
1

Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

8.1

License: https://creativecommons.org/licenses/by-nc-nd/4.0/

POLYMORPHISM

There are three major concepts in object-oriented programming:

1. Encapsulation (Classes, Objects)

Data and related functions are placed into the same entity.

Data abstraction

Information hiding (public: interface, private: implementation)

2. Inheritance

Is-a relation, generalization-specialization, reusability

Common interfaces

3. Polymorphism (dynamic, subtyping)

The run-time decision for function calls (dynamic method binding)

Overriding of methods

Needs inheritance

Improves the design with common interfaces

What we refer to in this lecture slides as “polymorphism” is formally known as
dynamic, subtyping (or inclusion) polymorphism.

Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

8.2

• In real life, there is often a collection of different objects that, given identical
instructions (messages), should take different actions.

Example: The Dean is a professor.

Sometimes, professors and deans may visit the university's rector.

The rector is also a professor, but we will ignore this relationship for this example.

When the rector meets a visitor, they ask the visitor to print their information.

The rector sends the same print() message to a professor or dean.

Different types of objects (professor or dean) have to print different information.

Polymorphism in real life:

• The rector does not know the type of visitor (professor or dean) and
always sends the same message print().

• Depending on the type of visitor (receiving object), different actions
are performed.

The same message (print) works for everyone because everyone knows how to print
their information.

Polymorphism means “taking many shapes”.

The rector’s single instruction is polymorphic because it works differently for
different kinds of academic staff.

Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

8.3

• In C++, polymorphism means that a call to a member function will cause a
different function to be executed depending on the type of object that gets
the message.

• In dynamic polymorphism, the sender of the message does not need to know
the type of the receiving object in compile-time.

• Dynamic polymorphism occurs in classes that are related by inheritance.

Remember: A pointer (or reference) to base (e.g., Professor) can also point to
derived (e.g., Dean) objects because Dean is a Professor.

Professor *ptr; // Can point to Professor and Dean objects
... //The address pointed to by ptr will be determined in runtime

ptr = &professor_obj;
or
ptr = &dean_obj;

ptr->print(); // which print in compile-time (professor or dean)?

Polymorphism (dynamic) in programming:

If print() is a polymorphic function, the decision of which function to call will be
made in runtime based on the type of the object pointed to by the pointer ptr.

Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

8.4

The first example shows what happens when a base class and derived classes have
functions with the same signature (name and parameters) accessed using pointers.
In this example, the functions are not virtual (no polymorphism).

Calling redefined, nonvirtual member functions using pointers (name hiding)

class Professor{ // Base class: Professor

public:

void print() const;

:

};

class Dean : public Professor{ // Derived class: Dean

public:

void print() const; // redefined

:

};

• Both classes have a function with the same signature: print().

• They print different information. Professor: name and research area.
Dean: name, research area, and faculty name.

• In this example, these functions are not virtual (not polymorphic).

Example: Professors and deans visit the rector

Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

8.5

Example (contd): Professors and deans visit the rector

Calling redefined, nonvirtual member functions using pointers (contd)

class Rector { // User class: Rector

public:

void meetVisitor(const Professor*) const;

};

// The input parameter is a pointer to Professor (Base) class

void Rector::meetVisitor(const Professor* visitor) const

{

visitor->print(); // which print?

}

Since the input parameter is a pointer to the Professor (base) class, we can call
this method sending the address of a Professor object or the address of a Dean
object.

The visitor can be any professor, e.g., department head or dean.

A pointer to the base class

Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

8.6

int main(){

Rector itu_rector;

Professor prof1("Professor 1", "Robotics");

Dean dean1("Dean 1","Computer Networks","Engineering Faculty");

Professor *ptr; // A pointer to Base type

char c;

std::print("Professor or Dean (p/else)); std::cin >> c;

if (c=='p') ptr = &prof1; // ptr points to a professor

else ptr = &dean1; // ptr points to a dean

itu_rector.meetVisitor(ptr); // which print?

Example (contd): Professors and deans visit the rector
Calling Redefined, nonvirtual member functions using pointers (contd)

See Example e08_1a.cpp

In this example, at the statement visitor->print(), the print() function of the
base class (Professor) is executed in both cases.
Professor::print() is invoked for both of the objects prof1 and dean1.

The compiler ignores the contents of the pointer and chooses the (nonvirtual)
member function that matches the type of the pointer. Professor *visitor;

Since the methods are not virtual, the decision is made at compile-time.
The same function is invoked for all types. This is not polymorphism!

2

Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

8.7

Calling redefined, virtual member functions using pointers (Polymorphism)

We make a single change in the program e08_1a.cpp and place the keyword
virtual in front of the declaration of the print() function in the base class.

class Professor{ // Base class: Professor

public:

virtual void print() const; // A virtual (polymorphic) function

:

};

class Dean : public Professor{ // Derived class: Dean

public:

void print() const; // It is also virtual (polymorphic)

:

}; The virtual keyword is optional (not mandatory) for the derived class.
If a method of Base is virtual, the redefined method in Derived is also virtual.

See Example e08_1b.cpp

// The input parameter is a pointer to Professor (Base) class

void Rector::meetVisitor(const Professor* visitor) const

{ // We did not change the methods of Rector

visitor->print(); // which print?

}

License: https://creativecommons.org/licenses/by-nc-nd/4.0/ Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

8.8

• Since print() functions are virtual, different functions are executed
depending on the contents of the pointer, not on its type.

• The decision is made at runtime for visitor->print().

Virtual (polymorphic) functions are called based on the types of objects
that the pointer visitor points to, not the type of the pointer itself.

• The type of the pointer visitor is Professor (Base). It is fixed.

• The types of objects that the pointer visitor points to can change at runtime.

If visitor = &prof1 then Professor::print()

If visitor = &dean1 then Dean::print()

Calling redefined, virtual member functions using pointers (Polymorphism) (contd)

Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

8.9

Using a reference to base class to pass arguments

Note that, in C++, we prefer to use references instead of pointers to pass
arguments to functions.

We can write the meetVisitor method of the Rector class and the main function
as follows:

// The input parameter is a reference to Professor (Base) class

void Rector::meetVisitor(const Professor& visitor) const

{

visitor.print(); // Polymorphism if print() is virtual

}

int main() {

Rector itu_rector;

Professor prof1("Professor 1", "Robotics");

Dean dean1("Dean 1","Computer Networks","Engineering Faculty");

char c;

std::print("Professor or Dean (p/d)"); std::cin >> c;

if (c == 'p') itu_rector.meetVisitor(prof1);

if (c == 'd') itu_rector.meetVisitor(dean1);

:

See Example e08_1c.cpp

Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

8.10

UML Class diagram of the design:

Professor

print()

Dean

print()

Rector

meetVisitor()

visitor

The pointer or reference visitor in the
meetVisitor function can point to objects
of the Professor and Dean

If a pointer is used:
void Rector::meetVisitor(const Professor* visitor) const
{

visitor->print(); // Polymorphism
}

If a reference is used:
void Rector::meetVisitor(const Professor & visitor) const
{

visitor.print(); // Polymorphism
}

Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

8.11

• The major advantage of polymorphism is flexibility.

• In our example, the rector is unaware of the type of visitor.

They can talk to a professor and a dean the same way (print()).

We do not need to insert a code into the Rector class to check the types of
visitors.

• If we add a new professor type (a new class) to the system, for example,
DepartmentHead, we do not need to change the Rector class.

• It is also true if a class derived from the Professor is discarded from the
system.

The input parameter of the meetVisitor method is a pointer or reference to
the Professor class.

Therefore, we can call this method by sending both an address of a Professor
object and an address of a Dean object.

So, this function can be applied to any class derived from the Professor.

• In the following slides, we will cover important design principles supported by
polymorphism, i.e., "Design to Interface" and "Open-Closed Principle."

Benefits of Polymorphism so far:

Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

8.12

Professor

print()

Dean

print()

Rector

meetVisitor()

visitor

The pointer visitor in the meetVisitor function
can point to objects of all classes derived form
the Professor.

DepartmentHead

print()

Adding a new Professor type, e.g., department head to the system:

We do not need to modify
the Rector class.

{
// Polymorphism
visitor->print();

}

3

Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

8.13

Type of the pointer and type of the pointed-to object:

• A pointer to a base class has two types, i.e., static type and dynamic type.

Example: Professor* visitor;

• The static type of the pointer visitor is a pointer to Professor (Professor*).

• Since visitor is a pointer to a base class, it also has a dynamic type, which
varies according to the object it points to.

Remember, a pointer to a base class can point to objects of all direct and
indirect derived classes from that base.

When visitor is pointing to a Professor object, its dynamic type is a pointer to
Professor.

When visitor is pointing to a Dean object, its dynamic type is a pointer to Dean.

Determining which function to call:

In our "Dean is a Professor" examples, there are two print() functions in memory,
i.e., Professor::print() and Dean::print().

How does the compiler know what function call to compile for the visitor->print(); ?

call Professor::print() or call Dean::print()

Early (static) binding vs late (dynamic) binding

License: https://creativecommons.org/licenses/by-nc-nd/4.0/ Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

8.14

In e08_1a.cpp, without polymorphism, the compiler has no ambiguity about it.

It considers the (static) type of the pointer visitor and always compiles a call to
Professor::print(), regardless of the object type pointed to by the pointer or
reference (dynamic type).

• Connecting to functions during compilation is called early (static) binding.

• Binding means connecting the function call to the function.

• Static binding is the standard operating method for the compilers.

• Which function to call is determined at compile-time.

Early (static) binding:

Late (dynamic) binding:

In e08_1b.cpp and e08_1c.cpp, the compiler does not “know” which function to call
when compiling the program.

The compiler cannot know it because the decision is made at runtime.

So, instead of a simple function call, the compiler places a piece of code there.

At runtime, when the function call is executed, the code that the compiler placed
in the program finds out the type of the object whose address is in visitor and calls
the appropriate print() function, i.e., Professor::print() or Dean::print().

• Selecting a function at runtime is called late binding or dynamic binding.

Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

8.15

• Remember: For a regular object without any virtual methods, only its data are
stored in memory.

• When a member function is called for such an object, the address of the
object is available in this pointer, which the member function uses (usually
invisibly) to access the object’s data.

• Every time a member function is called, the compiler assigns the address of the
object for which the function is called to this pointer (see slide 4.32).

How late binding (polymorphism) works

Calling virtual methods:

• When a derived class with virtual functions is specified, the compiler creates
a table—an array—of function addresses called the virtual table.

In the examples e081a.cpp and e081b.cpp, the Professor and Dean classes
each have their own virtual tables.

• Every virtual method in the class has an entry in the virtual table.

• Objects of classes with virtual functions contain a pointer (vptr) to the
class's virtual table.

These objects are slightly larger than objects without virtual methods.

Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

8.16

When a virtual function is called for an object, instead of specifying what function
will be called in compile-time, the compiler creates a code that will look at the
object’s virtual table to get the address of the appropriate member function to run.

Thus, for virtual functions, the object itself determines what function is called at
runtime rather than the compiler.

Example: Assume that the classes Professor and Dean contain two virtual functions.

Calling virtual methods, the virtual table:

class Professor{

public:

virtual void readInfo();

virtual void print() const;

private:

std::string m_name;

std::string m_researchArea;

};

class Dean : public Professor{

public:

void readInfo(); // virtual

void print() const; // virtual

private:

std::string m_facultyName;

};

& Professor::readInfo

& Professor::print

Virtual Table of Profesor

& Dean::readInfo

& Dean::print

Virtual Table of Dean

Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

8.17

Calling virtual methods, the virtual table (contd):

The objects of the Professor and Dean will contain a pointer to their virtual tables.
int main(){
Professor prof1("Ahmet", "Robotics");
Professor prof2("Ayşe", "Graphics");
Dean dean1("Fatma","Networks","Engineering");

vptr

Ahmet

Robotics

prof1

vptr

Ayşe

Graphics

prof2

vptr

Fatma

Networks

Engineering

dean1

& Professor::readInfo

& Professor::print+8

Virtual Table of Profesor

& Dean::readInfo

& Dean::print+8

Virtual Table of Dean

Objects in memory:

Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

8.18

Calling virtual methods, the virtual table (contd):
Nonvirtual print() function:

If the print() function was not virtual, the statement visitor->print() in the
meetVisitor() method would be compiled as follows:

this ← visitor ; this points to the active object

call Professor::print ; static binding, compile-time

Virtual print() function (polymorphism):

If the print() function is virtual, the statement visitor->print() in the
meetVisitor() method will be compiled as follows:

this ← visitor ; this points to the active object

ptr ← [this] ; Read vptr from the object. ptr ← vptr

call [ptr + 8] ; dynamic binding, run-time

ptr points to the first row of the virtual table.
The first rows of the tables store the addresses of the readInfo() methods.
If the address length is 8 bytes in our system, we add 8 to the pointer to access the second
row that stores the address of the print() method.

Late binding requires a small amount of overhead but provides an enormous increase in
power and flexibility. A few additional bytes per object and slightly slower function
calls are small prices to pay for the power and flexibility offered by polymorphism.

4

Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

8.19

• Be aware that the dynamic polymorphism works only with pointers and
references to objects, not with objects themselves.

• When we use an object's name to call a method, it is clear at compile-time
which method will be invoked.

• There is no need to determine which function to call at runtime.

• Thus, dynamic polymorphism does not work when we use an object's name to call
a method.

Polymorphism (dynamic) does not work with objects!

int main(){
Professor prof1("Ahmet", "Robotics");
Professor prof2("Ayşe", "Graphics");
Dean dean1("Fatma", "Networks", "Engineering");
prof1.print(); // not polymorphic. Professor::print()
dean1.print(); // not polymorphic. Dean::print()

Calling virtual functions has an overhead because of indirect calls via tables.

Do not declare functions as virtual if it is not necessary.

License: https://creativecommons.org/licenses/by-nc-nd/4.0/ Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

8.20

• To create a virtual (polymorphic) function in a derived class, its definition
must have the same signature as the virtual function in the base class.

• Note that const specifications must also be identical. For example, if the base
class method is const, the derived class method must also be const.

Example:

The rules about virtual functions

class Professor{

public:

virtual void print() const;

:

};

class Dean : public Professor{

public:

void print(); // Not virtual

:

};

Different signatures!

• If the signatures (parameters or const
specifiers) of methods are different, the
program will compile without errors, but
the polymorphism (virtual function
mechanism) will not work.

• The function in the derived class
redefines the function in the base (name
hiding), as we covered in Chapter 7.

• This new function will, therefore, operate
with static binding as in program
e08_1a.cpp.

• You can try it by deleting const specifiers
of the print function of the Dean class in
the programs e08_1b.cpp and e08_1c.cpp.

Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

8.21

• The return type of a virtual function in a derived class must be the same as that
in the base class.

Example:

The rules about virtual functions (contd)

class Professor{

public:

virtual void print() const;

:

};

class Dean : public Professor{

public:

int print() const; // Error!

:

Error: Same signatures but
different return types

• If the function name, parameter list, and
const specifier of a function in a derived
class are the same as those of a virtual
function declared in the base class, then
their return types must also be the same.

Otherwise, the derived class function will
not compile.

Therefore, the program on the left will
cause a compiler error.

• A different return type will not cause a
compiler error if the signatures or const
specifiers are already different.

This is (name hiding); the new function will
operate with static binding.

class Professor{

virtual void print() const;

class Dean : public Professor{

int print(int) const; //OK! Compile-time

Different signatures: Name hiding. No compiler error. No polymorphism. Static binding

Example:

Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

8.22

• Remember, to provide a polymorphic behavior, the signatures (parameters or
const specifiers) of virtual methods in base and derived classes must be the
same.

• Otherwise, the program will compile without errors, but the polymorphism
(virtual function mechanism) will not work.

• However, it is easy to make a mistake (a typo) when specifying a virtual function
in a derived class.

For example, if we define a void Print() const method in the Dean class, it
will not be virtual because the name of the corresponding method in the
Professor class is different, i.e., void print() const.

The program may still be compiled and executed but may not be as expected.

• Similarly, the same thing will happen if we forget to const specifier in the
derived class.

• It is difficult to detect these kinds of errors.

• To avoid such errors, we can use the override specifier for every virtual
function declaration in a derived class.

override Specifier

Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

8.23

Example:

override Specifier (contd)

class Professor{

public:

virtual void print() const;

:

};

class Dean : public Professor{

public:

void print() const override;

:

};

• The override specification makes the
compiler verify that the base class
declares a virtual method with the same
signature.

• If the base class does not have a
virtual method with the same signature,
the compiler generates an error.

• The override specification, like the
virtual one, only appears within the
class definition.

It must not be applied to a method's
definition (body).

Always add an override specification to the declaration of a virtual function
override.

• This guarantees that you have not made any mistakes in the function signatures.

• It safeguards you and your team from forgetting to change any existing
function overrides when the signature of the base class function changes.

Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

8.24

Sometimes, we may want to prevent a method from being overridden in a derived
class.

It happens if we want to limit how a derived class can modify the behavior of the
base class interface.

We can do this by specifying that a function is final.

Example:

final Specifier

class Point { // Base Class (parent)

public:

bool move(int, int) final; // This method cannot be overridden

:

};

Attempts to override move(int, int) in classes with Point as a base will result
in a compiler error.

5

Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

8.25

We can also specify an entire class as final.

Example:

final Specifier (contd)

class ColoredPoint final : public Point {

:

};

Now, the compiler will not allow ColoredPoint to be used as a base class.

No further derivation from the ColoredPoint class is possible.

class Parent final {

...

};

class Child : public Parent {

...

};

The Parent class cannot be used as a base class.

Compiler Error !

Example:

License: https://creativecommons.org/licenses/by-nc-nd/4.0/ Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

8.26

Overloading, Name Hiding, Overriding/Polymorphism

Overloading:

• Remember, overloading occurs when two or more methods of the same class or
multiple nonmember methods in the same namespace have the same name but
different parameters.

• Overloaded functions operate with static binding.

• Which function to call is determined at compile-time.

• Depending on the type of the parameters, different functions are called.

• It is also called static, ad hoc polymorphism.

Name hiding:

• Name hiding (compile-time overriding) occurs when a derived class redefines
the methods of the base class.

• The overridden methods may have the same or different signatures, but they
will have different bodies.

• The methods are not virtual.

• Redefined methods operate with static binding.

• Which function to call is determined at compile-time.

Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

8.27

Overloading, Name Hiding, Overriding/Polymorphism (contd)

Polymorphism (Overriding):

• The overridden methods have identical signatures to the base class's
corresponding methods.

• The methods are specified as virtual.

• Overridden virtual methods operate with dynamic binding.

• Which function to call is determined at runtime.

• It is also called dynamic, subtyping polymorphism.

Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

8.28

• Programming language theory defines various forms of polymorphism.

• Definition given by Bjarne Stroustrup:

"Polymorphism is providing a single interface to entities of different types.

Virtual functions provide dynamic (run-time) polymorphism through an interface
provided by a base class.

Overloaded functions and templates provide static (compile-time) polymorphism."

• In general, polymorphism is calling different functions with the same name based
on the type of the related objects (parameters).

• In this class (usually in OOP), polymorphism refers to virtual functions that
provide dynamic (run-time) polymorphism through an interface provided by a
base class (subtyping or inclusion polymorphism).

• Other types of polymorphism:

• Static polymorphism

• Ad hoc polymorphism: function and operator overloading

For example, int i = add(5); or Point pt = add(point_obj);

• Parametric polymorphism: function and class templates
Generic programming (see Chapter 09)

Types of Polymorphism:

Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

8.29

A heterogeneous linked list of objects with polymorphism

Remember, in example e07_19.zip, we developed a heterogeneous linked list that
can contain Point and ColoredPoint objects.

We will extend this program by adding virtual (polymorphic) print methods to the
Point and ColoredPoint classes.

class Point {

public:

virtual void print() const; // virtual method

:

class ColoredPoint : public Point {

public:

void print() const override; // virtual method

:

We do not need to modify the Node class.

Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

8.30

A heterogeneous linked list of objects with polymorphism (contd)

void PointList::printAll() const {

if (m_head) // if the list is not empty

{

Node* tempPtr{ m_head };// A pointer points to the first node of the list

while (tempPtr) {

tempPtr->getPoint()->print(); // POLYMORPHISM

tempPtr = tempPtr->getNext(); // go to the next node

}

}

else std::println("The list is empty");

}

Remember, there is a std::list class in the standard library of C++. You do not
need to write a class to define linked lists.

• We add a new method, printAll(), to the PointList class that iterates over the
list and calls print() methods of all elements consecutively.

• Since some elements are Point objects and some are ColoredPoint objects,
different print() methods will be invoked depending on the type of the
elements.

Get the address of the object
from the current node.

Call the print() pointed by the pointer
received from the current node.

See Example e08_2.zip

6

Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

8.31

Sometimes, we do not need to create base class objects; we only need derived ones.

The base class exists only to store the common properties of derived classes and
to present their common services (responsibilities).

Example:

Abstract Classes

Employee

getName()

calculateSalary()

m_name

Researcher

calculateSalary()

doResearch()

m_projects

Worker

calculateSalary()

doWork()

m_ workHour

The common interface
of all employees.

A common method that is not redefined.

The signature of a common method that must
be redefined.
Italic: pure virtual (abstract)

• In this system, we will never have generic Employee objects.

• We will create either Worker or Researcher objects.

• This kind of base class (e.g., Employee) is called an abstract class, meaning no
actual objects will be created from it.

Implementation of
the abstract method

Italic: Abstract

License: https://creativecommons.org/licenses/by-nc-nd/4.0/ Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

8.32

Pure virtual functions:

• When we decide to create an abstract base class, we can instruct the compiler
to prevent any class user from ever making an object of that class.

This would give us more freedom in designing the base class because we would
not need to plan for actual objects of the class but only for data and functions
that derived classes would use.

• To tell the compiler that a class is abstract, we define at least one pure
virtual function in that class.

• A pure virtual function is a virtual function without a body.

The body of the virtual function in the base class is removed, and the notation
=0 is added to the function declaration.

Example:

The Employee class is abstract, and the method calculateSalary() is a pure
virtual function.

class Employee{ // Abstract! It is not possible to create objects

public:

virtual double calculateSalary() const = 0; // pure virtual function

Abstract Classes (contd)

Each derived class will (and must) implement the body of this method.

Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

8.33

class Employee{ // Abstract! It is not possible to create objects

public:

Employee::Employee(const std::string& in_name) : m_name{ in_name }

{} // constructor

const std::string& getName() const; // A common method, not redefined

virtual void print() const; // virtual (not abstract)

virtual double calculateSalary() const = 0; // pure virtual function

private:

std::string m_name;

};

void Employee::print() const // The body of the virtual function

{

std::println("Name: {}", m_name);

}

Example: Employee, worker, and researcher. Employee is an abstract class

The calculateSalary() method is not defined (implemented) in the Employee
class. It is an abstract (pure virtual) method.

Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

8.34

Example: Employee is an abstract class

• The Employee class is an incomplete description of an object because the
calculateSalary() function is not defined (it does not have a body).

Therefore, it is abstract, and we are not allowed to create instances (objects) of
the Employee class.

• This class exists solely for the purpose of deriving classes from it.

Employee employeeObject{"Employee"}; // Compiler Error!

Employee * employeePtr = new Employee {"Employee 1"}; // Error!

• Since you cannot create its objects, you cannot pass an Employee by value to a
function or return an Employee by value from a function.

Creating instances (objects) of an abstract class is not possible.

Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

8.35

• The Employee class determines the signatures (interfaces) of the virtual
functions.

• The authors of the derived classes (e.g., Worker and Researcher) specify how
each pure virtual function is implemented.

• Any class derived from the Employee class must define (implement) the
calculateSalary() function.

If it does not, then it is also an abstract class.

• If a pure virtual function of an abstract base class is not defined in a derived
class, then the pure virtual function will be inherited as is, and the derived class
will also be an abstract class.

The derived classes specify how each pure virtual function is implemented.

Example: Employee is an abstract class

Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

8.36

class Worker : public Employee{

public:

void print() const override; // Redefined print function

double calculateSalary() const override; // concrete virtual function

:

};

Example (contd): Employee, worker, and researcher

void Worker::print() const // Redefined virtual function
{

Employee::print();

cout << " I am a worker" << endl;

cout << "My work Hours per month: " << m_workHour << endl;

}

// Concrete (implemented) virtual function

double Worker::calculateSalary() const

{

return 105* m_workHour; // 105TL per hour

}

We can similarly derive a Researcher class from the Employee.

7

Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

8.37

int main(){

// Employee employee1{"Employee 1"}; // Error! Employee abstract

// Employee * employeePtr = new Employee {"Employee 1"}; // Error!

Employee* arrayOfEmployee[5]{}; // An array of 5 pointers to Employee

Worker worker1{ "Worker 1", 160 }; // Work hours per month = 160

arrayOfEmployee[0] = &worker1; // Addr. of the worker1 to the array

std::println(arrayOfEmployee[0]->getName()); // OK! common function

Researcher researcher1{ "Researcher 1", 1 }; // #projects = 1

arrayOfEmployee[1] = &researcher1; // Addr. researcher1 to the array

:

for (unsigned int i = 0; i < 5; i++) {

arrayOfEmployee[i]->print(); // polymorphic method calls

std::println("Salary = {}", arrayOfEmployee[i]->calculateSalary());

}

return 0;

}

Example (contd): Employee, worker, and researcher

See Example e08_3.cpp

License: https://creativecommons.org/licenses/by-nc-nd/4.0/ Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

8.38

A design principle: "Design to an interface, not an implementation"

• Software design principles are guidelines (best practices) offered by
experienced practitioners in the design field.

• "Design to an interface, not an implementation" is a principle that helps us to
design flexible systems that can handle changes.

• Here, the interface refers to the signatures of the common services
(behaviors) given by different classes.

For example, Workers and Resarchers can both calculate their salaries and print
their information.

• The implementation refers to how different classes define (implement) common
services (or behaviors).

For example, the Worker class has a unique method of calculating its salary.

The Researcher class can also calculate the salary but in another way.

The interfaces of some services are the same, but their implementations are
different.

For example, the signature (interface) of the virtual calculateSalary()
function is the same for both Workers and Resarchers.

However, the implementation (body) of this method is different in these
classes.

Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

8.39

Employee
subsystem

A design principle: "Design to an interface, not an implementation" (contd)

Example: Workers, researchers, and the accounting system in a company

We need to design an accounting system that performs financial operations
related to workers and researchers.

We will design the Accounting class according to the base class Employee that
presents the common interface (services, behaviors) of workers and researchers.

Employee

getName()

print()

calculateSalary()

m_name

Researcher

print()

calculateSalary()

doResearch()

m_projects

Worker

print()

calculateSalary()

doWork()

m_ workHour

Accounting

addEmployee (Employee *)

printAll()

collectSalaries()

m_employees *

{vector}

The common
interface of all
employees.

double sum{};
for (i = 0; i < m_employees.size(); i++)
sum += m_employees[i]->calculateSalary();
return sum;

See Example e08_4a.cpp

Accounting does not know the type of
the object (worker or researcher).

Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

8.40

Employee
subsystem

• We designed the Accounting class according to a general Employee (interface)
type.

• Accounting is not aware of the concrete types (Worker and Researcher).

• If we need to add a new type of employee, e.g., a Manager, to our system, we do
not need to change the Accounting class.

Example: Workers, researchers, and the accounting system in a company

Employee

getName()

print()

calculateSalary()

m_name

Researcher

print()

calculateSalary()

doResearch()

m_projects

Worker

print()

calculateSalary()

doWork()

m_ workHour

Accounting

addEmployee (Employee *)

printAll()

collectSalaries()

m_employees *

{vector}

See Example e08_4b.cpp

We do not need to
modify this class
if we add a new
Employee subtype.

Manager

print()

calculateSalary()

doManagement()

m_department

Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

8.41

The Open-Closed Principle

"Software entities (classes, modules, functions, etc.) should be open for
extension but closed for modification”.

• We should strive to write code that does not have to be changed every time
the requirements change or new functionalities are added to the system.

• We should create flexible designs to take on new functionality to meet
changing requirements without modifying the existing code.

The OOP concept polymorphism and the principles “Find what varies and
encapsulate it” and “Design to interface not to an implementation" support the
"Open-Closed Principle".

For example, we can add a new type of employee, such as a Manager, to our
system without changing the existing code.

Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

8.42

Can constructors be virtual?

No, constructors cannot be virtual.

• When creating an object, we usually already know what kind of object we are
creating and can specify this to the compiler.

• Thus, there is no need for virtual constructors.

• Also, an object’s constructor sets up its virtual mechanism (the virtual table) in
the first place.

• Of course, we do not see the source code for this, just as we do not see the
code that allocates memory for an object.

• Virtual functions cannot even exist until the constructor has finished its job, so
constructors cannot be virtual.

Virtual Constructors?

8

Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

8.43

Virtual Destructors
Recall that a derived class object typically contains data from both the base and
derived classes.

To ensure that such data is properly disposed of, it may be essential that
destructors for both base and derived classes are called.

Remember the example e07_8.cpp on slide 7.36.

Example:
Parent

Parent()
~Parent

Child

Child()
~Child()

GrandChild

GrandChild()
~ GrandChild()

The Output:

Parent constructor

Child constructor

GrandChild constructor

Program terminates

GrandChild destructor

Child destructor

Parent destructor

int main()

{

GrandChild grandchild_object;

std::println("Program terminates");

return 0;

}

See Example e08_5a.cpp

License: https://creativecommons.org/licenses/by-nc-nd/4.0/ Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

8.44

Virtual Destructors (contd)

When we create a dynamic object of the GrandChild class pointed to by a pointer
to the Parent class, what happens if this object is deleted?

Example:

int main(){

Parent* parentPtr{};

parentPtr = new GrandChild;

std::println("-----------------");

delete parentPtr;

return 0;

}

The Output:

Parent constructor

Child constructor

GrandChild constructor

Parent destructor

• In this example, parentPtr points to an object of the GrandChild class, but only
the Parent class destructor is called while deleting the pointer.

We encountered the same problem when we previously called ordinary functions
using a base pointer.

• If a function is not virtual, only the base class version will be called when it is
invoked using a base class pointer, even if the pointer's content is the address
of a derived class object (static binding).

Thus, Child and GrandChild destructors are never called. This could be a
problem if these destructors did something important.

See Example e08_5b.cpp

Object-Oriented Programming

1999 - 2024 Feza BUZLUCAhttp://akademi.itu.edu.tr/en/buzluca
http://www.buzluca.info

8.45

Virtual Destructors (contd)

• To ensure that the destructors of derived classes are called for dynamic
objects, we need to specify destructors as virtual.

• To implement a virtual destructor in a derived class, we just add the keyword
virtual to the destructor declaration in the base class.

This makes the destructors in every class derived from the base class virtual.

• The virtual destructor calls through a pointer or a reference have dynamic
binding, so the called destructor will be selected at runtime.

• To fix the problem in example e08_5b.cpp, we add the virtual keyword to the
destructor declaration in the Parent class.

class Parent{

public:

Parent();

virtual ~Parent();

:

};

The Output:

Parent constructor

Child constructor

GrandChild constructor

GrandChild destructor

Child destructor

Parent destructorSee Example e08_5c.cpp

