

distance = gTool.distanceFromZero(col_point1); // ref. to ColoredPoint

:

Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

7.64

Remember, if the base class is private, derived objects cannot access public
members inherited from the base (see slide 7.20).

It is because the author of the derived class does not permit users of the
derived class to use these inherited members since they are not suitable for the
derived class.

Therefore, if the class Base is a private base of Derived, the implicit conversion
of a Derived* to Base* will not be done.

In this case, a pointer to the Base type cannot point to Derived objects.

If the base class is private, derived objects may not show the same behaviors as
their base objects.

Pointers to objects under private inheritance

Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

7.65

Example:

class Base {

public:

void methodBase();

};

class Derived : private Base { // Private inheritance

};

int main(){

Derived dObj; // A Derived object

dObj.methodBase(); // ERROR! methodBase is a private member of Derived

Base* bPtr = &dObj; // ERROR! private base

Base* bPtr = reinterpret_cast<Base*>(&dObj); // OK. explicit conversion
// AVOID!

bPtr->methodBase(); // OK but AVOID!

Pointers to objects under private inheritance (contd)

Accessing members of the private base after an explicit conversion is possible
but not preferable.

By doing so, we break the rules set by the Derived class author.

As a result, the program may behave unexpectedly.

Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

7.66

A heterogeneous linked list of objects
Since a pointer to Base can also point to Derived objects, we can create
heterogeneous linked lists comprising both Base and Derived objects.

Example: A linked list that contains Point and ColoredPoint objects.

A Point object has no built-in pointer to link it with another Point object.

Changing the definition of the Point class and adding a pointer to the next
object violates the "separation of concerns" principle because linking is not a
task (responsibility) of a point.

To put Point and its child objects (e.g., colored points) into a list, we will define
another type of class called Node.

A Node object will have two members:
m_point: A pointer to the Point type (the element in the list).
m_next: A pointer to the next node in the list.

Node

Node *m_next

Point *m_point

Point

Node

Node *m_next

Point *m_point

ColoredPoint

Node

Node *m_next

Point *m_point

Point

=nullptr

List

Node *head

append(...)

delete(...)

print()

:

12

Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

7.67

Point

ColoredPoint

Node

getPoint():
Point*

m_next

m_point
PointList

append(Point*)

getPoint(): Point*

next()

m_head *

Point

ColoredPoint

Node

getPoint():
Point*

m_next

m_point
PointList

append(Point*)

getPoint(): Point*

next()

m_head *

The UML class diagram of the design of the list for point and colored point
objects:

Instead of detailed aggregation and composition relations, we can present only the
general association relation among classes:

Zero or
many

License: https://creativecommons.org/licenses/by-nc-nd/4.0/ Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

7.68

Example: A linked list that contains Point and ColoredPoint objects (contd)
class Node{

public:

Node(Point *);

Point* getPoint() const { return m_point; }

Node* getNext() const { return m_next; }

:

private:

Point* m_point{}; // The pointer to the element of the list

Node* m_next{}; // Pointer to the next node

};

class PointList{

public:

:

void append(Point *); // Add a point to the end of the list

Point* getPoint() const; // Return the current Point

void next(); // Move the current pointer to the next node

private:

Node* m_head{}; // The pointer to the first node in the list

Node* m_current{}; // The pointer to the current node in the list

};

You don’t need to create your own classes for linked lists.
std::list is already defined in the standard library.

We provide this example for educational purposes.

Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

7.69

Example: A linked list that contains Point and ColoredPoint objects (contd)

int main() {

PointList listObj; // Empty list

ColoredPoint col_point1{ 10, 20, Color::Blue }; // ColoredPoint type

listObj.append(&col_point1); // Append a colored point to the list

Point *ptrPoint1 = new Point {30, 40}; // Dynamic Point object

listObj.append(ptrPoint1); // Append a point to the list

ColoredPoint *ptrColPoint1 = new ColoredPoint{ 50, 60, Color::Red };

listObj.append(ptrColPoint1); // Append a colored point to the list

Point* local_ptrPoint; // A local pointer to Point objects

local_ptrPoint = listObj.getPoint(); //Get the (pointer to) first element

std::print("X = {}", local_ptrPoint->getX());

std::println(", Y = {}", local_ptrPoint->getY());

local_ptrPoint->setX(0); // OK. setX is a member of Point

local_ptrPoint->setColor(Color::Red); // Error! not a member of Point

delete ptrPoint1;

delete ptrColPoint1;

:

See Example: e07_19.zip

Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

7.70

Conclusion about Inheritance:

• We use inheritance to represent the "is-a" ("kind-of") relationship between
objects.

• We can create special types from general types.

• We can reuse the base class without changing its code.

• We can add new members, redefine existing members, and redefine access
specifications of the base class without modifying its code.

• It enables us to use polymorphism, which we will cover in Chapter 8.

