
1

Object-Oriented Programming

2012 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

4.1

Initializing Class Objects: CONSTRUCTORS

The class designer can guarantee the initialization of every object by providing a
special member function called the constructor.

The constructor is invoked automatically each time an object of that class is
created (instantiated).

These functions assign initial values to the data members, allocate memory for
members, open files, establish a connection to a remote computer, etc.

The constructor can take parameters as needed, but it cannot have a return value
(even not void).

The constructor has the same name as the class itself.

There are different types of constructors.

For example, a constructor that defaults all its arguments or requires no
arguments, i.e., a constructor that can be invoked with no arguments, is called a
default constructor.

In this section, we will discuss different kinds of constructors.

Note: If no initial value is specified for a member variable of a fundamental type
(double, int, bool …) or pointer type (int*, …), it will contain a random arbitrary
junk value.

License: https://creativecommons.org/licenses/by-nc-nd/4.0/ Object-Oriented Programming

2012 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

4.2

A constructor that defaults all its arguments or requires no arguments, i.e.,
a constructor that can be invoked with no arguments.

Default Constructor:

class Point{ // Declaration/Definition of the Point Class
public:
Point(); // Declaration of the default constructor
:

private:
int m_x, m_y; // Attributes are not initialized

};

// Default Constructor
Point::Point()
{

m_x = 0; // Assigns zeros to coordinates (just an example)
m_y = 0;

}
// -------- Main Program -------------
int main()
{
Point point1, point2{}; // Default construct is called 2 times
Point *pointPtr; // pointPtr is not an object, the constructor is NOT called

pointPtr = new Point; //Object is created, the default constructor is called

See Example e04_1.cpp

Object-Oriented Programming

2012 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

4.3

If you do not define any constructor for a class, then the compiler generates a
default constructor for you.

It is called a default default constructor because it is a default constructor that
is generated by default.

The purpose of a default default constructor is to allow an object to be created
and all member variables to be set to their initial (default) values.

Remember the examples about the Point class from the previous chapter, i.e.,
e03_x.cpp.

We declared the Point class without any constructor and created objects from it.

Actually, the compiler generated a default constructor with an empty body, and
the variables get the initial values supplied by the class creator.

Default Constructor (contd):

class Point{ // Declaration/Definition of the Point Class
public:
Point() {}; // Default constructor with an empty body
:

private:
int m_x{}, m_y{}; // Attributes are initialized

};

Object-Oriented Programming

2012 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

4.4

Constructors with Parameters:

This declaration shows that the users of the Point class have to supply two integer
arguments while defining objects of that class.

For example, Point point1 {10, 20}; or Point point1 (10, 20);

Otherwise, a compiler error is generated: Point point1; // Error!

class Point{ // Declaration/Definition Point Class
public:
Point(int, int); // Constructor with two parameters
:

private:
int m_x, m_y; // Attributes are not initialized

};

There are two possible sources of initial values for objects.
1. The class creator can provide the initial values in the definition of the class or

in the default constructor.

2. Users of a class (client programmers) may (and sometimes must) provide the
initial values in a constructor with parameters.

If the class creator defines a constructor with parameters, users of the class
(client programmers) must supply the required arguments to create objects.

Example:

Object-Oriented Programming

2012 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

4.5

See Example e04_2.cpp

Example:

The Point class has a constructor with two parameters to initialize the coordinates.

In our example e04_2.cpp, the class creator has already provided initial values for
the attributes by the definition int m_x{MIN_x}, m_y{MIN_y};

However, now, the client programmer can also provide other initial values under
the control of the constructor function.

When the class creator provides a constructor with parameters, the compiler does
not provide a default default constructor.

Therefore, the client programmer cannot create objects without providing
parameters anymore.

Remember: The class creator sets the rules, and class users must follow them.

// Constructor with two parameters to initialize x and y coordinates

Point::Point(int firstX, int firstY)

{

if (firstX >= MIN_x) m_x = firstX; // Accepts only valid values

else m_x = MIN_x;

if (firstY >= MIN_y) m_y = firstY; // Accepts only valid values

else m_y = MIN_y;

}

Object-Oriented Programming

2012 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

4.6

Multiple Constructors

The rules of function overloading are also valid for constructors. So, a class
may have more than one constructor with different types of input parameters.

Example:

class Point{ // Declaration/Definition Point Class
public:
Point(); // Default Constructor
Point(int, int); // Constructor with two parameters
:

private:
int m_x, m_y; // Attributes are not initialized

};

Now, the client programmer can define objects in different ways:

Point point1; // Default constructor is called

Point point2 { 10, 20 }; // Constructor with parameters is called

The following statement causes a compiler error because the class does not
include a constructor with only one parameter.

Point point3 {30}; //ERROR! There isn't a constructor with one parameter

2

Object-Oriented Programming

2012 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

4.7

Defining a default constructor using the default keyword

Remember: If the class creator adds a constructor, the compiler no longer
implicitly defines a default default constructor.

If you still want your objects to be constructible without providing any
parameters, like "Point point1;" you should add a default constructor to the
class.

If the initial values of the member variables are already provided in the class
definition, the body of the default constructor may be empty.

Instead of defining a default constructor with an empty function body to
increase the readability of your code,

class Point{
public:
Point() = default; // Default Constructor with an empty body
Point(int, int); // Constructor with two parameters
:

private:
int m_x{}, m_y{}; // Attributes are already initialized to zero

};
...
Point point1 {10, 20}; // m_x = 10, m_y = 20
Point point2; // m_x = 0, m_y = 0, (initial values)

License: https://creativecommons.org/licenses/by-nc-nd/4.0/ Object-Oriented Programming

2012 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

4.8

Default Arguments for Constructor Parameters

Like other functions, the parameters of constructors may also have default values.

Now, client of the class can create objects as follows:

Point point1 {15, 75}; // m_x = 15, m_y = 75

Point point2 {100}; // m_x = 100, m_y = 0

This function also counts as a default constructor.
Point point3; // m_x = 0, m_y = 0

class Point{
public:
Point (int = 0, int = 0); //Default values must be in the declaration

:
};

Point::Point(int firstX, int firstY)

{

if (firstX >= MIN_x) m_x = firstX; // Accepts only valid values

else m_x = MIN_x;

if (firstY >= MIN_y) m_y = firstY; // Accepts only valid values

else m_y = MIN_y;

}

Object-Oriented Programming

2012 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

4.9

Initializing Arrays of Objects

When an array of objects is created, the default constructor of the class, if any,
is invoked for each element (object) of the array once.

Point pointArray[10]; // Default constructor is called 10 times

To invoke a constructor with arguments, a list of initial values should be used.

// Constructor (can be called with zero, one, ore two arguments)

Point (int = 0, int = 0)

Point pointArray[] = { 10 , 20 , {30,40} }; //Array with three objects

or to make the program more readable

Point array[]= { Point {10}, Point {20}, Point {30,40} };

Three objects of type Point have been created and the constructor has been
invoked three times with different arguments.

Objects: Arguments:
array[0] firstX = 10 , firstY = 0

array[1] firstX = 20 , firstY = 0

array[2] firstX = 30 , firstY = 40

List of initial valuesWe do not provide the number of elements

Object-Oriented Programming

2012 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

4.10

Point pointArray[5]= { 10 , 20 , {30,40} }; // An array with 5 elements

Here, an array with five elements has been defined, but the list of initial values
contains only three values.

For the last two elements, the default constructor is called.

To call the default constructor for an object which is not at the end of the array:

Point array[5] = { 10, 20, {}, {30,40} }; //An array with 5 elements

or
Point array[5] = { 10, 20, Point{}, {30,40} };

or
Point array[5] = { 10, 20, Point(), {30,40} };

Here, for objects array[2] and array[4], the default constructor is invoked.

The following statement causes a compiler error:

Point array[5]= { 10 , 20 , , {30,40} }; // ERROR! Not readable

If the class has a default constructor, the programmer may define an array of
objects as follows:

Initializing Arrays of Objects (contd)

Object-Oriented Programming

2012 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

4.11

Member Initializer List

It is possible to initialize data members of an object using a member initializer

list rather than assignment statements in the constructor body.

The member initializer list is the only way to assign initial values to constant
members.

Example: Point class with constant data members

In our Point class, we have two constant data members, i.e.,

const int MIN_x{};

const int MIN_y{};

Assume that the class creator wants to allow the client programmers to initialize
these constant values in a constructor.

However, you cannot assign a value to a constant in the constructor's body.

// Constructor to initialize all members of a Point object

Point::Point(int firstMINX, int firstMINY, int firstX, int firstY)

{

MIN_x = firstMINX; // ERROR! MIN_x is not modifiable

MIN_y = firstMINY; // ERROR! MIN_y is not modifiable

:

}

Object-Oriented Programming

2012 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

4.12

Member Initializer List (contd)

Example: Point class with constant data members (contd)

The constructor uses a member initializer list to initialize constant data members.

// Constructor to initialize all members of a Point object

Point::Point(int firstMINX, int firstMINY, int firstX, int firstY)

: MIN_x {firstMINX}, MIN_y {firstMINY}

{

... // Code to initialize x and y coordinates

}

After the initialization in the constructor, the constant members cannot be
modified later.

Point point1 {50, 60, 100, 200};

// MIN_x = 50, MIN_y = 60

// m_x = 100, m_y = 200

Point point2 {-10, 0, -15, 20};

// MIN_x = -10, MIN_y = 0

// m_x = -10, m_y = 20 The given firstX (-15) is not accepted

We have two Point objects with different constant minimum values.

3

Object-Oriented Programming

2012 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

4.13

Member Initializer List (contd)

You can also use a member initializer list to initialize non-constant members.

However, you cannot check their values in this way.

// Constructor to initialize all members of a Point object

Point::Point(int firstMINX, int firstMINY, int firstX, int firstY)

: MIN_x{firstMINX}, MIN_y{firstMINY}, m_x{firstX}, m_y{firstY}

{

... // You may check and modify x and y coordinates

}

• When you initialize a member variable using an assignment statement in the
body of the constructor, first, the member variable is created in memory, and
then the assignment is carried out as a separate operation.

• When you use an initializer list, the initial value is used to initialize the
member variable as it is created.

This can be a more efficient process, particularly if the member variable is an
object of a class.

We will cover these cases in the following chapters.

License: https://creativecommons.org/licenses/by-nc-nd/4.0/ Object-Oriented Programming

2012 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

4.14

• The destructor is a special method of a class called automatically

1. When each of the objects goes out of scope or

2. A dynamic object is deleted from memory using the delete operator.

• It is executed to handle any cleanup operations that may be necessary.

• You only need to define a class destructor when something needs to be done
when an object is destroyed.

For example,
Closing a file or a network connection,
Releasing the memory if memory is allocated by a constructor using new.

• A destructor is characterized as having the same name as the class but with a
tilde ‘~’ preceding the class name.

• A destructor has no return type and receives no parameters.

• A class may have only one destructor.

• The destructor for a class is always called automatically when an object is
destroyed.

The circumstances where you need to call a destructor explicitly are so rare
that you can ignore the possibility.

DESTRUCTORS

Object-Oriented Programming

2012 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

4.15

class String{

public:

String(const char *); // Constructor

void print(); // An ordinary member function

~String(); // Destructor

private:

size_t m_size; // Length (number of chars) of the string

char *m_contents; // Contents of the string

};

Actually, the standard library of C++ contains a std::string class. Programmers
do not need to write their String classes.

We write this class only to show some concepts.

A string is a sequence (array) of characters.

It terminates with a null character '\0'.
m_size

*m_contents t e x t \0

Example: A user-defined String class

Since the String class contains a pointer to strings (array characters), the
constructor must allocate storage for characters, and the destructor must
release memory when the object is destroyed.

String object: Outside of
the object:

Object-Oriented Programming

2012 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

4.16

// Constructor

// Allocates memory and copies the input character array to contents

String::String(const char *in_data)

{

size = std::strlen(in_data);

m_contents = new char[m_size +1];// Memory allocation, +1 for null character

if (m_contents) // If memory is allocated, copy the contents

for (unsigned index = 0; index < m_size + 1; index++)

m_contents[index] = inData[index]; // copy the contents

}

// Destructor

// Memory is released

String::~String()

{

delete[] m_contents;

}

int main() // Test program

{

String string1{"string 1"}; // Constructor

String string2{"string 2"}; // Constructor

string1.print();

string2.print();

return 0; // Destructor is called twice

}

See Example e04_3.cpp

Example: A user-defined String class (contd)

Object-Oriented Programming

2012 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

4.17

Constant Objects and const Member Functions

The programmer may use the keyword const to specify an object is constant
(not modifiable).

Any attempt to modify (to change) the attributes of a const object directly or
indirectly (by calling a function) causes a compiler error.

Any member variable of a const object is itself a const variable and thus
immutable.

For example:

const Point fixedPoint {10, 20};

The object fixedPoint has the coordinates (20,30), and this point cannot be
moved to another location.

const Member Functions:

C++ compilers totally disallow any member function calls for const objects.

The programmer may declare some functions as const, which do not modify any
member data (attributes) of the object.

Only const methods can operate on const objects.

Object-Oriented Programming

2012 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

4.18

Example:
We specify methods that do not modify an object's attributes as const.

const Member Functions (contd):

class Point {

public:

Point(int, int); // Constructor to initialize x and y coordinates

double distanceFromZero() const; // The distance of a point from (0,0)

void print() const; // const method prints coordinates on the screen

// Getters are constant

int getX() const { return m_x; } // Accessor for x coordinate

int getY() const { return m_y; } // Accessor for y coordinate

// Setters are not constant

void setX(int);

void setY(int);

bool move(int, int); // A non-constant method to move points

};

// Constant method calculates and returns the distance of a point from (0,0)

double Point::distanceFromZero() const {

return sqrt(m_x * m_x + m_y * m_y); // distance from (0,0)

}

4

Object-Oriented Programming

2012 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

4.19

Constant Objects and const Member Functions (contd)

Example (contd):

int main()

{

const Point fixedPoint {10, 20}; // Constant object

std::print("Distance from Zero= {}", fixedPoint.distanceFromZero()); //OK

fixedPoint.print(); // OK. Print the constant point

fixedPoint.move(15, 25); // ERROR! fixedPoint is constant, cannot move

Point nonFixedPoint{ 30, 40 }; // Non-constant object

nonFixedPoint.move(100, 200); // OK, non-constant object can move

}

A const method can invoke only other const methods because a const method is
not allowed to alter an object's state either directly or indirectly, that is, by
invoking some non-const method.

Specify all member functions that do not change the object's attributes as
const to avoid possible errors and to allow users of the class to define
constant objects.

License: https://creativecommons.org/licenses/by-nc-nd/4.0/ Object-Oriented Programming

2012 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

4.20

Constant Objects and const Member Functions (contd)

The mutable Keyword:

Sometimes, we want to allow particular class members to be modifiable even for a
const object.

We can do this by specifying such attributes as mutable.

Example:

We want to count how many times a point object is printed.

We will add a mutable variable, m_printCount, to the Point class.

class Point {

public:

Point(int, int); // Constructor with two parameters to initialize x and y

bool move(int, int); // A non-constant function to move points

void print() const; // A constant function to print

:

private:

:

int m_x{ MIN_x }, m_y{ MIN_y }; // x and y coordinates are initialized

mutable unsigned int m_printCount{}; // Mutable data member

};

Object-Oriented Programming

2012 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

4.21

Example (contd):

The mutable Keyword (contd):

// This method prints the coordinates on the screen

void Point::print() const

{

std::printl("X= {} , Y= {}", m_x, m_y);

std::printl("Print count= {}", ++m_printCount);

}

Although the print method is specified as const, it can modify the mutable
attribute printCount.

int main()

{

const Point fixedPoint{ 10, 20 }; // Constant object

fixedPoint.print(); // m_printCount is incremented

:

}

See Example e04_4.cpp

Object-Oriented Programming

2012 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

4.22

The Copy Constructor
• Sometimes, we want to create a new object as a copy (with the same data) of an

existing object.

• Copy constructor is a special type of constructor used to copy an object's
contents to a new object during the construction of that new object.

Example: Creating an object as a copy of another object

Point point1 {0, 0, 10, 20};// Define the point1 object using the constructor

Point point2 {point1}; // point2 is a copy of point1. Copy constructor runs

class Point {

public:

Point(int, int, int, int); // Constructor to initialize limits, x, and y

Point(const Point&); // Copy Constructor

:

The input parameter of a copy constructor is a reference
to a const object of the same type (source object).

Existing object

The input argument is the existing object that will be copied into the new object.

Example: Defining the copy constructor

Newly created object

Object-Oriented Programming

2012 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

4.23

The Copy Constructor (contd)
Example (contd):
// Copy Constructor copies limits and the coordinates

Point::Point(const Point& originalPoint)

: MIN_x{originalPoint.MIN_x}, MIN_y{originalPoint.MIN_y},

m_x{originalPoint.m_x}, m_y{originalPoint.m_y}

{}

The copy constructor may delegate to another constructor using the initializer list.

// Copy Constructor delegates to another constructor

Point::Point(const Point& originalPoint)

: Point { originalPoint.MIN_x, originalPoint.MIN_y,

originalPoint.m_x, originalPoint.m_y }

{}

See Example e04_5.cpp
int main(){

Point point2 {point1}; // Call copy constructor for point2

// point2 is created as a copy of point1

// Other (older) notations to create copies of objects

Point point3 = point2; // Call copy constructor for point3, NOT assignment

Point point4(point1); // Call copy constructor for point4

It does not copy the m_printCount

Object-Oriented Programming

2012 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

4.24

The Copy Constructor (contd)

The compiler-generated default copy constructor:

Usually, we do not need to write a copy constructor because the compiler already

generates one by default.

If the compiler generates it, it will simply copy the contents of the original into
the new object as a byte by byte copy.

So all members are copied.

In most cases, this copy is sufficient.

Example:

What happens if we do not supply a copy constructor for our Point class?

Since the compiler-generated copy constructors copy all members, the print count
is also copied. Therefore, the counter does not start from zero for the copies of
the original object.

In this case, we must write our own copy constructor.

However, if the compiler-generated copy constructor is sufficient, never write a
copy constructor for your classes.

See Example e04_6.cpp

5

Object-Oriented Programming

2012 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

4.25

If a class has a member variable of a pointer type, the compiler-generated copy
constructor will copy the address in the pointer to the other one.

As a result, the pointers in different objects will be pointing to the same memory
location(shared memory).

Example:

The copy constructor, generated by the compiler for the user-defined String
class (e04_3.cpp), will perform the following copy operation:

String originalString {"string 1"};

String copyString {originalString}; // Copy constructor

Existing object:
originalString

m_size

m_contents

The new object:
copyString

8

0x008d0080

m_size:

m_contents:

8

0x008d0080

s t r i n g 1 \0

The compiler-generated copy constructor (contd):

The address
in the pointer

See Example e04_7.cpp

All objects share only one
common memory space.

License: https://creativecommons.org/licenses/by-nc-nd/4.0/

Caution: There is a run-time
memory problem in this program!

(because of the destructor)

Object-Oriented Programming

2012 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

4.26

The new object

m_size

m_contents

The copy constructor, generated by the compiler, cannot allocate memory or copy
the memory locations to which member pointers point.

Since both pointers point to the same memory space, the delete operation in the
destructor causes a runtime error.

The programmer must write its copy constructor to allocate memory for the
pointer and perform copy operations between two memory spaces.

Example: Programmer-written copy constructor

8

s
t
r
i
n
g

1
\0

Existing (original) object:

m_size:

m_contents:

8

0x008d0080
s
t
r
i
n
g

1
\0

0x00ef0080

Example (contd):

Address are different.
Two separate memory
spaces.

Object-Oriented Programming

2012 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

4.27

class String{
public:
String(const char*); // Constructor
String(const String&); // Copy Constructor
:

};

// Copy Constructor
// Allocates memory and copies the contents of the existing object to
// the newly constructed object
String::String(const String& originalString)
{
m_size = originalString.m_size;
m_contents = new char[m_size + 1]; // memory allocation
if (m_contents) // If memory is allocated, copy the contents

for (std::size_t index = 0; index < m_size + 1; index++)
m_contents[index] = originalString.m_contents[index];

}

Example: The programmer-written copy constructor of the String class

See Example e04_8.cppint main() {

String originalString{"string 1"};

String copyString{originalString}; // Programmer-defined copy constructor

String otherString = originalString; // Another notation, NOT assignment

...

Object-Oriented Programming

2012 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

4.28

If the class creator does not want that the objects of this class can be copied,
they can prevent the compiler from generating a copy constructor.

They can instruct the compiler not to generate a copy constructor by adding
= delete; next to the signature of the copy constructor in the class declaration.

Example: Deleting the copy constructor of the user-defined String class

Deleting the Copy Constructor:

class String{

public:

String(const char*); // Constructor

String(const String&) = delete; // Copy Constructor is deleted

:

};

Another solution is to make the signature of the copy constructor private.

Example: Private copy constructor
class String{

public:

String(const char*); // Constructor

private:

String(const String&); // Copy Constructor is private

:

// Compiler Error!

String copyString{originalString};

See Example e04_9.cpp

Object-Oriented Programming

2012 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

4.29

Passing Objects to Functions as Arguments

• Objects should be passed or returned by reference unless compelling reasons
exist to pass or return them by value.

• Passing or returning by value can be especially inefficient for objects.

• Recall that the object passed or returned by value must be copied into the
stack.

The data may be large, thus wasting storage, and the copying itself takes time.

• If the class contains a copy constructor, the compiler uses this function to
copy the object into the stack.

Example:

• We have a class called GraphicTools, which contains tools that can be used to
perform operations on Point objects.

For example, the method maxDistanceFromZero compares two Point objects
and returns the object that has the larger distance from zero (0,0).

• We will consider two different cases in terms of passing and returning objects.

Case 1: call by value, return by value

Case 2: call by reference (to constant), return by reference (to constant)

Object-Oriented Programming

2012 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

4.30

Passing Objects to Functions as Arguments (contd)

Case 1 (call by value, return by value. Inefficient!):

In this program, the method maxDistanceFromZero

1. Gets two Point objects using the call-by-value technique.

2. Finds the object that has the larger distance from zero

3. Returns the object using the call-by-value technique.

Examine the output:

The constructor is called two times for point1 and point2.

The default constructor is called once for point3.

These are objects defined by the programmer in the main function.

Moreover, the copy constructor is called three times.

Two times for input parameters and once for the return value.

In total, six Point objects have been created.

Three of them are created because of the call-by-value technique.

As expected, the destructor has been called six times.

See Example e04_10.cpp

6

Object-Oriented Programming

2012 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

4.31

Passing Objects to Functions as Arguments (contd)

Case 2 (call by reference, return by reference. Efficient!):

In this program, the method maxDistanceFromZero

1. Gets two Point objects using the call-by-reference technique.

2. Finds the object that has the larger distance from zero

3. Returns the object using the call-by-reference technique.

Examine the output:

The constructor is called two times for point1 and point2.

The default constructor is called once for point3.

These are objects defined by the programmer in the main function.

In total, three Point objects have been created.

No other constructor is called.

Additional objects are not created.

As expected, the destructor has been called only three times.

See Example e04_11a.cpp

License: https://creativecommons.org/licenses/by-nc-nd/4.0/

See Example e04_11b.cppThere are other options for receiving the returned object.

Object-Oriented Programming

2012 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

4.32

Each object has its own data space in the memory system of a computer. When an
object is defined, memory is allocated only for its data members.

The code of member functions is created only once. Each object of the same class
uses the same function code.

Example:

this Pointer

m_x=100
m_y=50

point1

m_x=200
m_y=300

point2

move

print

isOnZero

How does C++ ensure that the functions
reference the proper object?

class Point {

public:

Point(int, int);

void move(int, int);

void print();

bool isOnZero();

private:

int m_x{}, m_y{};

};

int main(){

Point point1{100, 50};

Point point2{200, 300};

:

Point objects in memory:

Object-Oriented Programming

2012 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

4.33

this Pointer (contd)

The C++ compiler defines an object pointer with the name this.

When a member function is called, this hidden pointer contains the address of
the object for which the function is invoked.

So member functions can access the data members using the pointer this.

The compiler compiles our Point methods as follows:

// A function to move the points

void Point::move(int new_x, int new_y)

{

this->m_x = new_x;

this->m_y = new_y;

}

// is the point on the zero point(0,0)

bool Point::isOnZero()

{

return (this->m_x == 0) && (this->m_y == 0);

}

You could write the function explicitly
using the pointer this if you wanted, but
it is not necessary.

Object-Oriented Programming

2012 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

4.34

this Pointer (contd)

When you call a method for a particular Point object, this pointer will contain
the address of that object.

This means that when the member variable m_x is accessed in the move method
during execution, it is actually referring to this->m_x, which is the fully
specified reference to the object member being used.

For example, when we call the move method for point1:

point1.move(50,100);

point2.move(0,0);

The compiler considers this code as follows:

this = &point1; // the address of object point1 is assigned to this

move(50,100); // and the method move is called.

this = &point2; // the address of object point2 is assigned to this

move(0,0); // and the same move method is called.

This is not a valid code. It is only given to explain how the compiler uses the this
pointer to access member data.

Object-Oriented Programming

2012 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

4.35

Example: We add a new method to the Point class: maxDistanceFromZero that
compares a point object with a second object and returns a pointer to the object
with a larger distance from zero (0,0).

For example, the following piece of code calls the method for the point1 object
and compares it with the object point2 regarding the distance from (0,0).

It returns a pointer to one of these objects depending on the comparison result.

// Definition of the method the returns a pointer to Point objects

const Point* Point::maxDistanceFromZero(const Point& in_point) const

{

if (distanceFromZero() > in_point.distanceFromZero())

return this; // the pointer to the object for which the method is called

else

return &in_point;

}

const Point* pointPtr; // pointer to Point objects

pointPtr = point1.maxDistanceFromZero(point2); // method runs for point1

pointPtr->print(); // pointPtr points either to point1 or point2

point1.maxDistanceFromZero(point2)->print(); // Chain of calls

Returning this (as a pointer)

See Example e04_12.cpp

Object-Oriented Programming

2012 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

4.36

Remember: Instead of pointers, passing and returning references increase the
readability of the code.

The maxDistanceFromZero method could return a reference to the Point
object as follows:

const Point& Point::maxDistanceFromZero(const Point& in_point) const

{

if (distanceFromZero() > in_point.distanceFromZero())

return *this;

else

return in_point;

}

const Point point3; // point3 is an object

point3 = point1.maxDistanceFromZero(point2);

point3.print();

Returning this (as a refference)

// You can chain method calls (do not overuse, understandability!)

double distance = point1.maxDistanceFromZero(point2).distanceFromZero();

point1.maxDistanceFromZero(point2).print();

See Example e04_13.cpp

7

Object-Oriented Programming

2012 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

4.37

Static Class Members
Static data members:

Each object of a class has its own copy of the ordinary data members.

For example, point1 and point2 objects of the Point class have different m_x
and m_y variables in memory.

When you declare a member variable of a class as static, the static member
variable is defined only once, regardless of how many class objects have been
defined.

Each static member variable is accessible in any object of the class and is shared
among all existing objects in memory.

The static members exist even if no class objects have been created.

char m_c

Object obj1

char m_c

Object obj3

class StaticExample{

:

char m_c;

static int s_i;

};

int main()

{

StaticExample obj1, obj2, obj3;

:

char m_c

Object obj2

int s_i
static

License: https://creativecommons.org/licenses/by-nc-nd/4.0/ Object-Oriented Programming

2012 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

4.38

Static data members (contd):

In certain cases, all class objects should share only one copy of a particular data
member.

For example, we can use a static counter to count how many objects of a class
exist.

Constructors will increment this counter, and the destructor will decrement it.

Example:

class Point {

public:

:

private:

int m_x{}, m_y{};

static inline unsigned int s_point_count{}; // A static counter

};

Inline variables have been supported since C++17.
Before C++17, we should declare the counter as follows:

static unsigned int s_point_count; // A static counter

Then, we should define and initialize the static member outside the class with a
definition such as this:

unsigned int Point::s_point_count {}; // It is still valid today

See Example e04_14.cpp

Object-Oriented Programming

2012 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

4.39

Static constant data members:

• Constant data members are usually declared static.

• If you define constants as static members, there is only one single instance
of that constant that is shared between all objects.

• If you define a constant as a non-static member variable, an exact copy of
this constant will be made for every single object, which is usually pointless.

Example:

In our Point class, we have constant data members to represent the limits of the
coordinates MIN_x and MIN_y.

If each object should have its own limits specific to itself, then these constants
should not be declared static.

However, if the class has limits that are valid for all class objects, then these
constants should be declared static.

Object-Oriented Programming

2012 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

4.40

Static constant data members (contd):

class Point { // Declaration of the Point Class with low-limits

public:

// Static constants

// Lower Limits of x and y coordinates for all objects

static inline const int MIN_x{}; // Same for all objects of Point

static inline const int MIN_y{}; // Same for all objects of Point

:

Example:

The keywords static, inline, and const may appear in any order you like.

Unlike regular member variables, there is no harm in making constants public
because class users can read but cannot modify them.

It is common to define public constants containing boundary values.

Class users can read these values outside of the classes directly using the class
name and the scope resolution operator ::.

Examples:

if (input_x < Point::MIN_x) ... // makes a decision using the limit

// Define an object using the limits

Point point1 {Point::MIN_x, Point::MIN_y}; // m_x = MIN_x, m_y = MIN_y

Class name::static variable/constant

See Example e04_15.cpp

Object-Oriented Programming

2012 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

4.41

Static Class Members (contd)
Static methods (member functions):

A public static method can be called even if no class objects have been created.

It can also be invoked from outside the class.

A static method can operate on static member variables, regardless of whether
any objects of the class have been defined.

For example, a static method can be used to initialize static data members
before any objects have been created.

A static method is independent of any individual class object but can be invoked
by any class object if necessary.

For example, we can write a static initPointCounter method for the Point class
to initialize the counter.

class Point {

public:

static void initPointCount(unsigned int);

static unsigned int getPointCount();

:

};

Point::initPointCount(100); // Set counter to 100

if (Point::getPointCount > 500){... // makes a decision using the counter

Class name::static method

See Example e04_16.cpp

See Example e04_17.cpp

A simple example:

Object-Oriented Programming

2012 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

4.42

The Unified Modeling Language - UML

UML is a visual language for specifying, constructing, and documenting the
artifacts (models) of software.

UML is not a method to design systems; it is used to visualize the analysis and the
design models.

Benefits:

• It makes it easier to understand and document software systems.

• It supports teamwork. Since UML diagrams are more understandable than the
program code, team members (e.g., project leader, software architect, and
developers) can discuss the design.

• Some tests and quality measurements can be conducted on UML diagrams, and
design flaws can be detected before coding.

• There are tools that can create the code from UML diagrams and draw UML
diagrams for a given code.

8

Object-Oriented Programming

2012 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

4.43

The Unified Modeling Language – UML (contd)

UML has evolved from the work of Grady Booch, James Rumbaugh, and Ivar
Jacobson (called three amigos) for object-oriented design.

It has been extended as a general-purpose, developmental modeling language to
cover a wider variety of software engineering projects.

The Object Management Group (OMG) adopted UML as a standard in 1997 and
has managed it ever since.

https://www.uml.org/

In 2005, UML was also published by the International Organization for
Standardization (ISO) as an approved ISO standard.

ISO/IEC 19505-1:2012
Information technology —Object Management Group Unified Modeling Language
(OMG UML)

The latest version of UML is 2.5.1, published in December 2017.

You can get the specifications for the current version from the website of OMG.

https://www.omg.org/spec/UML/

License: https://creativecommons.org/licenses/by-nc-nd/4.0/ Object-Oriented Programming

2012 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

4.44

The Unified Modeling Language – UML (contd)

There are different kinds of UML diagrams, which are used in various phases of a
software development process.

In the latest version of UML, there are 14 diagram types.

There are two main categories: structure diagrams and behavior (interaction)
diagrams.

• Structure diagrams show the static structure of the objects in a system.

In this course, we will draw class diagrams (a type of structure diagram) to
present the (compile-time) structure of our programs.

The class diagram displays the attributes and operations of each class and the
relationships between them.

• Behavior diagrams illustrate the elements of a system that are dependent on
time. We can see how the components of the system relate to each other
dynamically during its execution (runtime).

In this course, we will draw sequence diagrams and communication diagrams to
present how objects in our program interact in runtime.

As we cover various concepts in the course, we will see how they are represented
using UML diagrams.

Object-Oriented Programming

2012 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

4.45

A class diagram shows the structure of the classes and the relationships between
them.

Class Diagrams

Student

name

number

getName()

ClassComment

Class Name

Attributes

Methods

If necessary, access modes and data types can also be presented.

Student

- name: String

number: Integer

+ getName(): String

private

protected

public

return type

Object-Oriented Programming

2012 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

4.46

Counter

- counter: Integer

- MAX: Integer = 100 {readOnly}

+ set(initial:Integer)

<<constructor>>

+Counter()

Static attribute

(underlined)

Static method

underlined

Constant

(constraint)

Stereotype

Comments: Comments in UML are placed in dog-eared rectangles.

You can use comments to put anything you want in a diagram. You can use
comments to add application- and program-specific details.

Stereotypes: A stereotype is a way of extending the UML in a uniform manner
and remaining within the standard.

You indicate a stereotype using <<stereotype name>>

Constraints: A constraint in the UML is a text string in curly braces ({usually
language-specific}). The UML defines a language (Object Constraint Language –
OCL) that you can use to write constraints.

Class Diagrams (contd)

The naming convention

for constants: ALL_CAPS

Object-Oriented Programming

2012 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

4.47

Example: The Point Class

Point

- MIN_x: Integer = 0

- m_x: Integer = MIN_x

- s_point_count: Integer = 0

:

+ Point(Integer, Integer)

+ distanceFromZero(): double

:

Since the primary purpose of UML is to demonstrate design, the details of data
and methods are not crucial.

Sometimes, we only show attributes without their types and the methods without
their parameters.

In the following chapters, we will use UML diagrams to represent static and
dynamic relations between classes/objects.

