
1

Object-Oriented Programming

2012 - 2024 Feza BUZLUCAhttps://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

2.1

Non-object-oriented features of C++

C++ was developed from the C programming language by adding some features.
These features can be collected in three groups:

1. Non-object-oriented features, which can be used in the coding phase.
These are not involved with the programming technique (OOP).

2. Features that support object-oriented programming.

3. Features that support generic programming.

With minor exceptions, C++ is a superset of C.

C++

Non-object-oriented
extensions

Object-oriented extensions

Generic programming
extensions

License: https://creativecommons.org/licenses/by-nc-nd/4.0/

C
Minor exceptions:
C code that is not C++

Object-Oriented Programming

2012 - 2024 Feza BUZLUCAhttps://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

2.2

There is a difference between a declaration and a definition.

Declaration:

• A declaration introduces a name – an identifier – to the compiler.

• It provides only the basic attributes of a symbol: its unique name and type.

• It tells the compiler, “This function or this variable exists somewhere, and here
is what it should look like.”

• A declaration does not allocate memory space for the name.

Example:

The signature of a function without its body is a declaration.

int function (unsigned int, double); // Declaration (signature)

The declaration does not provide the body of the function.

The compiler can still compile a source file (compilation unit) that includes a call to
this function.

j = function(12, 3.14); // Declaration is sufficient to compile

However, to create an executable code, the body of the function must exist (must
be defined) somewhere in the program (same or another file).

If the definition of the function is not provided, the linker will generate an error.

Declarations and Definitions in C++:

Object-Oriented Programming

2012 - 2024 Feza BUZLUCAhttps://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

2.3

Definition:

• A definition is also a declaration. It introduces the name and type.

• In addition, a definition provides all of the necessary information to create
that entity (variable, function, class) in its entirety.

• For example:

Defining a function means providing a function body;

Defining a class means giving all of the variables and methods of the class.

All definitions are declarations, but not all declarations are definitions.

Declaring an identifier (variable, function, class) without defining it is necessary
and useful, especially if you work with multiple source files and you need to use
the same name (for example, a function) across them.

There is no need to put the body of a function in multiple files, but it does need to
be declared in each file where it is used.

The definition of an identifier (for example, the body of the function) will take
place only in one file (one definition rule).

Often, the compiler only needs a declaration for something to compile a file into
an object file, expecting that the linker can find the definition from another file.

Declarations and Definitions in C++ (contd):

Object-Oriented Programming

2012 - 2024 Feza BUZLUCAhttps://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

2.4

extern int i; // Declaration, the definition is in another file

int i; // Definition, memory is allocated

struct ComplexT; // Declaration only

struct ComplexT{ // Declaration (type) and definition of complex numbers

double re{}, im{};

};

ComplexT c1,c2; // Definition of two complex number variables c1, c2

void function(int, int); // Declaration (its body is the definition)

void function(int, int){ // Definition

:

}

class Point; // Declaration only

class Point{ // Declaration and Definiton of Point Class

public:

void move(int, int); // Declaration of the function to move the Points

private:

int x{}, y{}; // Definition of the properties: x and y coordinates

};

Point point1, point2; // Definition of two Point objects

Examples: Declarations and Definitions in C++ (contd):

Object-Oriented Programming

2012 - 2024 Feza BUZLUCAhttps://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

2.5

In a compilation (translation) unit (source file), no variable, function, class type,
enumeration type, or template must ever be defined more than once.

You can have more than one declaration for any entity, but there must always be
only one definition that determines what it is and causes it to be created.

If there is more than one definition within the same translation unit, the code will
not compile.

The ODR rule also applies to an entire program.

No two definitions of the same identifier are allowed, even if they’re identical and
appear defined in different translation units.

When we work with multiple files, we must declare an identifier in each file where
it is used because the compiler needs to have a declaration of identifiers to
compile a source file into an object file.

• An identifier can be declared as often as you want.

• However, it must be defined exactly once in a program.

If you define something more than once (even in different files), the linker
generates a linker error (duplicate symbols).

If you forget to define something that has been declared and referenced, the
linker also generates a linker error (missing symbol).

The One Definition Rule (ODR):

Object-Oriented Programming

2012 - 2024 Feza BUZLUCAhttps://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

2.6

When a program reaches a certain size, it is usually divided into pieces, each built and
maintained by a separate developer or group (teamworking).

Since C uses a single arena for all identifiers and functions, developers must avoid
accidentally using the same name in conflicting situations.

A programmer faces the same problem if she uses the same names as library functions.

Standard C++ has a mechanism to prevent this collision: the namespace keyword.

Each set of C++ definitions in a library or program is “wrapped” in a namespace.

If another definition has an identical name but is in a different namespace, there is no
collision.

Example:
namespace programmer1{ // programmer1's namespace

int iflag; // programmer1's iflag

void g(int); // programmer1's g function

: // other variables

} // end of namespace

namespace programmer2{ // programmer2's namespace

int iflag; // programmer2's iflag

:

} // end of namespace

Namespaces

2

Object-Oriented Programming

2012 - 2024 Feza BUZLUCAhttps://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

2.7

The scope operator "::" is used to access the variables defined in namespaces.

programmer1::iflag = 3; // programmer1's iflag

programmer2::iflag = -345; // programmer2's iflag

programmer1::g(6); // programmer1's g function

If a variable or function does not belong to any namespace, it is defined in the
global namespace.

It can be accessed without a namespace name and scope operator.

Accessing the variables defined in namespaces:

License: https://creativecommons.org/licenses/by-nc-nd/4.0/

Comments:

• A well-written code should explain itself.

• Simply repeating the code in a comment is considered bad practice.

For example, programmer1::iflag = 3; //programmer1's iflag is 3 (useless)

• Since the objective of this lecture slides is teaching programming, code
comments are used to explain even the most basic lines of C++ code.

• You should only include comments in your code that clarify or document aspects
that may not be immediately clear to the reader, such as yourself or your
coworkers.

Object-Oriented Programming

2012 - 2024 Feza BUZLUCAhttps://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

2.8

using declaration:

This declaration makes accessing variables and functions defined in a namespace
easier.

using programmer1::iflag; // applies to a single item in the namespace

After this declaration, to access the variable iflag in the namespace
programmer1, writing the name of the namespace is not necessary.

iflag = 3; // programmer1::iflag=3,

programmer2::iflag = -345; // namespace name is necessary

programmer1::g(6); // namespace name is necessary

This declaration can also apply to all elements in a namespace.

using namespace programmer1; // applies to all elements in the namespace

iflag = 3; // programmer1::iflag = 3;
g(6); // programmer1::g(6); programmer1's function g
programmer2::iflag = -345;

Object-Oriented Programming

2012 - 2024 Feza BUZLUCAhttps://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

2.9

Working with multiple files (Separate compilation)

As our code base grows, creating separate files for related entities (constants,
variables, functions, classes) is a proper approach.

• It provides managing the complexity of the software and reusability of entities
in new projects.

• We need to compile only the necessary files whenever the code is changed.

Prior to C++20, programs were organized in header files and source files.

This approach has some disadvantages, such as creating issues with ODR and
increasing the size of the source code.

C++20 introduced modules that solve problems generated by header files and
reduce build (compilation) times, especially in large codebases with many
dependencies.

Since header files are still widely used, first we will discuss them briefly.

Then we will cover C++ modules.

Object-Oriented Programming

2012 - 2024 Feza BUZLUCAhttps://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

2.10

Working with multiple files using header files:

Object code Object codeLibrary
Object code

executable

COMPILER

LINKER

Object code

header header header Common declarations
and definitions

C++
source

C++
source

Implementations and
executable C++ code

There may only be an
object file without the
source code.

The header files contain the common declarations and definitions.

CPU-readable
instructions
Machine code

The #include preprocessing directive takes
the contents of a given file and copies it
textually into the current file.

Object-Oriented Programming

2012 - 2024 Feza BUZLUCAhttps://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

2.11

Standard C++ header files:

In the first versions of C++, mainly ‘.h’ is used as the extension for the header
files of the standard library.

As C++ evolved, different compiler vendors chose other extensions for file names
(.hpp, .H, etc.). These issues caused source code portability problems.

To solve these problems, the standard uses a format that allows file names longer
than eight characters and eliminates the extension for the header files of the
standard library.

For example, instead of the old style of including iostream.h, which looks like
this: #include <iostream.h> X

you can now write: #include <iostream> √

The libraries inherited from C are still available with the traditional ‘.h’ extension.
However, you can also use them with the more modern C++ include style by putting
a “c” before the name. Thus:

#include <stdio.h> become: #include <cstdio>

#include <stdlib.h> #include <cstdlib>

Object-Oriented Programming

2012 - 2024 Feza BUZLUCAhttps://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

2.12

Today most C++ compilers support old libraries and header files too. So you can
also use the old header files with the extension '.h'.

For a high-quality program, always prefer the new libraries and use standard
header files without extension.

You may still use the extension '.h' for your own header files.

Example: #include "myheader.h"

Disadvantages of using header files:

• They increase the size of the source code and slow compilation because when
multiple files include the same header file, it is reprocessed multiple times.

• The order of #includes can modify behavior or break code.

• They may cause issues with the ODR because the same definition may (and
must) be included multiple times. Any definition you place in a header gets copy-
pasted into every translation unit that includes it, either directly or indirectly.

Standard C++ header files (contd):

The C++20 standard introduces modules as a novel way of structuring C++
libraries and programs as components.

Many of the problems associated with header files are eliminated or reduced by
using modules.

3

Object-Oriented Programming

2012 - 2024 Feza BUZLUCAhttps://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

2.13

Working with multiple files (separate compilation) requires a method to compile
each file automatically.

Further, it is necessary to instruct the linker to build all the pieces, along with the
appropriate libraries and startup code, into an executable.

The solution, developed on Unix but available everywhere in some form, is a
program called make.

Compiler vendors have also created their own project-building tools.
Generally, these tools use a project file similar to a makefile, but the
programming environment maintains this file.

The configuration and use of project files vary from one development environment
to another, so you must find the appropriate documentation for using them.

Working with Multiple Files (Separate Compilation) (contd)

We will examine two examples, i.e., e02_1a.zip and e02_1b.zip, which illustrate
how to work with multiple files a few slides later.

The example e02_1a.zip uses header files.

The example e02_1b.zip uses modules.

License: https://creativecommons.org/licenses/by-nc-nd/4.0/ Object-Oriented Programming

2012 - 2024 Feza BUZLUCAhttps://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

2.14

• The use of modules eliminates the need for header files.

Modules are not inserted textually into source files.

• Module interfaces are precompiled and cached (stored in memory) for shorter
compilation times.

• The content of a module interface file is never duplicated, even if multiple
source files use it.

The precompiled result of an importable module unit (Built Module Interface -
BMI) can be consumed (used) by multiple source files.

• Using modules decreases the possibility of running into ODR (One Definition
Rule) issues.

• Instead of re-compiling and linking the entire codebase every time a small
change is made, only the changed module and modules that depend on it must be
recompiled.

This can significantly reduce build times, especially in large codebases with many
dependencies.

• Additionally, C++ modules can help reduce the amount of code that needs to be
recompiled by resolving dependencies at compile time and enabling more fine-
grained control over what parts of a codebase need to be rebuilt.

Modules (Since C++20):

Object-Oriented Programming

2012 - 2024 Feza BUZLUCAhttps://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

2.15

Modules (contd):

Module implementation

object file

COMPILER

LINKER

object

executable

Declarations and definitions

Translation units
C++ source

//program1.cpp

import my_module;

Module interface unit

//my_module.ixx (or .cppm)

export module my_module;

export ...;

export ...;

Module implementation

//my_module.cpp

module my_module;

// definitions

// implementations

//program2.cpp

import my_module;

Module interface

object file

BMI

BMI

object

Module

Object-Oriented Programming

2012 - 2024 Feza BUZLUCAhttps://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

2.16

Creating Modules:

We typically create a module for the set of code that encompasses a specific
purpose.

Each module would represent a logical grouping of types, functions, and relevant
global variables.

A module can export any number of C++ entities (constants, functions, types, and so
on), which can then be used in any source file that imports that module.

A module consists of two files, i.e., module interface and module implementation.

The module interface file:

This file contains declarations (signatures) of functions and definitions of types
(classes) and, if necessary global data (usually constants).

Example:

// functions.ixx

export module functions; // The name of the module is functions

export const double PI{ 3.14 }; // Definition of a constant double

export double function1(double); // Declaration of a function

export int function2(int); // Declaration

Filename. The Visual Studio suggests the extension ixx.
Some compiler vendors use .cppm as extension.
The filename can be different than the module name.

Object-Oriented Programming

2012 - 2024 Feza BUZLUCAhttps://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

2.17

Creating Modules (contd):

The module implementation file:

This file contains definitions (implementations) of functions.

Example (contd):

// functions.cpp Filename can be different from the module name

module functions; // Module name is functions

// function1 increments the input parameter by 0.1

double function1(double input) {

return input + 0.1;

}

// function2 increments the input parameter by 1

int function2(int input) {

return input + 1;

}

The bodies of the functions could also be provided in the module interface file.

In this case, the implementation file would not be necessary.

However, separating the interface and implementation is a good practice.

Object-Oriented Programming

2012 - 2024 Feza BUZLUCAhttps://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

2.18

Using Modules (contd):

The consumer (user) source files can import the modules and use the exported
entities.

Example (contd):

// main.cpp

import functions; // Importing the module: functions

int main()

{

double d { PI }; // A double number is defined and initialized to PI

d = function1(d); // function1 is imported from the module functions

int i{};

i = function2(i); // function2 is imported from the module functions

return 0;

}

Module name, not the file name

4

Object-Oriented Programming

2012 - 2024 Feza BUZLUCAhttps://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

2.19

Header Units:

A header unit is a binary representation of a header file that can be imported as a
module.

Example:

import <iostream>; // for IO operations

Header units are a step in between header files and C++ 20 modules.

The C++ standard library modules (Since C++ 23):

The C++23 standard library introduces a module: std, that exports the
declarations and names defined in the C++ standard library namespace std, such as
std::cout, std::print(), and std::string.

It also exports the contents of C wrapper headers such as <cstdio> and
<cstdlib>, which provide functions like std::printf().

Example:

import std; // module of standard library; Since C++23

int main() {

std::string str { "ABC" };

std::cout << str;

:

License: https://creativecommons.org/licenses/by-nc-nd/4.0/ Object-Oriented Programming

2012 - 2024 Feza BUZLUCAhttps://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

2.20

You should be aware of namespaces if you use standard headers.

For example, std::string, std::cout, std::vector, std::sort etc.

Probably, you will write using namespace std; at the beginning of your file to
avoid writing std:: repeatedly.

However, the statement using namespace std; is generally considered bad
practice.

It increases the risk of name conflicts. std is an extensive library, and you may use
the same names already defined in the library.

Moreover, it is helpful to know which identifiers (variables, functions) are defined
by the developer and which are taken from the library.

Suggestions:

• Import only some well-known identifiers: using std::cout; using std::cin;

• If you still import entire namespaces, do so inside classes, functions, or limited
scope and not in the global scope.

• You may import your own namespaces entirely: using namespace my_namespace;

In the standard library of C++, all declarations and definitions take place in the
namespace: std

The namespace std

Object-Oriented Programming

2012 - 2024 Feza BUZLUCAhttps://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

2.21

Input / Output
When a C++ program includes (or imports since C++20) the iostream header or
imports std module (introduced in C++23), four objects are created and initialized:

cin handles input from the standard input, the keyboard.

cout handles output to the standard output, the screen.

cerr handles unbuffered output to the standard error device, the screen.

clog handles buffered error messages to the standard error device

Using cout object: To print a value to the screen, we use the predefined object
cout, and the insertion operator (<<).

Using cin object: The predefined cin stream object is used to read data from the
standard input device, usually the keyboard. The cin stream uses the >> operator,
usually called the "get from" operator.

import std; // or #include<iostream> prior to C++20 or import <iostream>;

int main() {

int i, j; // Two integers are defined

std::cout << "Give two integers \n"; // Message to screen, to the new line

std::cin >> i >> j; // Read i and j from the keyboard

std::cout << "Sum= " << i + j << "\n"; // The sum to the screen

return 0;

} Example e02_1a.zipHeaders:

Object-Oriented Programming

2012 - 2024 Feza BUZLUCAhttps://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

2.22

Input / Output (contd)

Starting from C++23, the preferred way to output text to the computer's screen
is by using functions like std::println() and std::print().

Example:

import std;

int main() {

int i, j; // Two integers are defined

std::println("Give two integers"); // Message to screen, goto new line

std::cin >> i >> j; // Read i and j from the keyboard

std::println("Sum= {}", i + j); // The sum to the screen

return 0;

}

Example e02_1b.zipModules:

Replacement field

The only difference with std::println() is that std::print() does not add a
"new line" break (\n) at the end.

You cannot invoke std::print() or std::println() without a format string.

For example, you cannot use std::println(i+j) to output only the value of the
sum.

Instead, you use a statement of the form std::println("{}", i + j).

Object-Oriented Programming

2012 - 2024 Feza BUZLUCAhttps://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

2.23

Initializing variables

There are three mechanisms for initializing a variable: functional notation,
assignment notation, and uniform initialization (curly braces).

unsigned int number_of_students(100); // Functional notation

unsigned int number_of_courses = 12; // Assignment notation

// Uniform initialization (curly braces)

unsigned int car_count {10}; // Number of cars

unsigned int bus_count {5}; // Number of busses

unsigned int total_vehicle {car_count + bus_count}; //Total (vehicles)

The braced initializer form is safer if there is a narrowing conversion.
A narrowing conversion changes a value to a type with a more limited range of
values.
unsigned int car_count(10.3); // car_count = 10 (There is a warning)

unsigned int bus_count = 5.6; // bus_count = 5 (There is a warning)

unsigned int car_count {10.3}; // Compile Error!

The main advantage of braced initialization is that it allows programmers to
initialize just about everything in the same manner.

Thus, it is also known as uniform initialization.

Later, we will also use it to initialize objects.

Object-Oriented Programming

2012 - 2024 Feza BUZLUCAhttps://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

2.24

Zero Initialization:

The following statement defines an integer variable with an initial value equal to
zero:

int counter {0}; // counter starts at zero

You could omit the 0 in the braced initializer:
int counter {}; // counter starts at zero

Suggestion:

You don’t have to initialize variables when you define them.

However, it is a good idea to ensure that variables start with known values.

This makes it easier to determine what is wrong when the code doesn’t work as
you expect.

Initializing variables (contd)

5

Object-Oriented Programming

2012 - 2024 Feza BUZLUCAhttps://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

2.25

Type deduction using the auto keyword

In C++, we can use the auto keyword to let the compiler deduce the type of a
variable from the initial values we supply.

Examples:

auto v1 {10}; // The type of v1 is int

auto v2 {2000UL}; // The type of v2 is unsigned long (at least 32 bits)

auto v3 {3.5}; // The type of v3 is double

We can also use functional or assignment notation with auto for the initial value.

Examples:

auto v1 = 10; // The type of v1 is int

auto v2 = 2000UL; // The type of v2 is unsigned long (at least 32 bits)

auto v3(3.5); // The type of v3 is double

The type deduction occurs exclusively at compile time.

The type must be clear to the compiler based on the provided initial value.

In C++, the type of a variable cannot be deduced at runtime.

License: https://creativecommons.org/licenses/by-nc-nd/4.0/ Object-Oriented Programming

2012 - 2024 Feza BUZLUCAhttps://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

2.26

Type deduction using the auto keyword (contd)

• It is recommended to explicitly specify the type (do not use auto) when
defining variables of fundamental types like char, int, double, etc.

This increases the understandability of your program.

• When type names are complicated (verbose or long), you can use the auto
keyword to increase the readability of your code.

• You can use the auto keyword as the return type of a function when you do not
want to specify the return type explicitly.

Example:

auto function1(int, double);

By considering the return statements in the definition of the function, the
compiler will deduce the return type of this function.

The keyword auto never deduces to a reference type, always to a value type.

To have the compiler deduce a reference type, you should write auto& or
const auto&.

We will cover the details in the coming chapters.

Object-Oriented Programming

2012 - 2024 Feza BUZLUCAhttps://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

2.27

The Lifetime and the Scope of a Variable:
All variables have a finite lifetime.
They are created at the point at which they are defined, and at some point, they
are destroyed, at the latest, when the program is terminated.
There are four different kinds of storage duration (lifetime):

1. Automatic storage duration: Standard variables are defined within a block
without using the static keyword.

They exist from the point at which they are defined until the end of the block,
which is the closing curly brace "}".

Automatic variables have local scope or block scope.

2. Static storage duration: Variables are defined using the static keyword.
Static variables exist from the point at which they are defined and continue in
existence until the program ends.

3. Dynamic storage duration: For these variables, memory is allocated at runtime.

They exist from the point at which you create them until you release their
memory to destroy them (remember: new, delete, pointers).

4. Thread storage duration: Variables are declared with the thread_local
keyword (for parallel programming).

Thread local variables are out of the scope of this course.

Object-Oriented Programming

2012 - 2024 Feza BUZLUCAhttps://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

2.28

Scope of a variable:

The scope of a variable is the region of a program in which the variable name is
valid.

• Within its scope, you can set or read the variable's value.

• Outside of its scope, you cannot refer to its name. Any attempt to do so will
result in a compiler error.

Note that a variable may still exist outside of its scope, even though you cannot
refer to it.

We will see examples of this situation later when we cover variables with static
and dynamic storage duration.

Summary:

Lifetime: The period of execution time over which a variable exists.

Scope: The region of program code over which the variable name can be used.

Object-Oriented Programming

2012 - 2024 Feza BUZLUCAhttps://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

2.29

Variables defined outside of all blocks and classes are also called globals and have
global scope (also called global namespace scope).

Global variables are accessible in all the functions in the source file following the
point at which they’re defined.

Global variables have static storage duration by default, so they exist from the
start of the program until the execution of the program ends.

Avoid global variables! Common coding and design guidelines suggest that global
variables should be avoided.
Declaring all variables in global scope increases the possibility of accidental,
erroneous modification of a variable.

As a result, it is difficult to determine which part of the code is responsible for
changing global variables.

Moreover, global variables occupy memory for the duration of program execution,
so the program will require more memory than if you used local variables.

Global variables declared with the const keyword are an exception to this rule.

It is recommended to define all your constants only once, and global variables are
ideally suited for that.

Global Variables:

Object-Oriented Programming

2012 - 2024 Feza BUZLUCAhttps://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

2.30

Example:

double value1; // Global

int main()

{

int value2{};

. . .

{

int value3{};

. . .

}

}

int value4; // Global

int function(int)

{

double value5{};

int value1{}; //Local with the same name

. . .

}

value1 (double)

value2

value3

value4

value1 (int)

value5

6

Object-Oriented Programming

2012 - 2024 Feza BUZLUCAhttps://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

2.31

A definition in a block (local name) can hide a definition in an enclosing block or a
global name.

It is possible to access a hidden global variable by using the scope resolution
operator (::)

int y = 0; // Global y

int x = 1; // Global x

void f(){ // Function is a new block

int x=5; // Local x=5, it hides global x

::x++; // Global x=2

x++; // Local x=6

y++; // Global y=1, scope operator is not necessary

}

Scope Resolution Operator (::)

It is not recommended to give identical names to global and local data if it is
not mandatory.

Like in C, in C++, the same operator may have more than one meaning.

The scope operator :: also has many different tasks, which are presented in the
following chapters.

Example e02_2.cpp

License: https://creativecommons.org/licenses/by-nc-nd/4.0/ Object-Oriented Programming

2012 - 2024 Feza BUZLUCAhttps://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

2.32

Constants

C++ introduces the concept of a named constant that is just like a variable,
except that its value cannot be changed.

The modifier const tells the compiler that a name represents a constant.

const int MAX = 100; // MAX is constant, and its value is 100

or
const int MAX(100); // MAX is constant, and its value is 100

or
const int MAX {100}; // MAX is constant, and its value is 100

The following statement causes a compiler error if MAX is a constant.
MAX = 5; // Compiler Error! Because MAX is constant

const can take place before (left) and after (right) the type. They are always
(both) allowed and equivalent.

int const MAX {100}; // The same as const int MAX {100};

The keyword const very often occurs in C++ programs, as we will see in this
course. This usage decreases error possibilities.

To make your programs more readable, use uppercase font for constant
identifiers.

Object-Oriented Programming

2012 - 2024 Feza BUZLUCAhttps://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

2.33

There are three different cases:

1) The data (pointed to by the pointer) is constant, but the pointer itself may
be changed.

const char *ptr = "ABC"; //Constant data = "ABC", pointer is not const

or

const char *ptr {"ABC"}; //Constant data = "ABC", pointer is not const

Here, ptr is a pointer variable, which points to chars.

The const word may also be written after the type:

char const * ptr {"ABC"}; // Constant data = "ABC", pointer is not const

Whatever is pointed to by ptr may not be changed because the chars are
declared as const.

The pointer ptr itself, however, may be changed.

*ptr = 'Z'; // Compiler Error! Because data is constant

ptr++; // OK, because the address in the pointer may change.

Using the const keyword in the declaration of pointers.

Object-Oriented Programming

2012 - 2024 Feza BUZLUCAhttps://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

2.34

3) Neither the pointer nor what it points to may be changed

const double data {1.2};

const double * const ccp {&data}; // Pointer and data are constant

*ccp = '2.3'; //Compiler Error! Because data is constant

ccp++; // Compiler Error! Because pointer is const

The same pointer definition may also be written as follows:

double const * const ccp {&data};

The definition or declaration in which const is used should be read from the
variable or function identifier back to the type identifier:

"ccp is a const pointer to const double data" .

int data {10};

int * const cp {&data}; // Pointer is constant, data may change

*cp = 15; //OK, data is not constant

cp++; //Compiler Error! Because the pointer is constant

2) The pointer itself is a const pointer which may not be changed. Data
pointed to by the pointer may be changed.

Address of data

Object-Oriented Programming

2012 - 2024 Feza BUZLUCAhttps://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

2.35

inline Functions

In C, macros are defined by using the #define directive of the preprocessor.

In C++, instead of function-like macros, inline functions are used. Here, the
keyword inline is inserted before the declaration of a standard function.

The difference between standard functions and inline functions (macros in C):

A standard function is placed in a separate section of code, and a call to the
function generates a jump to this section of code.

• The advantage of this approach is that the same code can be called (executed)
from many different places in the program. This makes it unnecessary to
duplicate the function’s code every time it is executed.

• However, there is also a disadvantage.

• The function call itself, and the transfer of the arguments takes some time.

• Before the jump, the return address and arguments are saved in memory
(usually in the stack).

• When the function has finished executing, the return address and return
value are taken from memory, and the control jumps back to the statement
following the function call.

• In a program with many function calls (especially inside loops), these times
can add up and decrease the performance.

Object-Oriented Programming

2012 - 2024 Feza BUZLUCAhttps://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

2.36

inline int max (int i1, int i2){ // An inline function

return(i1 > i2) ? i1 : i2; // returns the greatest of two integers
}

Calls to the function are made in the normal way:

int j, k, l ; // Three integers are defined

……… // Some operations over k and l

j = max(k, l) // inline function max will be inserted here

An inline function is defined using almost the same syntax as an ordinary function.

However, instead of placing the function’s code in a separate location, the compiler
simply inserts the machine-language code into the location of the function call.

Using inline functions increases the size of the executable code.
However, the program may run faster because transferring parameters and the
return address is unnecessary.

The decision to inline a function must be made with some care.

It’s appropriate to inline a function when it is short, but not otherwise.

If a long or complex function is inlined, too much memory will be used, and not much
time will be saved.

inline Functions (contd)

7

Object-Oriented Programming

2012 - 2024 Feza BUZLUCAhttps://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

2.37

A programmer can give default values to the parameters of a function. In calling
the function, default values are used if the arguments are not provided.

Example:

void f(char c, int i1=1, int i2=2) // i1 and i2 have default values

{ … } // Body of the function

This function may be called in different ways:

f('A',4,6); // c='A', i1=4, i2=6

f('B',3); // c='B', i1=3, i2=2

f('C'); // c='C', i1=1, i2=2

f('C', {}, 7); // c='C', i1=0, i2=7

In calling a function argument must be given from left to right:

f('C', ,7); // ERROR! The third argument is given, but the second is not

While defining functions, default values of parameters must be given from right
to left without skipping any parameter.
void f(char c='A', int i1, int i2=1) // ERROR! i1 has been skipped

Default values must not be only constant values. They may also be expressions or
function calls.

Default Function Arguments

void f(char c, int i1 = other_func())

License: https://creativecommons.org/licenses/by-nc-nd/4.0/ Object-Oriented Programming

2012 - 2024 Feza BUZLUCAhttps://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

2.38

C++ enables several functions of the same name to be defined as long as
these functions have different sets of parameters (Numbers, types, or the
order of the parameters may be different).

The name and the parameter list build the signature of the function.

Example:

// Structure for complex numbers

struct ComplexT{

float re, im;

};

// print function for real numbers

void print (float value){

std::println("value= {}", value);

}

// print function for complex numbers

void print (ComplexT c){

std::println("real= {} im= {}", c.re, c.im);

}

// print function for real numbers and characters

void print (float value, char c){

std::println("value= {} c= {}", value, c);

}

Overloading of function Names

int main()

{

ComplexT z;

z.re=0.5;

z.im=1.2;

print(z);

print(4.2);

print(2.5,'A');

return 0;

}

See Example e02_3.cpp

See Example
e02_3_with_cout.cpp

Object-Oriented Programming

2012 - 2024 Feza BUZLUCAhttps://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

2.39

This operator provides an alternative name for storage.

int i = 5; // integer i = 5

int& j = i; // j is a reference to i. j and i both have the same address

j++; // i = 6

Actually, there is only one integer memory cell with two names: i and j.

It is often used to pass parameters to a function by their references.

Remember: We can also use curly braces to initialize variables.

int i {5}; // integer i = 5

int& j {i}; // j is a reference to i. j and i both have the same address

j++; // i = 6

Reference Operator (&)

Object-Oriented Programming

2012 - 2024 Feza BUZLUCAhttps://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

2.40

Call by reference:
Remember: we can pass parameters to functions either by their values or by their
addresses using pointers.

There are two main reasons for passing parameters by their addresses:

1. To modify the original value of a parameter in the function.

2. To avoid extensive data being copied into the stack (memory).

Case 1:

If we want that the function can modify the original value of a parameter, then we
must send its address to the function.

Example: (Call by value) The function cannot modify the original value of the parameter

void calculate(int j) {

j = j * j / 2; // j cannot be changed, function is useless

}

int main()

{

int i = 5;

calculate(i); // i cannot be modified

return 0;

}

Object-Oriented Programming

2012 - 2024 Feza BUZLUCAhttps://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

2.41

void calculate(int *j) {

*j = *j * *j/2; // Difficult to read and understand

} // * has multiple meanings

int main()

{

int i{5};

calculate(&i); // Address of i is sent

return 0;

}

Here the symbol & is not the reference operator; it is the address operator.

C-style solution using pointers is difficult to read and understand.

Case1 (contd):

Call by address

Solution with pointers (C Style):

Object-Oriented Programming

2012 - 2024 Feza BUZLUCAhttps://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

2.42

Solution with references (C++ Style):

void calculate(int& j) { // j is a reference to the coming argument,
// two variables have the same address

j = j*j/2; // In the body, j is used as a normal variable

}

int main()

{

int i{5};

// A normal function call.
// However, instead of the value, the address of i is sent

calculate(i);

return 0;

}

Call by reference

Case1 (contd):

The solution using the reference operator is easier to read and understand.

8

Object-Oriented Programming

2012 - 2024 Feza BUZLUCAhttps://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

2.43

If we need to send large data to a function, we prefer to send its address using
the reference operator instead of its value.

To prevent the function from changing the parameter accidentally, we pass the
argument as a constant reference to the function.

Example:

We store data about persons that consists of two parts, i.e., name (40 characters)
and reg_num (unsigned int: 4 bytes). The total is 44 bytes.

Another reason for passing parameters by their address is to avoid extensive
data being copied into the stack (memory).

Remember that all arguments sent to a function are copied into the stack. This
operation takes time and wastes memory.

struct Person{ // A structure to define persons
char name [40]; // Name 40 bytes (use std::string type)
unsigned int reg_num; // Register number 4 bytes

}; // Total: 44 bytes

Case2:

The size of the integers and addresses may depend on the system where the
program runs.

License: https://creativecommons.org/licenses/by-nc-nd/4.0/ Object-Oriented Programming

2012 - 2024 Feza BUZLUCAhttps://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

2.44

Instead of 44 bytes, only 4 bytes (address) are sent to the function.

Case2 (contd):
struct Person{ // A structure to define persons

char name [40]; // Name 40 bytes (use std::string)
unsigned int reg_num; // Register number 4 bytes

};

void print (const Person& per) // per is constant reference parameter
{

std::println("Name: {}", per.name); // name to the screen
std::println("Num: {}", per.reg_num); // reg_num to the screen

}

int main(){
Person ahmet; // ahmet is a variable of type Person

strcpy(ahmet.name,"Ahmet Bilir"); // name = "Ahmet Bilir"
ahmet.reg_num = 324; // reg_num= 324
print(ahmet); // Function call
return 0;

}

The size of the integers and addresses may depend on the system where the
program runs.
In any case, if you use large data, call-by-reference will transfer fewer bytes
than call-by-value.

Object-Oriented Programming

2012 - 2024 Feza BUZLUCAhttps://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

2.45

Return by reference:

By default in C++, when a function returns a value: return expression;

Expression is evaluated, and its value is copied into the stack. The calling function
reads this value from the stack and copies it into its variables.

An alternative to “return by value” is “return by reference”, in which the value
returned is not copied into the stack. The address is returned.

One result of using “return by reference” is that the function which returns a
parameter by reference can be used on the left side of an assignment statement.

The calling function can modify the returned value.

Example: This function returns a reference to the largest element of an array.

int& max(int a[], unsigned int length) // Returns a reference to int
{

… // Find the largest element of a[]
return a[i]; // Returns reference to a[i]

}

int main()
{

int array[] = {12, -54 , 1 , 123, 63}; // An exemplary array
max(array,5) = 0; // write 0 over the largest element
:

See Example e02_4.cpp

Object-Oriented Programming

2012 - 2024 Feza BUZLUCAhttps://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

2.46

// max function cannot be used on the left side of an assignment statement

const int& max(const int a[], unsigned int length)
{

... // Find the largest element of a[]
return a[i]; // Returns reference to a[i]

}

This function can only be on the right side of an assignment.

int main()
{

...
largest = max(array,5); // Get the largest element
max(array,5) = 0; // Compiler ERROR! Constant reference

}

• To prevent the max function from changing the input array accidentally, and

• To prevent the calling function from changing the return parameter accidentally,
we can use const qualifiers.

If a function returns a constant reference, it cannot be used on the left side of an
assignment.

Return by reference (contd):

Output is constant Input is constant

See Example e02_5.cpp

Object-Oriented Programming

2012 - 2024 Feza BUZLUCAhttps://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

2.47

Remember: When a function returns, local variables go out of existence, and
their values are lost.

Since a function that uses “return by reference” returns an actual memory
address, the variable in this memory location must remain in existence after the
function returns.

int& f() // Return by reference

{

int i; // Local variable. Created in stack

:

return i; // Caution! i does not exist anymore.

}

Never return an automatic local variable by reference!

In this case, the compiler may only output a warning message, and you may run this
code.

Furthermore, sometimes you can get correct results if a new variable does not use
the related memory location.

However, your program will not be reliable.

Object-Oriented Programming

2012 - 2024 Feza BUZLUCAhttps://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

2.48

In C++, it is also possible to overload the built-in C++ operators such as +, -, =, and
++ so that they invoke different functions depending on their operands.

That is, the + in a+b will add the variables if a and b are integers but will call a
different function if a and b are variables of a user-defined type.

Some rules:

• You cannot overload operators that do not already exist in C++.

• You can not change the number of operands. A binary operator (for example, +)
must always take two operands.

• You can not change the precedence of the operators.

For example, * comes always before +

Everything you can do with an overloaded operator, you can also do with a
function.

However, by making your listing more intuitive, overloaded operators make your
programs easier to write, read, and maintain.

Operator overloading is mainly used with objects. We will discuss this topic later
in more detail.

Operator Overloading

9

Object-Oriented Programming

2012 - 2024 Feza BUZLUCAhttps://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

2.49

Example: Overloading of operator (+) to add complex numbers:

struct ComplexT{ // Structure for complex numbers

float re,im;

};

// Function for overloading of operator (+) to add complex numbers

ComplexT operator+ (const ComplexT& v1, const ComplexT& v2){

ComplexT result; // local result

result.re = v1.re + v2.re;

result.im = v1.im + v2.im;

return result;

}

int main(){

ComplexT c1, c2, c3; // Three complex numbers

c3 = c1 + c2; // The function is called. c3 = operator+(c1,c2);

return 0;

} See Example e02_6.cpp

Functions of operators have the name operator and the symbol of the operator.
For example, the function for the operator + will have the name operator+ .

Writing functions for operators:

License: https://creativecommons.org/licenses/by-nc-nd/4.0/

