
Functional Programming
Functional Data Structures

H. Turgut Uyar

2013-2016

1 / 28

License

© 2013-2016 H. Turgut Uyar

You are free to:

Share – copy and redistribute the material in any medium or format

Adapt – remix, transform, and build upon the material

Under the following terms:

Attribution – You must give appropriate credit, provide a link to the license, and
indicate if changes were made.

NonCommercial – You may not use the material for commercial purposes.

ShareAlike – If you remix, transform, or build upon the material, you must
distribute your contributions under the same license as the original.

For more information:
https://creativecommons.org/licenses/by-nc-sa/4.0/

Read the full license:

https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode

2 / 28

Topics

1 Functional Data
Immutability
Abstract Data Types

2 Example: Sets
Interface
List Representation
Tree Representation

3 / 28

Appending Lists

append a list at the end another list, and get a third list

example: C

xs->last->next = ys->head;
zs->head = xs->head;
zs->last = ys->last;

4 / 28



Appending Lists

very fast

destroys both xs and ys

5 / 28

Appending Lists

(++) :: [a] -> [a] -> [a]
[] ++ ys = ys
(x:xs) ++ ys = x : (xs ++ ys)

copy some parts, share some parts

6 / 28

Updating Lists

update an element in a list:
update [0,1,2,3,4] 2 7 ~> [0,1,7,3,4]

update :: [a] -> Int -> a -> [a]
update [] _ _ = error "index out of bounds"
update (_:xs) 0 y = y : xs
update (x:xs) n y = x : update xs (n - 1) y

exercise: draw data structures for above example values

7 / 28

Abstract Data Types

abstract data type:

hidden representation

public operations

8 / 28



Example: Natural Numbers

module Nat (
Nat,
add, -- Nat -> Nat -> Nat
sub -- Nat -> Nat -> Nat

) where

9 / 28

Example: Natural Numbers

data Nat = Zero | Succ Nat
deriving Show

add :: Nat -> Nat -> Nat
add n Zero = n
add Zero n = n
add (Succ m) n = Succ (add m n)

sub :: Nat -> Nat -> Nat
sub n Zero = n
sub Zero _ = error "subtract from zero"
sub (Succ n1) (Succ n2) = sub n1 n2

10 / 28

Set Interface

module Set (
Set,
empty, -- Set a
add, -- Ord a => Set a -> a -> Set a
makeSet, -- Ord a => [a] -> Set a
contains, -- Ord a => Set a -> a -> Bool
union, -- Ord a => Set a -> Set a -> Set a
card, -- Set a -> Int
mapSet -- Ord b => (a -> b) -> Set a -> Set b

) where

11 / 28

List Representation

using an ordered list of elements without repetition

data Set a = OrderedList [a]
deriving Show

12 / 28



Empty Set

empty :: Set a
empty = OrderedList []

13 / 28

Adding Elements

add :: Ord a => Set a -> a -> Set a
add (OrderedList xs) x = OrderedList (insert xs x)

insert :: Ord a => [a] -> a -> [a]
insert [] y = [y]
insert xs@(x’:xs’) y
| y < x’ = y : xs
| y > x’ = x’ : insert xs’ y
| otherwise = xs

14 / 28

Set from List

makeSet :: Ord a => [a] -> Set a
makeSet = foldl add empty

15 / 28

Membership Check

contains :: Ord a => Set a -> a -> Bool
contains (OrderedList xs) = search xs

search :: Ord a => [a] -> a -> Bool
search [] _ = False
search (x:xs) y
| y == x = True
| y < x = False
| otherwise = search xs y

16 / 28



Set Union

union :: Ord a => Set a -> Set a -> Set a
union s1 (OrderedList []) = s1
union (OrderedList []) s2 = s2
union (OrderedList (x:xs)) s2 =

((OrderedList xs) ‘union‘ s2) ‘add‘ x

17 / 28

Set Cardinality

card :: Set a -> Int
card = length . makeList

makeList :: Set a -> [a]
makeList (OrderedList xs) = xs

18 / 28

Function Mapping

mapSet :: Ord b => (a -> b) -> Set a -> Set b
mapSet f = makeSet . map f . makeList

19 / 28

Tree Representation

using an ordered binary tree of elements without repetition

data Set a = Nil | Node a (Set a) (Set a)
deriving Show

20 / 28



Empty Set

empty :: Set a
empty = Nil

21 / 28

Adding Elements

add :: Ord a => Set a -> a -> Set a
add Nil y = Node y Nil Nil
add s@(Node x left right) y
| y < x = Node x (add left y) right
| y > x = Node x left (add right y)
| otherwise = s

22 / 28

Set from List

makeSet :: Ord a => [a] -> Set a
makeSet = foldl add empty

23 / 28

Membership Check

contains :: Ord a => Set a -> a -> Bool
contains Nil _ = False
contains (Node x left right) y
| y < x = contains left x
| y > x = contains right x
| otherwise = True

24 / 28



Set Union

union :: Ord a => Set a -> Set a -> Set a
union s1 Nil = s1
union Nil s2 = s2
union (Node x left right) s2 =

((left ‘union‘ right) ‘union‘ s2) ‘add‘ x

25 / 28

Set Cardinality

card :: Set a -> Int
card = length . makeList

makeList :: Set a -> [a]
makeList Nil = []
makeList (Node x left right) =

makeList left ++ [x] ++ makeList right

26 / 28

Function Mapping

mapSet :: Ord b => (a -> b) -> Set a -> Set b
mapSet f = makeSet . map f . makeList

would the resulting tree be balanced?

27 / 28

References

Required Reading: Thompson
Chapter 16: Abstract data types

Recommended Reading: Okasaki
Purely Functional Data Structures

28 / 28


