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1 Introduction

This note examines the response of linear, time-invariant models expressed in the standard
state -equation form:

ẋ = Ax+Bu (1)

y = Cx+Du. (2)

that is, as a set of coupled, first-order differential equations. The solution proceeds in two
steps; first the state-variable response x(t) is found by solving the set of first-order state
equations, Eq. (1), and then the state response is substituted into the algebraic output
equations, Eq. (2) in order to compute y(t).

As in the classical solution method for ordinary differential equations with constant
coefficients, the total system state response x(t) is considered in two parts: a homogeneous
solution xh(t) that describes the response to an arbitrary set of initial conditions x(0), and
a particular solution xp(t) that satisfies the state equations for the given input u(t). The
two components are then combined to form the total response.

The solution methods used in this note rely heavily on matrix algebra. In order to keep
the treatment simple we attempt wherever possible to introduce concepts using a first-order
system, in which the A, B, C, and D matrices reduce to scalar values, and then to generalize
results by replacing the scalars with the appropriate matrices.

2 State-Variable Response of Linear Systems

2.1 The Homogeneous State Response

The state-variable response of a system described by Eq. (1) with zero input, u(t) ≡ 0,
and an arbitrary set of initial conditions x(0) is the solution of the set of n homogeneous
first-order differential equations:

ẋ = Ax. (3)

To derive the homogeneous response xh(t), we begin by considering the response of a first-
order (scalar) system with state equation

ẋ = ax+ bu (4)
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with initial condition x(0). In this case the homogeneous response xh(t) has an exponential
form defined by the system time constant τ = −1/a, or:

xh(t) = eatx(0). (5)

The exponential term eat in Eq. (5) may be expanded as a power series, to give:

xh(t) =

(
1 + at+

a2t2

2!
+

a3t3

3!
+ . . .+

aktk

k!
+ . . .

)
x(0), (6)

where the series converges for all finite t > 0.
Let us now assume that the homogeneous response xh(t) of the state vector of a higher

order linear time-invariant system, described by Eq. (3), can also be expressed as an infinite
power series, similar in form to Eq. (6), but in terms of the square matrix A, that is we
assume:

xh(t) =

(
I+At+

A2t2

2!
+
A3t3

3!
+ . . .+

Aktk

k!
+ . . .

)
x(0) (7)

where x(0) is the initial state. Each term in this series is a matrix of size n × n, and the
summation of all terms yields another matrix of size n× n. To verify that the homogeneous
state equation ẋ = Ax is satisfied by Eq. (7), the series may be differentiated term by term.
Matrix differentiation is defined on an element by element basis, and because each system
matrix Ak contains only constant elements:

ẋh(t) =

(
0+A+A2t+

A3t2

2!
+ . . .+

Aktk−1

(k − 1)!
+ . . .

)
x(0)

= A

(
I+At+

A2t2

2!
+
A3t3

3!
+ . . .+

Ak−1tk−1

(k − 1)!
+ . . .

)
x(0)

= Axh(t). (8)

Equation (8) shows that the assumed series form of the solution satisfies the homogeneous
state equations, demonstrating that Eq. (7) is in fact a solution of Eq. (3). The homogeneous
response to an arbitrary set of initial conditions x(0) can therefore be expressed as an infinite
sum of time dependent matrix functions, involving only the system matrix A. Because of the
similarity of this series to the power series defining the scalar exponential, it is convenient
to define the matrix exponential of a square matrix A as

eAt = I+At+
A2t2

2!
+
A3t3

3!
+ . . .+

Aktk

k!
+ . . . (9)

which is itself a square matrix the same size as its defining matrix A. The matrix form of the
exponential is recognized by the presence of a matrix quantity in the exponent. The system
homogeneous response xh(t) may therefore be written in terms of the matrix exponential

xh(t) = eAtx(0) (10)
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which is similar in form to Eq. (5). The solution is often written as

xh(t) = Φ(t)x(0) (11)

where Φ(t) = eAt is defined to be the state transition matrix [1 – 5] . Equation (11) gives
the response at any time t to an arbitrary set of initial conditions, thus computation of eAt

at any t yields the values of all the state variables x(t) directly.

Example 1

Determine the matrix exponential, and hence the state transition matrix, and
the homogeneous response to the initial conditions x1(0) = 2, x2(0) = 3 of the
system with state equations:

ẋ1 = −2x1 + u

ẋ2 = x1 − x2.

Solution: The system matrix is

A =

[ −2 0
1 −1

]
.

From Eq. (9) the matrix exponential (and the state transition matrix) is

Φ(t) = eAt

=

(
I+At+

A2t2

2!
+
A3t3

3!
+ . . .+

Aktk

k!
+ . . .

)

=

[
1 0
0 1

]
+

[ −2 0
1 −1

]
t+

[
4 0

−3 1

]
t2

2!

+

[ −8 0
7 −1

]
t3

3!
+ . . .

=



1− 2t+

4t2

2!
− 8t3

3!
+ . . . 0

0 + t− 3t2

2!
+
7t3

3!
+ . . . 1− t+

t2

2!
− t3

3!
+ . . .


 . (i)

The elements φ11 and φ22 are simply the series representation for e−2t and e−t

respectively. The series for φ21 is not so easily recognized but is in fact the first
four terms of the the expansion of e−t − e−2t. The state transition matrix is
therefore

Φ(t) =

[
e−2t 0

e−t − e−2t e−t

]
(ii)
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and the homogeneous response to initial conditions x1(0) and x2(0) is

xh(t) = Φ(t)x(0) (iii)

or

x1(t) = x1(0)e
−2t (iv)

x2(t) = x1(0)
(
e−t − e−2t

)
+ x2(0)e

−t. (v)

With the given initial conditions the response is

x1(t) = 2e−2t (vi)

x2(t) = 2
(
e−t − e−2t

)
+ 3e−t

= 5e−t − 2e−2t. (vii)

In general the recognition of the exponential components from the series for each
element is difficult and is not normally used for finding a closed form for the state
transition matrix.

Although the sum expressed in Eq. (9) converges for allA, in many cases the series converges
slowly, and is rarely used for the direct computation of Φ(t). There are many methods for
computing the elements of Φ(t), including one presented in Section 4.3, that are much more
convenient than the direct series definition. [1,5,6]

2.2 The Forced State Response of Linear Systems

We now consider the complete response of a linear system to an input u(t). Consider first a
first-order system with a state equation ẋ = ax+ bu written in the form

ẋ(t)− ax(t) = bu(t). (12)

If both sides are multiplied by an integrating factor e−at, the left-hand side becomes a perfect
differential

e−atẋ− e−atax =
d

dt

(
e−atx(t)

)
= e−atbu (13)

which may be integrated directly to give

∫ t

0

d

dτ

(
e−aτx (τ)

)
dτ = e−atx (t)− x (0) =

∫ t

0
e−aτbu (τ) dτ (14)

and rearranged to give the state variable response explicitly:

x (t) = eatx (0) +
∫ t

0
ea(t−τ)bu (τ) dτ. (15)
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The development of the expression for the response of higher order systems may be
performed in a similar manner using the matrix exponential e−At as an integrating factor.
Matrix differentiation and integration are defined to be element by element operations, there-
fore if the state equations ẋ = Ax+Bu are rearranged, and all terms pre-multiplied by the
square matrix e−At:

e−Atẋ (t)− e−AtAx (t) =
d

dt

(
e−Atx (t)

)
= e−AtBu(t). (16)

Integration of Eq. (16) gives

∫ t

0

d

dτ

(
e−Aτx (τ)

)
dτ = e−Atx(t)− e−A0x(0) =

∫ t

0
e−AτBu(τ)dτ (17)

and because e−A0 = I and [e−At]−1 = eAt the complete state vector response may be written
in two similar forms

x(t) = eAtx(0) + eAt
∫ t

0
e−AτBu(τ)dτ (18)

x(t) = eAtx(0) +
∫ t

0
eA(t−τ)Bu(τ)dτ. (19)

The full state response, described by Eq. (18) or Eq. (19) consists of two components: the
first is a term similar to the system homogeneous response xh(t) = eAtx(0) that is dependent
only on the system initial conditions x(0). The second term is in the form of a convolution
integral, and is the particular solution for the input u(t), with zero initial conditions.

Evaluation of the integral in Eq. (19) involves matrix integration. For a system of order
n and with r inputs, the matrix eAt is n× n, B is n× r and u(t) is an r× 1 column vector.
The product eA(t−τ)Bu(τ) is therefore an n× 1 column vector, and solution for each of the
state equations involves a single scalar integration.

Example 2

Find the response of the two state variables of the system

ẋ1 = −2x1 + u

ẋ2 = x1 − x2.

to a constant input u(t) = 5 for t > 0, if x1(0) = 0, and x2 = 0.

Solution: This is the same system described in Example 1. The state transition
matrix was shown to be

Φ(t) =

[
e−2t 0

e−t − e−2t e−t

]
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With zero initial conditions, the forced response is (Eq. (18)):

x(t) = eAt
∫ t

0
e−AτBu(τ)dτ. (i)

Matrix integration is defined on an element by element basis, so that

[
x1(t)
x2(t)

]
=

[
e−2t 0

e−t − e−2t e−t

] ∫ t

0

[
e2τ 0

eτ − e2τ eτ

] [
5
0

]
dτ (ii)

=

[
e−2t 0

e−t − e−2t e−t

] [ ∫ t
0 5e

2τdτ∫ t
0 5e

τ − 5e2τdτ

]
(iii)

=

[
5
2
− 5

2
e−2t

5
2
− 5e−t + 5

2
e−2t

]
(iv)

3 The System Output Response

For either the homogeneous or forced responses, the system output response y(t) may be
found by substitution of the state variable response into the algebraic system output equa-
tions

y = Cx+Du. (20)

In the case of the homogeneous response, where u(t) = 0, Eq. (20) becomes

yh(t) = CeAtx(0), (21)

while for the forced response substitution of Eq. (19) into the output equations gives

y(t) = CeAtx(0) +C
∫ t

0
eA(t−τ)Bu(τ)dτ +Du(t). (22)

Example 3

Find the response of the output variable

y = 2x1 + x2

in the system described by state equations

ẋ1 = −2x1 + u

ẋ2 = x1 − x2.
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Scalar exponential: Matrix exponential:

eat = 1 + at+
a2t2

2!
+

a3t3

3!
+ . . . eAt = I+At+

A2t2

2!
+
A3t3

3!
+ . . .

ea0 = 1 eA0 = I

e−at =
1

eat
e−At =

[
eAt

]−1

ea(t1+t2) = eat1eat2 eA(t1+t2) = eAt1eAt2

e(a1+a2)t = ea1tea2t e(A1+A2)t = eA1teA2t only if A1A2 = A2A1

d

dt
eat = aeat = eata

d

dt
eAt = AeAt = eAtA∫ t

0
eatdt =

1

a

[
eat − 1

] ∫ t

0
eAtdt = A−1

[
eAt − I

]
=

[
eAt − I

]
A−1

if A−1 exists. Otherwise defined by the series.

Table 1: Comparison of properties of the scalar and matrix exponentials.

to a constant input u(t) = 5 for t > 0, if x1(0) = 0, and x2 = 0.

Solution: This is the same system described in Example 1 with the same
input and initial conditions as used in Example 2. The state-variable response is
(Example 2): [

x1(t)
x2(t)

]
=

[
5
2
− 5

2
e−2t

5
2
− 5e−t + 5

2
e−2t

]
(i)

The output response is

y(t) = 2x1(t) + x2(t)

=
15

2
− 5

2
e−2t − 5e−t. (ii)

4 The State Transition Matrix

4.1 Properties of the State Transition Matrix

Table 1 shows some of the properties that can be derived directly from the series definition of
the matrix exponential eAt. For comparison the similar properties of the scalar exponential
eat are also given. Although the sum expressed in Eq. (9) converges for all A, in many cases
the series converges slowly, and is rarely used for the direct computation of Φ(t). There
are many methods for computing the elements of Φ(t), including one presented in the next
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section, that are much more convenient than the series definition. The matrix exponential
representation of the state transition matrix allows some of its properties to be simply stated:

(1) Φ(0) = I, which simply states that the state response at time t = 0 is
identical to the initial conditions.

(2) Φ(−t) = Φ−1(t). The response of an unforced system before time t = 0 may
be calculated from the initial conditions x(0),

x(−t) = Φ(−t)x(0) = Φ−1(t)x(0) (23)

and the inverse always exists.
(3) Φ(t1)Φ(t2) = Φ(t1 + t2). With this property the state response at time t

may be defined from the system state specified at some time other than
t = 0, for example at t = t0. Using Property (2), the response at time t = 0
is

x(0) = Φ(−t0)x(t0) (24)

and using the properties in Table 1,

x(t) = Φ(t)x(0) = Φ(t)Φ(−t0)x(t0) (25)

or
xh(t) = Φ(t− t0)x(t0). (26)

(4) If A is a diagonal matrix then eAt is also diagonal, and each element on the
diagonal is an exponential in the corresponding diagonal element of the A
matrix, that is eaiit. This property is easily shown by considering the terms
An in the series definition and noting that any diagonal matrix raised to an
integer power is itself diagonal.

4.2 System Eigenvalues and Eigenvectors

In Example 1 each element of Φ(t) = eAt was shown to be a sum of scalar exponential terms,
and the resulting homogeneous response of each of the two state variables is therefore a sum of
exponential terms. In general, the homogeneous response of linear systems is exponential in
form, containing components of the form eλt, where λ is a root of the characteristic equation.
For example, the first-order homogeneous output response is of the form y(t) = Ceλt where
C is determined from the initial condition C = y(0), and the second-order response consists
of two exponential components y(t) = C1e

λ1t + C2e
λ2t where the constants C1 and C2 are

determined by a pair of initial conditions, usually the output and its derivative.
It is therefore reasonable to conjecture that for an nth order system the homogeneous

response of each of the n state variables xi(t) is a weighted sum of n exponential components:

xi(t) =
n∑

j=1

mije
λjt (27)
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where the mij are constant coefficients that are dependent on the system structure and the
initial conditions x(0). The proposed solution for the complete state vector may be written
in a matrix form 


x1(t)
x2(t)
...
xn(t)


 =



m11 m12 . . . m1n

m21 m22 . . . m2n
...

...
. . .

...
mn1 mn2 . . . mnn






eλ1t

eλ2t

...
eλnt


 (28)

or

xh(t) =M



eλ1t

eλ2t

...
eλnt


 (29)

where M is an n× n matrix of the coefficients mij.
To determine the conditions under which Eq. (29) is a solution of the homogeneous state

equations, the suggested response is differentiated and substituted into the state equation.
From Eq. (27) the derivative of each conjectured state response is

dxi

dt
=

n∑
j=1

λjmije
λjt (30)

or in the matrix form

ẋ1

ẋ2
...
ẋn


 =



λ1m11 λ2m12 . . . λnm1n

λ1m21 λ2m22 . . . λ2m2n
...

...
. . .

...
λ1mn1 λ2mn2 . . . λnmnn






eλ1t

eλ2t

...
eλnt


 . (31)

Equations (28) and (31) may be substituted into the homogeneous state equation, Eq. (3),



λ1m11 λ2m12 . . . λnm1n

λ1m21 λ2m22 . . . λ2m2n
...

...
. . .

...
λ1mn1 λ2mn2 . . . λnmnn






eλ1t

eλ2t

...
eλnt


 = A



m11 m12 . . . m1n

m21 m22 . . . m2n
...

...
. . .

...
mn1 mn2 . . . mnn






eλ1t

eλ2t

...
eλnt


 (32)

and if a set of mij and λi can be found that satisfy Eq. (32) the conjectured exponential
form is a solution to the homogeneous state equations.

It is convenient to write the n× n matrix M in terms of its columns, that is to define a
set of n column vectors mj for j = 1, 2, . . . , n from the matrix M

mj =



m1j

m2j
...
mnj
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so that the matrix M may be written in a partitioned form

M =
[
m1 m2 . . . mn

]
. (33)

Equation (32) may then be written

[
λ1m1 λ2m2 . . . λnmn

]


eλ1t

eλ2t

...
eλnt


 = A

[
m1 m2 . . . mn

]


eλ1t

eλ2t

...
eλnt


 (34)

and for Eq.(34) to hold the required condition is[
λ1m1 λ2m2 . . . λnmn

]
= A

[
m1 m2 . . . mn

]
=

[
Am1 Am2 . . . Amn

]
. (35)

The two matrices in Eq. (35) are square n × n. If they are equal then the corresponding
columns in each must be equal, that is

λimi = Ami i = 1, 2, . . . , n. (36)

Equation (36) states that the assumed exponential form for the solution satisfies the homo-
geneous state equation provided a set of n scalar quantities λi, and a set of n column vectors
mi can be found that each satisfy Eq. (36).

Equation (36) is a statement of the classical eigenvalue/eigenvector problem of linear
algebra. Given a square matrix A, the values of λ satisfying Eq. (36) are known as the
eigenvalues, or characteristic values, of A. The corresponding column vectors m are defined
to be the eigenvectors, or characteristic vectors, of A. The homogeneous response of a linear
system is therefore determined by the eigenvalues and the eigenvectors of its system matrix
A.

Equation (36) may be written as a set of homogeneous algebraic equations

[λiI−A]mi = 0 (37)

where I is the n × n identity matrix. The condition for a non-trivial solution of such a set
of linear equations is that

∆(λi) = det [λiI−A] = 0. (38)

which is defined to be the characteristic equation of the n × n matrix A. Expansion of the
determinant generates a polynomial of degree n in λ, and so Eq. (38) may be written

λn + an−1λ
n−1 + an−2λ

n−2 + . . .+ a1λ+ a0 = 0 (39)

or in factored form in terms of its n roots λ1, . . . , λn

(λ− λ1) (λ− λ2) . . . (λ− λn) = 0. (40)

For a physical system the n roots are either real or occur in complex conjugate pairs. The
eigenvalues of the matrix A are the roots of its characteristic equation, and these are com-
monly known as the system eigenvalues.
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Example 4

Determine the eigenvalues of a linear system with state equations:



ẋ1

ẋ2

ẋ3


 =




0 1 0
0 0 1

−10 −9 −4






x1

x2

x3


 +



0
0
1


u(t).

Solution: The characteristic equation is det [λI−A] = 0 or

det




λ −1 0
0 λ −1
10 9 λ+ 4


 = 0 (i)

λ3 + 4λ2 + 9λ+ 10 = 0 (ii)

(λ+ 2) (λ+ (1 + j2)) (λ+ (1− j2)) = 0 (iii)

The three eigenvalues are therefore λ1 = −2, λ2 = −1 + j2, and λ2 = −1− j2.

For each eigenvalue of a system there is an eigenvector, defined from Eq. (37). If the eigenval-
ues are distinct, the eigenvectors are linearly independent, and the matrixM is non-singular.
In the development that follows it is assumed that M has an inverse, and therefore only ap-
plies to systems without repeated eigenvalues.

An eigenvector mi associated with a given eigenvalue λi is found by substituting into the
equation

[λiI−A]mi = 0. (41)

No unique solution exists, however, because the definition of the eigenvalue problem, Eq.
(36), shows that if m is an eigenvector then so is αm for any non-zero scalar value α. The
matrix M, which is simply a collection of eigenvectors, defined in Eq. (33) therefore is not
unique and some other information must be used to fully specify the homogeneous system
response.

Example 5

Determine the eigenvalues and corresponding eigenvectors associated with a sys-
tem having an A matrix:

A =

[ −2 1
2 −3

]
.
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Solution: The characteristic equation is det [λI−A] = 0 or

det

[
λ+ 2 −1
−2 λ+ 3

]
= 0

λ2 + 5λ+ 4 = 0

(λ+ 4) (λ+ 1) = 0. (i)

The two eigenvalues are therefore λ1 = −1, and λ2 = −4. To find the eigenvectors
these values are substituted into the equation [λiI−A]mi = 0. For the case
λ1 = −1 this gives [

1 −1
−2 2

] [
m11

m21

]
=

[
0
0

]
. (ii)

Both of these equations give the same result; m11 = m21. The eigenvector cannot
be further defined, and although one particular solution is

m1 =

[
1
1

]

the general solution must be defined in terms of an unknown scalar multiplier α1

m1 =

[
α1

α1

]
(iii)

provided α1 �= 0.

Similarly, for the second eigenvalue, λ2 = −4, the equations are[ −2 −1
−2 −1

] [
m12

m22

]
=

[
0
0

]
(iv)

which both state that −2m12 = m22. The general solution is

m2 =

[
α2

−2α2

]
(v)

for α2 �= 0. The following are all eigenvectors corresponding to λ2 = −4:[
1

−2
] [

15
−30

] [ −7
14

]
.

Assume that the system matrix A has no repeated eigenvalues, and that the n distinct
eigenvalues are λ1, λ2, . . . , λn. Define the modal matrixM by an arbitrary set of correspond-
ing eigenvectors mi:

M =
[
m1 m2 . . . mn

]
. (42)
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From Eq. (29) the homogeneous system response may be written

xh(t) = M



eλ1t

eλ2t

...
eλnt




=
[
α1m1 α2m2 . . . αnmn

]


eλ1t

eλ2t

...
eλnt


 (43)

for any non-zero values of the constants αi. The rules of matrix manipulation allow this
expression to be rewritten:

xh(t) =
[
m1 m2 . . . mn

]


α1e

λ1t

α2e
λ2t

...
αne

λnt




=
[
m1 m2 . . . mn

]


eλ1t 0 . . . 0
0 eλ2t . . . 0
...

...
. . .

...
0 0 . . . eλnt






α1

α2
...
αn




= MeΛtα (44)

where α is a column vector of length n containing the unknown constants αi, and eΛt is an
n× n diagonal matrix containing the modal responses eλit on the leading diagonal

eΛt =



eλ1t 0 . . . 0
0 eλ2t . . . 0
...

...
. . .

...
0 0 . . . eλnt


 . (45)

At time t = 0 all of the diagonal elements in eΛ0 are unity, so that eΛ0 = I is the identity
matrix and Eq. (44) becomes

x(0) =MIα. (46)

For the case of distinct eigenvalues the modal matrix M is non-singular, and the vector α
may be found by pre-multiplying each side of the equation by M−1:

α =M−1x(0) (47)

specifying the values of the unknown αi in terms of the system initial conditions x(0). The
complete homogeneous response of the state vector is

xh(t) =
[
MeΛtM−1

]
x(0). (48)
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Comparison with Eq. (11) shows that the state transition matrix may be written as

Φ(t) =MeΛtM−1 (49)

leading to the following important result:

Given a linear system of order n, described by the homogeneous equation ẋ = Ax,
and where the matrix A has n distinct eigenvalues, the homogeneous response of
any state variable in the system from an arbitrary set of initial conditions x(0) is
a linear combination of n modal components eλit, where the λi are the eigenvalues
of the matrix A.

4.3 A Method For Determining the State Transition Matrix

Equation (49) provides the basis for the determination of the state transition matrix for
systems with distinct eigenvalues:

(1) Substitute numerical values into the system A matrix, and compute the system eigen-
values, a modal matrix M, and its inverse M−1. A computer based linear algebra
package provides a convenient method for doing this.

(2) Form the diagonal matrix eΛt by placing the modal components eλit on the leading
diagonal.

(3) The state transition matrix Φ(t) is Φ(t) =MeΛtM−1.

Example 6

Determine the state transition matrix for the system discussed in Example 2, and
find its homogeneous response to the initial conditions x1(0) = 1, and x2(0) = 2.

Solution: The system is described by the matrix

A =

[ −2 1
2 −3

]

and in Example 2 the eigenvalues are shown to be λ1 = −1, and λ2 = −4, and a
pair of corresponding eigenvectors are

m1 =

[
1
1

]
, m2 =

[
1

−2
]
.

A modal matrix M is therefore

M =

[
1 1
1 −2

]
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and its inverse M−1 is

M−1 =
1

3

[
2 1
1 −1

]
.

The matrix eΛt is found by placing the modal responses e−t and e−4t on the
diagonal:

eΛt =

[
e−t 0
0 e−4t

]
. (i)

The state transition matrix Φ(t) is

Φ(t) =
[
MeΛtM−1

]
=

1

3

[
1 1
1 −2

] [
e−t 0
0 e−4t

] [
2 1
1 −1

]

=
1

3

[
2e−t + e−4t e−t − e−4t

2e−t − 2e−4t e−t + 2e−4t

]
. (ii)

The homogeneous response for the given pair of initial conditions is

xh(t) = Φ(t)x(0)

or [
x1(t)
x2(t)

]
=

1

3

[
2e−t + e−4t e−t − e−4t

2e−t − 2e−4t e−t + 2e−4t

] [
1
2

]
(iii)

or

x1(t) =
4

3
e−t − 1

3
e−4t (iv)

x2(t) =
4

3
e−t +

2

3
e−4t. (v)

4.4 Systems with Complex Eigenvalues

The modal components of the response are defined by the eigenvalues of the matrix A, as
found from the roots of the characteristic equation

det [λI−A] = 0

which is a polynomial of degree n in λ, with constant and real coefficients. Any polynomial
equation with real coefficients must have roots that are real, or which appear in complex
conjugate pairs. The eigenvalues of A are therefore either real, or occur as pairs of the form
λi,i+1 = σ ± jω, where j =

√−1. In such cases there are modal response components in
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the matrix eΛt of the form e(σ±jω)t = eσte±jωt. However, when the state transition matrix is
computed the conjugate components combine, and the Euler relationships

sinωt =
1

2j

(
ejωt − e−jωt

)
(50)

cosωt =
1

2

(
ejωt + e−jωt

)
(51)

may be used to express the elements of the state transition matrix in a purely real form
eσt sin (ωt) or eσt cos (ωt).

Example 7

Determine the state transition matrix for the undamped mechanical oscillator,
with a mass m = 1 Kg suspended on a spring with stiffness K = 100 N/m, as
shown with its linear graph in Fig. 1.

Figure 1: Simple spring-mass mechanical oscillator.

Solution: The state equations for this system are

[
ḞK

v̇m

]
=

[
0 K

−1/m 0

] [
FK

vm

]
+

[
0

1/m

]
Fs(t). (i)

With the values given the state equations become

[
ḞK

v̇m

]
=

[
0 100

−1 0

] [
FK

vm

]
+

[
0
1

]
Fs(t). (ii)

The characteristic equation det [λI−A] = 0 is

λ2 + 100 = 0 (iii)
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so that the eigenvalues are purely imaginary: λ1 = j10 and λ2 = −j10. A pair
of corresponding eigenvectors is found by substituting these values back into the
equation [λiI−A]mi = 0 and choosing an arbitrary scaling constant:

m1 =

[
1

0.1j

]
, m2 =

[
1

−0.1j
]
.

The modal matrix M and its inverse are

M =

[
1 1

0.1j −0.1j
]

M−1 =
1

−0.2j
[ −0.1j −1
−0.1j 1

]

and the state transition matrix is

Φ(t) =
1

−0.2j
[

1 1
0.1j −0.1j

] [
ej10t 0

0 e−j10t

] [ −0.1j −1
−0.1j 1

]

=




ej10t + e−j10t

2
10
ej10t − e−j10t

2j

−0.1e
j10t − e−j10t

2j

ej10t + e−j10t

2




=

[
cos(10t) 10 sin(10t)

−0.1 sin(10t) cos(10t)

]
. (iv)

The homogeneous response to arbitrary initial values of FK and vm is therefore

[
FK(t)
vm(t)

]
=

[
cos(10t) 10 sin(10t)

−0.1 sin(10t) cos(10t)

] [
FK(0)
vm(0)

]
(v)

and the individual state responses are

FK(t) = FK(0) cos(10t) + 10vm(0) sin(10t) (vi)

vm(t) = −0.1FK(0) sin(10t) + vm(0) cos(10t) (vii)

which are purely real responses, despite the imaginary system eigenvalues.

4.5 Systems with Repeated Eigenvalues

The method for deriving the state transition matrix presented in the previous section is
dependent on the existence of the inverse of the modal matrix M, that is M must be non-
singular. In general, if there are two or more eigenvalues with the same value, the eigenvectors
are not linearly independent, and M−1 does not exist. It is possible to extend the method
to handle repeated eigenvalues, as described in references on linear system theory.
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When there is a pair of repeated eigenvalues, instead of a linear combination of simple
exponential terms, the state response may have a pair of components eλit and teλit corre-
sponding to the two identical eigenvalues. This does not imply that the state transition
matrix Φ(t) does not exist for systems with repeated eigenvalues; it may be computed by
other methods. It may however lose the simple exponential form assumed throughout this
chapter. We do not discuss this case further in this introductory note, and readers are
referred to more advanced texts [1–5].

4.6 Stability of Linear Systems

In state-space terminology, a system is said to be asymptotically stable if the homogeneous
response of the state vector x(t) returns to the origin of the state-space x = 0 from any
arbitrary set of initial conditions x(0) as time t → ∞. This definition of stability is equivalent
to stating that the homogeneous response of all state variables must decay to zero in the
absence of any input to the system, or

lim
t→∞xi(t) = 0 (52)

for all i = 1, . . . , n. This condition may be rewritten in terms of the state transition matrix

lim
t→∞Φ(t)x(0) = 0 (53)

for any x(0). All of the elements of the state transition matrix are linear combinations of the
modal components eλit, therefore the stability of a system depends on all such components
decaying to zero with time. For real eigenvalues this requires that λi < 0, since any positive
eigenvalue generates a modal response that increases exponentially with time. If eigenvalues
appear in complex conjugate pairs λi,i+1 = σ± jω the state homogeneous response contains
components of the form eσt sin(ωt) or eσt cos(ωt). If σ > 0 these components grow expo-
nentially with time and the system is by definition unstable. The requirements for system
stability may be therefore summarized:

A linear system, described by state equations ẋ = AX + Bu, is asymptotically
stable if and only if all eigenvalues of the matrix A have negative real parts.

Three other separate conditions should be considered:

1. If one or more eigenvalues, or pair of conjugate eigenvalues, has a positive real part there
is at least one corresponding modal component that increases exponentially without
bound from any finite initial condition, violating the definition of stability.

2. Any pair of conjugate eigenvalues that are purely imaginary, λi,i+1 = ±jω with a real
part σ = 0, generate an undamped oscillatory component in the state response. The
magnitude of the homogeneous system response neither decays or grows, but continues
to oscillate for all time at a frequency ω. Such a system is defined to be marginally
stable.
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3. An eigenvalue with a value λ = 0 generates a modal component e0t that is a constant.
The system response neither decays nor grows, and again the system is defined to be
marginally stable.

Example 8

Discuss the stability of an inverted pendulum consisting of a mass m on the end
of a long light rod of length l which is mounted in a rotational bearing that
exhibits a viscous rotational drag, as shown in Fig. 2.

Figure 2: An inverted pendulum.

Solution: The system may be treated as a rotational system. The moment of
inertia J of the mass is J = ml2, and when the rod is displaced from the vertical,
gravity exerts a torque mgl sin θ about the bearing as shown. This system is
inherently non-linear because of the angular dependence of the torque, but it may
be linearized by using the small angle approximation sin θ ≈ θ for small θ. Then
the restoring torque after a displacement θ is −mglθ. This is the constitutive
relationship of an ideal T-type element, and allows the gravitational effect to be
modeled as a torsional spring with a negative spring constant K = −mgl. Let
the frictional drag about the bearing be represented by the damping coefficient
B. The linear graph for the system is shown in Fig. 2. Define the states to be the
torque in the spring TK and the angular velocity of the shaft Ω. The linearized
state equations for this homogeneous system are:

[
ṪK

Ω̇J

]
=

[
0 K

−1/J −B/J
] [

TK

ΩJ

]
. (i)

The characteristic equation is

det [λI−A] = det

[
λ −K
1/J λ+B/J

]
= 0 (ii)
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or

λ2 +
B

J
λ+

K

J
= 0

λ2 +
B

J
λ− g

R
= 0. (iii)

The quadratic equation may be used to determine the two eigenvalues

λ1,2 = − B

2J
± 1

2

√(
B

J

)2

+
4g

R
. (iv)

The following may be noted directly from Eq. (v).

1. The quantity under the radical is positive, therefore both eigenvalues are
real.

2.
1

2

√(
B

J

)2

+
4g

R
>

B

2J
(v)

so that there is always a positive eigenvalue.

We conclude, therefore, that the inverted pendulum is an unstable system and
in its linearized form will exhibit an exponential growth in angular displacement
from the vertical for any finite initial offset or angular velocity.

4.7 Transformation of State Variables

The choice of a set of state variables used to represent a system is not unique. In Chapter
operational methods to transfer between representations are discussed. It is possible to
define an infinite number of different representations by transforming the state vector by
linear operations. If a system is described by a state vector x, a new set of state variables x′

may be generated from any linearly independent combination of the original state variables
xi(t), for example:

x′
i(t) = pi1x1(t) + pi2x2(t) + · · ·+ pinxn(t) (54)

where the pij are constants. This linear transformation may be written in matrix form

x = Px′ (55)

where P is a non-singular n×n square matrix. (With this definition the elements pij in Eq.
(52) above are elements of P−1.) The state equations in the new state variables become

ẋ = Pẋ′ = APx′ +Bu (56)
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and pre-multiplying each side by the inverse of P, the new set of state equations gives

ẋ′ =
(
P−1AP

)
x′ +

(
P−1B

)
u. (57)

The output equation must be similarly transformed

y = (CP)x′ +Du. (58)

The system is now represented by modified A, B, and C matrices. The state variable
representation is an internal system representation that is made observable to the system
environment through the output equations. The input-output system dynamic behavior
should be independent of the internal system representation. For the transformed state
equations the characteristic equation is defined in terms of the transformed A matrix

det
[
λI−

(
P−1AP

)]
= 0. (59)

If the substitution I = P−1IP is made:

det
[
λP−1P−P−1AP

]
= 0 (60)

det
[
P−1 [λI−A]P

]
= 0. (61)

Since the determinant of a product is the product of the determinants, the characteristic
equation is

det
[
P−1

]
det [λI−A] det [P] = 0 (62)

and because P is not singular, det [P] �= 0 and det [P−1] �= 0, the transformed characteristic
equation is

det [λI−A] = 0 (63)

which is the same as that of the original state equations, leading to the following important
conclusion:

The characteristic equation, and hence the eigenvalues λi and the modal response
components eλit, are invariant under a linear transformation of the system state
variables. These quantities are properties of the system itself and are not affected
by the choice of state variables used to describe the system dynamics.

If a transformation of the state variable representation is made, it is necessary to similarly
transform any initial conditions to the new representation using

x′(0) = P−1x(0). (64)
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4.7.1 Transformation to Diagonal Form

A transformation that results in a diagonal form of the system matrix A can provide insight
into the internal structure of a system. Consider a system with distinct eigenvalues λ1, . . . , λn

and a modal matrixM, formed by adjoining columns of eigenvectors as described in Section
4.2. Let x′ be the transformed state vector, defined by x =Mx′, so that the new set of state
and output equations are

ẋ′ =
(
M−1AM

)
x′ +

(
M−1B

)
u (65)

y = (CM)x′ +Du. (66)

The new system matrix is (M−1AM). As in Eq. (35), the product AM may be written in
terms of the eigenvalues and eigenvectors

AM =
[
Am1 Am2 . . . Amn

]
=

[
λ1m1 λ2m2 . . . λnmn

]
(67)

because Ami = λimi is the relationship that defined the eigenvalue λi. Equation (65) can
be rearranged and written

AM =
[
m1 m2 . . . mn

]


λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...
0 0 . . . λn




= MΛ (68)

where Λ is the diagonal n×n square matrix containing the system eigenvalues on the leading
diagonal

Λ =



λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...
0 0 . . . λn


 . (69)

If both sides of Eq. (66) are pre-multiplied by M−1

M−1AM =M−1MΛ = Λ, (70)

the transformed state equations are

ẋ′ = Λx′ +B′u. (71)

where B′ = (M−1B). Equation (69) represents a set of n uncoupled first-order differential
equations, each of which may be written

ẋi = λixi +
r∑

j=1

b′ijuj (72)
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and does not involve any cross coupling from other states. The homogeneous state equations
ẋ′ = Λx′ are simply

ẋi = λixi. (73)

The state transition matrix for the diagonal system is Φ(t) = eΛt as given by Eq. (45)

Φ(t) =



eλ1t 0 . . . 0
0 eλ2t . . . 0
...

...
. . .

...
0 0 . . . eλnt


 (74)

and the homogeneous response xh(t) = Φ(t)x(0) has the simple uncoupled form

xi(t) = xi(0)e
λit (75)

for each state variable.
Systems with repeated eigenvalues may not be reducible to a diagonal form, but may be

represented in a closely related form, known as the Jordan form [1–5].

Example 9

Transform the system

[
ẋ1

ẋ2

]
=

[ −2 1
2 −3

] [
x1

x2

]
+

[
0
1

]
u(t)

to diagonal form and find the homogeneous response to an arbitrary set of initial
conditions.

Solution: The A matrix in this example is the same as that examined in
Examples 2, and 3 that is

A =

[ −2 1
2 −3

]
.

In the previous examples it was shown that for this system the eigenvalues are
λ1 = −1, and λ2 = −4, and that a suitable modal matrix and its inverse are

M =

[
1 1
1 −2

]
, M−1 =

1

3

[
2 1
1 −1

]
.

The transformed state variables are

x′ =M−1x =
1

3

[
2 1
1 −1

]
x (i)
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or

x′
1(t) =

2

3
x1(t) +

1

3
x2(t) (ii)

x′
2(t) =

1

3
x1(t)− 1

3
x2(t). (iii)

The transformed state equations are

ẋ =
(
M−1AM

)
x+

(
M−1B

)
u (iv)

or[
ẋ1

′

ẋ2
′

]
=

1

3

[
2 1
1 −1

] [ −2 1
2 −3

] [
1 1
1 −2

] [
x′

1

x′
2

]
+
1

3

[
2 1
1 −1

] [
0
1

]
u(t)

=

[ −1 0
0 −4

] [
x′

1

x′
2

]
+

[
1/3

−1/3
]
u(t) (v)

which is clearly diagonal in form with the eigenvalues on the leading diagonal of
the transformed A matrix. The state transition matrix is found by placing the
modal components on the diagonal:

Φ(t) = eΛt =

[
e−t 0
0 e−4t

]
(vi)

and the homogeneous state response in the transformed system representation is
x′

h(t) = Φ(t)x′(0):

x′
1(t) = x′

1(0)e
−t (vii)

x′
2(t) = x′

2(0)e
−4t (viii)

where the transformed initial states are found from Eqs. (ii) and (iii):

x′
1(0) =

2

3
x1(0) +

1

3
x2(0) (ix)

x′
2(0) =

1

3
x1(0)− 1

3
x2(0). (x)

5 The Response of Linear Systems to the Singularity

Input Functions

The singularity input functions (the impulse, step, and ramp functions) are commonly used
to characterize the transient response characteristics of linear time-invariant systems. The
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forced system response, given by Eqs. (18) and (19) is

x(t) = eAtx(0) + eAt
∫ t

0
e−AτBu(τ)dτ (76)

x(t) = eAtx(0) +
∫ t

0
eA(t−τ)Bu(τ)dτ, (77)

and may be used to derive simple expressions for the response of linear time-invariant systems
to the individual singularity functions.

5.1 The Impulse Response

Assume that the input vector u(t) is a weighted series of impulse functions δ(t) applied to
the r system inputs:

u(t) = Kδ(t) =



k1

k2
...
kr


 δ(t). (78)

The vectorK is used to distribute impulses among the r inputs. For example, if the response
to a single impulse on the jth input is required, then ki = 0 for all k �= j, and kj = 1. The
state vector impulse response is found by substituting u(t) = Kδ(t) into Eq. (19):

x(t) = eAtx(0) +
∫ t

0
eA(t−τ)BKδ(τ)dτ. (79)

The sifting, or sampling, property of the delta function states that for any finite value of ∆

∫ 0+∆

0−∆
f(t)δ(t)dt = f(0),

which allows Eq. (79) to be simplified

x(t) = eAtx(0) + eAtBK

= eAt (x(0) +BK) . (80)

The effect of impulsive inputs on the state response is similar to a set of initial conditions; the
response for t > 0 is defined entirely by the state transition matrix. For an asymptotically
stable linear system the impulse response decays to zero as time t → ∞. The system output
equations may be used to find the impulse response of any output variable

y(t) = CeAt (x(0) +BK) +DKδ(t) (81)

which shows a direct feed-through of the impulses for any system in which D �= 0.
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Example 10

The electrical filter shown in Fig. 3 is installed in the power line of a computer in
a factory environment to reduce the possibility of damage caused by impulsive
voltage spikes created by other equipment. Measurements have shown that the
transients are approximately 100 volts in amplitude and have a typical duration
of 10 µsecs. The values of the filter components are L1 = 10mH, L2 = 10mH,
and C = 1µfd. The load resistance is 50 ohms. Find the effect of the filter on

Figure 3: A third-order electrical filter, (b) its linear graph, and (c) a typical voltage pulse
at its input.

the voltage spikes.

Solution: The system output is the voltage vR. The system has state variables
iL1 , iL1 , and vC . The state and output equations are:




˙iL1

˙iL2

v̇C


 =


 0 0 −1/L1

0 −R/L2 1/L2

1/C −1/C 0





 iL1

iL2

vC


 +


 1/L1

0
0


Vs(t) (i)

vR =
[
0 R 0

] 
 iL1

iL2

vC


 , (ii)

and the input is modeled as an impulse of strength 100 × 10−5 = 10−3 volt-sec,
that is Vs(t) = 10−3δ(t), as determined from the area under the typical voltage
spike shown in Fig. 3c.

If the values of the system parameters are substituted into the matrices, they
become:

A =




0 0 −100
0 −5, 000 100

1, 000, 000 −1, 000, 000 0


 , B =



100
0
0


 ,

C =
[
0 50 0

]
, and K = [0.001] .

26



From Eq. (81) the output impulse response is :

y(t) = CeAtBK (iii)

= (CM) eΛt
(
M−1BK

)
, (iv)

using Eq. (49). A linear algebra software package is used to find the system
eigenvalues:

λ1 = −1210 + 13867j, λ2 = −1210− 13867j, λ1 = −2581,

and the modal matrix and its inverse:

M =


 0.0006 + 0.0072j 0.0006− 0.0072j 0.0388
0.0018− 0.0067j 0.0018 + 0.0067j 0.0413

1 1 1




M−1 =


 −6.2301− 36.673j −6.6450 + 35.4j 0.5161− 0.042j
−6.2301 + 36.673j −6.6450− 35.4j 0.5161 + 0.042j

12.4603 13.2900 −0.0322


 .

The matrices M−1BK and CM are

M−1BK =


 −0.6230− 3.667j
−0.6230 + 3.667j

0.1246


 ,

CM =
[
0.0917− 0.3355j 0.0917 + 0.3355j 2.0666

]

so that the solution is:

vR(t) = CM


 e(−1210+13867j)t 0 0

0 e(−1210+13867j)t 0
0 0 e−2581t


M−1BK (v)

= 2.575e−2581t + (−1.2875− 0.1273j) e(−1210+13867j)t

+ (−1.2875 + 0.1273j) e(−1210−13867j)t (vi)

= 2.575e−2581t

+ e−1210t (−2.575 cos(13867t) + 0.2546 sin(13867t)) . (vii)

The impulse response is plotted in Fig. 4. The maximum voltage reached is
approximately 3 volts; a significant reduction from the input amplitude of 100
volts.
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Figure 4: Response of the filter to an impulsive input of 100 volts amplitude and 10−5 seconds
duration.

5.2 The Step Response

Assume that the input vector is a weighted series of unit step functions us(t) applied to the
r inputs, that is

u(t) = Kus(t) =



k1

k2
...
kr


us(t). (82)

The vector K is used to distribute the step among the r inputs, and if the response to a
unit step on a single input channel is desired, for example the jth input, then ki = 0 for all
k �= j, and kj = 1. The state step response is found by substituting u(t) = Kus(t) into Eq.
(19):

x(t) = eAtx(0) +
∫ t

0
eA(t−τ)BKus(τ)dτ (83)

and because us(t) = 1 for all t > 0, the integral may be rewritten

x(t) = eAtx(0) +
∫ t

0
eA(t−τ)BKdτ

= eAtx(0) + eAt
[∫ t

0
e−Aτdτ

]
BK (84)

where the order of the matrices must be preserved. If A−1 exists the element by element
integration of the matrix exponential may be found using the integration property described
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in Table 1

x(t) = eAtx(0) + eAtA−1
[
I− e−At

]
BK

= eAtx(0) +A−1
[
eAt − I

]
BK. (85)

since AeAt = eAtA, which may be shown directly from the series definition. The output
response is

y(t) = Cx+Du

= CeAtx(0) +CA−1
[
eAt − I

]
BK+DKus(t). (86)

If A is non-singular, that is if A does not have an eigenvalue λi = 0, then the step
response reaches a steady-state constant value xss as t → ∞ and

xss = lim
t→∞x(t) = lim

t→∞

[
eAtx(0) +A−1

[
eAt − I

]
BK

]
= −A−1BK (87)

because limt→∞
[
eAt

]
= 0. The steady-state output response is

yss =
[
−CA−1B+D

]
K. (88)

The steady-state response may be confirmed directly from the state equations. When steady-
state is reached, all derivatives of the state variables are, by definition, identically zero:

0 = Axss +BK (89)

giving the same result, xss = −A−1BK.

Example 11

The hydraulic system shown in Fig. 5 is driven by a constant pressure pump. At
time t = 0 the tank is empty and the pump is turned on at a constant pressure
of 10 N/m2. Find an expression for the flow in the inlet pipe for t > 0.

Solution: The system is modeled as shown. Lumped fluid inertance I and resis-
tance R1 elements are used to account for pressure drops in the pipe. The tank
is modeled as a fluid capacitance C, and the outlet valve is modeled as a linear
fluid resistance. The following values are assumed: I = 0.25 N-sec2/m5, R1 = 1
N-sec/m5, R2 = 1 N-sec/m5, and C = 1 m5/N. The system state equations and
the output equation for the inlet flow are:[

ṖC

Q̇I

]
=

[ −1/R2C 1/C
−1/I −R1/I

] [
PC

QI

]
+

[
0
1/I

]
Pin(t) (i)

QI =
[
0 1

] [
PC

QI

]
. (ii)
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Figure 5: A hydraulic system (a), and (b) its linear graph.

With the values given

A =

[ −1 1
−4 −4

]
, B =

[
0
4

]
, C =

[
0 1

]

The step response with zero initial conditions is

y(t) = CA−1
[
eAt − I

]
BK

=
(
CA−1M

)
eΛt

(
M−1BK

)
−CA−1BK. (iii)

The system eigenvalues are λ1 = −2.5 + 1.323j, and λ2 = −2.5 − 1.323j. The
input weighting matrix K = [10], and

M =

[ −0.375− 0.331j −0.375 + 0.331j
1 1

]
,

M−1 =

[
1.512j 0.5 + 0.567j

−1.512j 0.5− 0.567j

]
, A−1 =

[ −0.5 −0.125
0.5 −0.125

]
.

The following matrices are computed:

CA−1M =
[
−0.3125− 0.1654j −0.3125 + 0.1654j

]
,

M−1BK =

[ −20 + 22.678j
−20− 22.678j

]
,

CA−1BK =
[
−5.0

]
,

and used in the solution:

QI(t) =
[
−0.3125− 0.1654j −0.3125 + 0.1654j

]
(iv)[

e(−2.5+1.3223j)t 0
0 e(−2.5−1.3223j)t

] [ −20 + 22.678j
−20− 22.678j

]
+ 5.0 (v)

= 5.0 + e−2.5t (−5 cos (1.323t) + 20.8 sin (1.323t)) . (vi)
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which is plotted in Fig. 6.

Figure 6: Response of the hydraulic system to a 10N/m2 step in pump pressure.

5.3 The Ramp Response

If the input vector is a weighted series of unit ramp functions distributed among the r inputs,
that is

u(t) = Kt =



k1

k2
...
kr


 t. (90)

The ramp response may be found without solving the full response equation Eq. (19) by the
use of the integration property of linear systems described in Chapter , namely that if the
response to an input u(t) is y(t), the forced response to an input

∫ t
0 u(t)dt is

∫ t
0 y(t)dt. The

ramp function t is the integral of the unit step, therefore the forced component of the ramp
response is simply the integral of the forced component of the step response:

x(t) = eAtx(0) +
∫ t

0
A−1

[
eAτ − I

]
BKdτ

= eAtx(0) +A−1
[
A−1

[
eAt − I

]
− It

]
BK. (91)

The output ramp response is found by substituting into the output equations:

y(t) = CeAtx(0) +CA−1
[
A−1

[
eAt − I

]
− It

]
BK+DKt. (92)

31



Example 12

Find the ramp response of a first-order system written in the standard form

τ
dx

dt
+ x = u(t)

where τ is the system time constant.

Solution: In state space form the first-order system is

ẋ = −1

τ
x+

1

τ
u (i)

The first-order ramp response (Eq. (91)) reduces to

x(t) = eatx(0) + a−1
[
a−1

[
eat − 1

]
− t

]
b, (ii)

where in this case a = −1/τ and b = 1/τ . Substitution of these values gives

x(t) = e−t/τx(0) + t− τ
(
1− e−t/τ

)
(iii)

which, if the initial condition x(0) = 0, is identical to the result given in Section
.2.
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