License

(c) (i) $(\underset{)}{(0)}$

Functional Programming

Functional Data Structures
H. Turgut Uyar

2013-2016

© 2013-2016 H. Turgut Uyar
You are free to:

- Share - copy and redistribute the material in any medium or format
- Adapt - remix, transform, and build upon the material

Under the following terms:

- Attribution - You must give appropriate credit, provide a link to the license, and indicate if changes were made.
- NonCommercial - You may not use the material for commercial purposes.
- ShareAlike - If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
For more information:
https://creativecommons.org/licenses/by-nc-sa/4.0/
Read the full license:
https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode

Topics

(1) Functional Data

- Immutability
- Abstract Data Types
(2) Example: Sets
- Interface
- List Representation
- Tree Representation

Appending Lists

- append a list at the end another list, and get a third list

example: C

```
xs->last->next = ys->head;
zs->head = xs->head;
zs->last = ys->last;
```


Appending Lists

- very fast
- destroys both xs and ys

Updating Lists

- update an element in a list:
update [0,1,2,3,4] 27 ~> [0,1,7,3,4]
update :: [a] -> Int -> a -> [a]
update [] _ _ = error "index out of bounds"
update (_:xs) 0 y = y : xs
update (x:xs) n y $=\mathrm{x}$: update $\mathrm{xs}(\mathrm{n}-1) \mathrm{y}$
- exercise: draw data structures for above example values

Appending Lists

$$
\begin{array}{ll}
(++)::[a] ~->~[a] ~->~[a] ~ \\
{[]} & ++y s=y s \\
(x: x s) & ++y s=x:(x s ~++y s)
\end{array}
$$

- copy some parts, share some parts

Abstract Data Types

- abstract data type:
- hidden representation
- public operations

```
Example: Natural Numbers
module Nat (
    Nat,
    add, -- Nat -> Nat -> Nat
    sub -- Nat -> Nat -> Nat
) where
```


Set Interface

```
module Set (
    Set,
    empty, -- Set a
    add, -- Ord a => Set a -> a -> Set a
    makeSet, -- Ord a => [a] -> Set a
    contains, -- Ord a => Set a -> a -> Bool
    union, -- Ord a => Set a -> Set a -> Set a
    card, -- Set a -> Int
    mapSet -- Ord b => (a -> b) -> Set a -> Set b
) where
```


Example: Natural Numbers

```
data Nat = Zero | Succ Nat
    deriving Show
add :: Nat -> Nat -> Nat
add n Zero = n
add Zero n = n
add (Succ m) n = Succ (add m n)
sub :: Nat -> Nat -> Nat
sub n Zero = n
sub Zero _ = error "subtract from zero"
sub (Succ n1) (Succ n2) = sub n1 n2
```


List Representation

- using an ordered list of elements without repetition
data Set a = OrderedList [a]
deriving Show

Set from List

makeSet : : Ord a => [a] -> Set a makeSet = foldl add empty

```
Membership Check

\section*{Membership Check}
```

 contains :: Ord a => Set a -> a -> Bool
    ```
    contains :: Ord a => Set a -> a -> Bool
    contains (OrderedList xs) = search xs
    contains (OrderedList xs) = search xs
    search :: Ord a => [a] -> a -> Bool
    search :: Ord a => [a] -> a -> Bool
    search [] _ = False
    search [] _ = False
    search (x:xs) y
    search (x:xs) y
    | y == x = True
    | y == x = True
    | y< x = False
    | y< x = False
    | otherwise = search xs y
```

```
    | otherwise = search xs y
```

```
```

Adding Elements

```
Adding Elements
add :: Ord a => Set a -> a -> Set a
add :: Ord a => Set a -> a -> Set a
add (OrderedList xs) x = OrderedList (insert xs x)
add (OrderedList xs) x = OrderedList (insert xs x)
insert :: Ord a => [a] -> a -> [a]
insert :: Ord a => [a] -> a -> [a]
insert [] y = [y]
insert [] y = [y]
insert xs@(x':xs') y
insert xs@(x':xs') y
    | y<x' = y : xs
    | y<x' = y : xs
    | y > x' = x' : insert xs' y
    | y > x' = x' : insert xs' y
    | otherwise = xs
```

 | otherwise = xs
    ```

\section*{Set Union}
union :: Ord a => Set a -> Set a -> Set a
union s1 (OrderedList []) = s1
union (OrderedList []) s2 = s2
union (OrderedList (x:xs)) s2 =
((OrderedList xs) ‘union' s2) ‘add‘ x

\section*{Set Cardinality}
```

card :: Set a -> Int
card = length . makeList
makeList :: Set a -> [a]
makeList (OrderedList xs) = xs

```

\section*{Function Mapping}

\section*{Tree Representation}
- using an ordered binary tree of elements without repetition
data Set a = Nil | Node a (Set a) (Set a) deriving Show


\section*{Set from List}
makeSet :: Ord a => [a] -> Set a makeSet = foldl add empty

\section*{Adding Elements}
```

add :: Ord a => Set a -> a -> Set a
add Nil y = Node y Nil Nil
add s@(Node x left right) y

```
```

| $y<x$

```
| \(y<x\)
    = Node x (add left y) right
    = Node x (add left y) right
    | \(y>x=\) Node \(x\) left (add right \(y\) )
    | \(y>x=\) Node \(x\) left (add right \(y\) )
    | otherwise = s
```

 | otherwise = s
    ```

\section*{Set Union}
```

union :: Ord a => Set a -> Set a -> Set a

```
union sl Nil = sl
union Nil s2 = s2
union (Node \(x\) left right) s2 =
    ((left ‘union' right) ‘union' s2) ‘add‘ x

\section*{Function Mapping}
mapSet :: Ord b => (a -> b) -> Set a -> Set b
mapSet \(f=\) makeSet . map \(f\). makeList
- would the resulting tree be balanced?

\section*{Set Cardinality}
```

card :: Set a -> Int
card = length . makeList
makeList :: Set a -> [a]
makeList Nil = []
makeList (Node x left right) =
makeList left ++ [x] ++ makeList right

```

\section*{References}

Required Reading: Thompson
- Chapter 16: Abstract data types

Recommended Reading: Okasaki
- Purely Functional Data Structures```

