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SIAM REVIEW ?) Society for Industrial and Applied Mathematics 
Vol. 20, No. 4, October 1978 0036-1445/78/2004-0031$01.00/0 

NINETEEN DUBIOUS WAYS TO COMPUTE 
THE EXPONENTIAL OF A MATRIX* 

CLEVE MOLERt AND CHARLES VAN LOANt 

Abstract. In principle, the exponential of a matrix could be computed in many ways. Methods involving 
approximation theory, differential equations, the matrix eigenvalues, and the matrix characteristic poly- 
nomial have been proposed. In practice, consideration of computational stability and efficiency indicates 
that some of the methods are preferable to others, but that none are completely satisfactory. 

1. Introduction. Mathematical models of many physical, biological, and 
economic processes involve systems of linear, constant coefficient ordinary differential 
equations 

x (t) = Ax (t). 

Here A is a given, fixed, real or complex n-by-n matrix. A solution vector x(t) is 
sought which satisfies an initial condition 

x (O) = xo. 

In control theory, A is known as the state companion matrix and x(t) is the system 
response. 

In principle, the solution is given by x(t) = etAxo where etA can be formally 
defined by the convergent power series 

t2A2 tA tA e =I+IA+ ~+. 2! 

The effective computation of this matrix function is the main topic of this survey. 
We will primarily be concerned with matrices whose order n is less than a few 

hundred, so that all the elements can be stored in the main memory of a contemporary 
computer. Our discussion will be less germane to the type of large, sparse matrices 
which occur in the method of lines for partial differential equations. 

Dozens of methods for computing e tAcan be obtained from more or less classical 
results in analysis, approximation theory, and matrix theory. Some of the methods 
have been proposed as specific algorithms, while others are based on less constructive 
characterizations. Our bibliography concentrates on recent papers with strong 
algorithmic content, although we have included a fair number of references which 
possess historical or theoretical interest. 

In this survey we try to describe all the methods that appear to be practical, 
classify them into five broad categories, and assess their relative effectiveness. Actu- 
ally, each of the "methods" when completely implemented might lead to many 
different computer programs which differ in various details. Moreover, these details 
might have more influence on the actual performance than our gross assessment 
indicates. Thus, our comments may not directly apply to particular subroutines. 

In assessing the effectiveness of various algorithms we will be concerned with the 
following attributes, listed in decreasing order of importance: generality, reliability, 
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802 CLEVE MOLER AND CHARLES VAN LOAN 

stability, accuracy, efficiency, storage requirements, ease of use, and simplicity. We 
would consider an algorithm completely satisfactory if it could be used as the basis for 
a general purpose subroutine which meets the standards of quality software now 
available for linear algebraic equations, matrix eigenvalues, and initial value problems 
for nonlinear ordinary differential equations. By these standards, none of the 
algorithms we know of are completely satisfactory, although some are much better 
than others. 

Generality means that the method is applicable to wide classes of matrices. For 
example, a method which works only on matrices with distinct eigenvalues will not be 
highly regarded. 

When defining terms like reliability, stability and accuracy, it is important to 
distinguish between the inherent sensitivity of the underlying problem and the error 
properties of a particular algorithm for solving that problem. Trying to find the inverse 
of a nearly singular matrix, for example, is an inherently sensitive problem. Such 
problems-are said to be poorly posed or badly conditioned. No algorithm working with 
finite precision arithmetic can be expected to obtain a computed inverse that is not 
contaminated by large errors. 

An algorithm is said to be reliable if it gives some warning whenever it introduces 
excessive errors. For example, Gaussian elimination without some form of pivoting is 
an unreliable algorithm for inverting a matrix. Roundoff errors can be magnified by 
large multipliers to the point where they can make the computed result completely 
erroneous, but there is no indication of the difficulty. 

An algorithm is stable if it does not introduce any more sensitivity to perturbation 
than is inherent in the underlying problem. A stable algorithm produces an answer 
which is exact for a problem close to the given one. A method can be stable and still 
not produce accurate results if small changes in the data cause large changes in the 
answer. A method can be unstable and still be reliable if the instability can be 
detected. For example, Gaussian elimination with either partial or complete pivoting 
must be regarded as a mildly unstable algorithm because there is a possibility that the 
matrix elements will grow during the elimination and the resulting roundoff errors will 
not be small when compared with the original data. In practice, however, such growth 
is rare and can be detected. 

The accuracy of an algorithm refers primarily to the error introduced by truncat- 
ing infinite series or terminating iterations. It is one component, but not the only 
component, of the accuracy of the computed answer. Often, using more computer 
time will increase accuracy provided the method is stable. For example, the accuracy 
of an iterative method for solving a system of equations can be controlled by changing 
the number of iterations. 

Efficiency is measured by the amount of computer timne required to solve a 
particular problem. There are several problems to distinguish. For example, comput- 
ing only eA is different from computing eA for several values of t. Methods which use 
some decomposition of A (independent of t) might be more efficient for the second 
problem. Other methods may be more efficient for computing eAx0 for one or several 
values of t. We are primarily concerned with the order of magnitude of the work 
involved. In matrix eigenvalue computation, for example, a method which required 
0(n4) time would be considered grossly inefficient because the usual methods require 
only 0(n3). 

In estimating the time required by matrix computations it is traditional to esti- 
mate the number of multiplications and then employ some factor to account for the 
other operations. We suggest making this slightly more precise by defining a basic 
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THE EXPONENTIAL OF A MATRIX 803 

floating point operation, or "flop", to be the time required for a particular computer 
system to execute the FORTRAN statement 

A(I, J) = A(I, J) + T*A(I, K). 

This involves one floating point multiplication, one floating point addition, a few 
subscript and index calculations, and a few storage references. We can then say, for 
example, that Gaussian elimination requires n3/3 flops to solve an n-by-n linear 
system Ax = b. 

The eigenvalues of A play a fundamental role in the study of etA even though 
they may not be involved in a specific algorithm. For example, if all the eigenvalues lie 
in the open left half plane, then etA -*0 as t -->c0. This property is often called 
"stability" but we will reserve the use of this term for describing numerical properties 
of algorithms. 

Several particular classes of matrices lead to special algorithms. If A is symmetric, 
then methods based on eigenvalue decompositions are particularly effective. If the 
original problem involves a single, nth order differential equation which has been 
rewritten as a system of first order equations in the standard way, then A is a 
companion matrix and other special algorithms are appropriate. 

The inherent difficulty of finding effective algorithms for the matrix exponential is 
based in part on the following dilemma. Attempts to exploit the special properties of 
the differential equation lead naturally to the eigenvalues Ai and eigenvectors vi of A 
and to the representation 

n 

x(t)= aie ivi. 
i=l1 

However, it is not always possible to express x (t) in this way. If there are confluent 
eigenvalues, then the coefficients ai in the linear combination may have to be poly- 
nomials in t. In practical computation with inexact data and inexact arithmetic, the 
gray area where the eigenvalues are nearly confluent leads to loss of accuracy. On the 
other hand, algorithms which avoid use of the eigenvalues tend to require consider- 
ably more computer time for any particular problem. They may also be adversely 
effected by roundoff error in problems where the matrix tA has large elements. 

These difficulties can be illustrated by a simple 2-by-2 example, 

A a] 

The exponential of this matrix is 

Ae At-e t 
tA= 

e a 
j 

Of course, when A =,u, this representation must be replaced by 

etA =[e at et ] 

There is no serious difficulty when A and ,u are exactly equal, or even when their 
difference can be considered negligible. The degeneracy can be detected and the 
resulting special form of the solution invoked. The difficulty comes when A - ,u is small 
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804 CLEVE MOLER AND CHARLES VAN LOAN 

but not negligible. Then, if the divided difference 

eAt _et 

A -/i 

is computed in the most obvious way, a result with a large relative error is produced. 
When multiplied by a, the final computed answer may be very inaccurate. Of course, 
for this example, the formula for the off-diagonal element can be written in other ways 
which are more stable. However, when the same type of difficulty occurs in nontrian- 
gular problems, or in problems that are larger than 2-by-2, its detection and cure is by 
no means easy. 

The example also illustrates another property of etA which must be faced by any 
successful algorithm. As t increases, the elements of etA may grow before they decay. 
If A and gu are both negative and a is fairly large, the graph in Fig. 1 is typical. 

letAll 

I I Ft 

s/m s 

FIG. 1. The "hump". 

Several algorithms make direct or indirect use of the identity 

esA = (esA/m)m 

The difficulty occurs when s/m is under the hump but s is beyond it, for then 

esAK ~eA/m m. lie II << Iles || 

Unfortunately, the roundoff errors in the mth power of a matrix, say Bm, are usually 
small relative to JIBIIm rather than JIB'11. Consequently, any algorithm which tries to 
pass over the hump by repeated multiplications is in difficulty. 

Finally, the example illustrates the special nature of symmetric matrices. A is 
symmetric if and only if a = 0, and then the difficulties with multiple eigenvalues and 
the hump both disappear. We will find later that multiple eigenvalue and hump 
problems do not exist when A is a normal matrix. 

It is convenient to review some conventions and definitions at this time. Unless 
otherwise stated, all matrices are n-by-n. If A = (ai1) we have the notions of transpose, 
AT_= _)A A 
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THE EXPONENTIAL OF A MATRIX 805 

an important role to play: 

A symmetric<- A T =A, 
A Hermitian* A*=A, 
A normal*-*A*A = AA*, 
0 orthogonal- >QTQ = I, 
Q unitary -*- Q*Q = I, 
T triangular *-tii =0, i >1, 
D diagonal*-* di =O, i #j. 

Because of the convenience of unitary invariance, we shall work exclusively with 
the 2-norm: 

n 11/2 

111 [II I ii 2 , 11 = max IIlA 11 . 

However, all our results apply with minor modification when other norms are used. 
The condition of an invertible matrix A is denoted by cond (A) where 

cond (A) = IJAII IIA-111. 

Should A be singular, we adopt the convention that it has infinite condition. The 
commutator of two matrices B and C is [B, C] = BC - CB. 

Two matrix decompositions are of importance. The Schur decomposition states 
that for any matrix A, there exists a unitary Q and a triangular T, such that 

Q*AQ= T. 

If T = (tij), then the eigenvalues of A are t11, ... , tnn. 
The Jordan canonical form decomposition states that there exists an invertible P 

such that 

P-1AP = J. 

where J is a direct sum, J = J, *) * *fJk, of Jordan blocks 

Ai 1 0 ... - 

L Ai 1 ... v 

Ji =. .. (mi-by-mi). 

"O O O ... A'j 
The Ai are eigenvalues of A. If any of the mi are greater than 1, A is said to be 
defective. This means that A does not have a full set of n linearly independent 
eigenvectors. A is derogatory if there is more than one Jordan block associated with a 
given eigenvalue. 

2. The sensitivity of the problem. It is important to know how sensitive a quantity 
is before its computation is attempted. For the problem under consideration we are 
interested in the relative perturbation 

lie t(A+E) e tAll 

In the following three theorems we summarize some upper bounds for +$ (t) which are 
derived in Van Loan [32]. 
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806 CLEVE MOLER AND CHARLES VAN LOAN 

THEOREM 1. If a (A) = max {Re (A)IA an eigenvalue of A} and ,u (A) = max {,u I ,t 
an eigenvalue of (A* + A)/2}, then 

q$(t) ' tIlEll exp [,u (A) - a (A) + IIEII]t (t 0 O). 

The scalar ,u(A) is the "log norm" of A (associated with the 2-norm) and has many 
interesting properties [35]-[42 ). In particular, , (A) ' a (A). 

THEOREM 2. If A = PJP- is the Jordan decomposition of A and m is the dimen- 
sion of the largest Jordan block in J, then 

(t) '- t|| E I IMJ (t)2e MJ(tEj (t '- 0), 

where 

M(t) = m cond (P) max t'/j!. 
O~ -m-1 

THEOREM 3. If A = Q(D + N)Q* is the Schur decomposition of A with D diagonal 
and N strictly upper triangular (n.. = 0 i ' j), then 

(t) '- t|| E|| Ms (t)2e MS(tEj (t '- 0), 

where 
n-1 

Ms (t) = E (I INI It)kIk !. 
k=O 

As a corollary to any of these theorems one can show that if A is normal, then 

q$(t) ? tlEll eUEt. 

This shows that the perturbation bounds on +(t) for normal matrices are as small as 
can be expected. Furthermore, when A is normal, IIesAI = lieSA/mIIm for all positive 
integers m implying that the "hump" phenomenon does not exist. These observations 
lead us to conclude that the eA problem is "well conditioned" when A is normal. 

It is rather more difficult to characterize those A for which etA is very sensitive to 
changes in A. The bound in Theorem 2 suggests that this might be the case when A 
has a poorly conditioned eigensystem as measured by cond (P). This is related to a 
large Ms(t) in Theorem 3 or a positive ,u (A)-a(A) in Theorem 1. It is unclear what 
the precise connection is between these situations and the hump phenomena we 
described in the Introduction. 

Some progress can be made in understanding the sensitivity of etA by defining the 
"matrix exponential condition number" v(A, t): 

v(A, t)m= max J e(ts)A EesA ds|| tAll IIEII= 1 oi 

A discussion of v(A, t) can be found in [32]. One can show that there exists a 
perturbation E such that 

+t-IEIII v(A, t). 

This indicates that if v(A, t) is large, small changes in A can induce relatively large 
changes in etA. It is easy to verify that 
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THE EXPONENTIAL OF A MATRIX 807 

with equality if and only if A is normal. When A is not normal, V(A, t) can grow like a 
high degree polynomial in t. 

3. Series methods. The common theme of what we call series methods is the 
direct application to matrices of standard approximation techniques for the scalar 
function et. In these methods, neither the order of the matrix nor its eigenvalues play a 
direct role in the actual computations. 

METHOD 1. TAYLOR SERIES. The definition 
A2 e =I+A+A /2!+. 

is, of course, the basis for an algorithm. If we momentarily ignore efficiency, we can 
simply sum the series until adding another term does not alter the numbers stored in 
the computer. That is, if 

k 

Tk(A)= E AZlj! 
j=0 

and fl [Tk(A)] is the matrix of floating point numbers obtained by computing Tk(A) in 
floating point arithmetic, then we find K so that fl [TK(A)] = fl [TK+1(A)]. We then 

A take TK(A) as our approximation to e 
Such an algorithm is known to be unsatisfactory even in the scalar case [4] and 

our main reason for mentioning it is to set a clear lower bound on possible per- 
formance. To illustrate the most serious shortcoming, we implemented this algorithm 
on the IBM 370 using "short" arithmetic, which corresponds to a relative accuracy of 
16-5 = 0.95 10-6. We input 

~-49 24- 
A=[-64 31 

and obtained the output 

A [-22.25880 -1.432766 
_-61.49931 -3.4742801 

A total of K = 59 terms were required to obtain convergence. There are several ways 
of obtaining the correct eA for this example. The simplest is to be told how the 
example was constructed in the first place. We have 

A 2 4] 0 -17][2 4] 

and so 

[2 4] 0 e 17] [2 4] 

which, to 6 decimal places is, 

A [r0.735759 0.551819 
_-1.471518 1.103638] 

The computed approximation even has the wrong sign in two components. 
Of course, this example was constructed to make the method look bad. But it is 

important to understand the source of the error. By looking at intermediate results in 
the calculation we find that the two matrices A16/16! and A17/17! have elements 
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808 CLEVE MOLER AND CHARLES VAN LOAN 

between 106 and 107 in magnitude but of opposite signs. Because we are using a 
relative accuracy of only 10-5, the elements of these intermediate results have 
absolute errors larger than the final result. So, we have an extreme example of 
"catastrophic cancellation" in floating point arithmetic. It should be emphasized that 
the difficulty is not the truncation of the series, but the truncation of the arithmetic. If 
we had used "long" arithmetic which does not require significantly more time but 
which involves 16 digits of accuracy, then we would have obtained a result accurate to 
about nine decimal places. 

Concern over where to truncate the series is important if efficiency is being 
considered. The example above required 59 terms giving Method 1 low marks in this 
connection. Among several papers concerning the truncation error of Taylor series, 
the paper by Liou [52] is frequently cited. If 8 is some prescribed error tolerance, Liou 
suggests choosing K large enough so that 

Al (I lAlK?1 1 
- e (K + 1)! 1 - IjAII/(K + 2)) 

Moreover, when etA is desired for several different values of t, say t = 1,.* ,m, he 
suggests an error checking procedure which involves choosing L from the same 
inequality with A replaced by mA and then comparing [TK(A)]mxo with TL(mA)xo. 
In related papers Everling [50] has sharpened the truncation error bound imple- 
mented by Liou, and Bickhart [46] has considered relative instead of absolute error. 
Unfortunately, all these approaches ignore the effects of roundoff error and so must 
fail in actual computation with certain matrices. 

METHOD 2. PADE APPROXIMATION. The (p, q) Pade approximation to e A.is 
defined by 

Rpq(A) = [Dpq(A)]-Npq(A), 
where 

Npq(A) E (= p-I A! 
i=o (p +q)!j!(p -) 

and 

Dpq(A) Z ( pq-/)!q )(-A)'. 

Nonsingularity of Dpq(A) is assured if p and q are large enough or if the eigenvalues of 
A are negative. Zakian [76] and Wragg and Davies [75] consider the advantages of 
various representations of these rational approximations (e.g. partial fraction, 
continued fraction) as well as the choice of p and q to obtain prescribed accuracy. 

Again, roundoff error makes Pade approximations unreliable. For large q, 
Dqq(A) approaches the series for e-A/2 whereas Nqq(A) tends to the series for eA/2. 

Hence, cancellation error can prevent the accurate determination of these matrices. 
Similar comments apply to general (p, q) approximants. In addition to the cancellation 
problem, the denominator matrix Dpq(A) may be very poorly conditioned with respect 
to inversion. This is particularly true when A has widely spread eigenvalues. To see 
this again consider the (q, q) Pade approximants. It is not hard to show that for large 
enough q, we have 

cond [Dqq(A)] - cond (e-A/2) e (al-a)/2 

where a1 ' ' a_ are the real parts of the eigenvalues of A. 
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THE EXPONENTIAL OF A MATRIX 809 

When the diagonal Pade approximants Rqq(A) were computed for the same 
example used with the Taylor series and with the same single precision arithmetic, it 
was found that the most accurate was good to only three decimal places. This occurred 
with q = 10 and cond [Dqq(A)] was greater than 104. All other values of q gave less 
accurate results. 

Pade approximants can be used if IjAII is not too large. In this case, there are 
several reasons why the diagonal approximants (p = q) are preferred over the off 
diagonal approximants (p ? q). Suppose p < q. About qn3 flops are required to evalu- 
ate Rpq (A), an approximation which has order p + q. However, the same amount of 
work is needed to compute Rqq (A) and this approximation has order 2q > p + q. A 
similar argument can be applied to the superdiagonal approximants (p > q). 

There are other reasons for favoring the diagonal Pade approximants. If all the 
eigenvalues of A are in the left half plane, then the computed approximants with p > q 
tend to have larger rounding errors due to cancellation while the computed approxi- 
mants with p <q tend to have larger rounding errors due to badly conditioned 
denominator matrices Dpq(A). 

There are certain applications where the determination of p and q is based on the 
behavior of 

lim Rpq (tA). 

If all the eigenvalues of A are in the open left half plane, then etA - 0 as t -0 x and the 
same is true for Rpq (tA) when q > p. On the other hand, the Pade approximants with 
q <p, including q =0, which is the Taylor series, are unbounded for large t. The 
diagonal approximants are bounded as t -* cc. 

METHOD 3. SCALING AND SQUARING. The roundoff error difficulties and the 
computing costs of the Taylor and Pade approximants increases as tIlAll increases, or 
as the spread of the eigenvalues of A increases. Both of these difficulties can be 
controlled by exploiting a fundamental property unique to the exponential function: 

eA = (eA/mr) 

The idea is to choose m to be a power of two for which eA/m can be reliably and 
efficiently computed, and then to form the matrix (eA/mr)m by repeated squaring. One 
commonly used criterion for choosing m is to make it the smallest power of two for 
which {IAII/m 1. With this restriction, eA/m can be satisfactorily computed by either 
Taylor or Pade approximants. When properly implemented, the resulting algorithm is 
one of the most effective we know. 

This approach has been suggested by many authors and we will not try to 
attribute it to any one of them. Among those who have provided some error analysis 
or suggested some refinements are Ward [72], Kammler [97], Kallstrom [116], 
Scraton [67], and Shah [56], [57]. 

If the exponential of the scaled matrix eA/2' is to be approximated by Rqq(A/21), 
then we have two parameters, q and j, to choose. In Appendix 1 we show that if 
||A || =' 2'' 1 then 

[Rqq(A/2 i)]2 = e A+E 

where 

IF C 8IjAjI] 2q( (q !)2 A 

IAK [2J \(2q)!(2q + 1)!Y 
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810 CLEVE MOLER AND CHARLES VAN LOAN 

This "inverse error analysis" can be used to determine q and j in a number of ways. 
For example, if E is any error tolerance, we can choose among the many (q, j) pairs for 
which the above inequality implies 

IIEIK C IIAIKI 
Since [Rqq(A/2l)]2 requires about (q +j+3)n3 flops to evaluate, it is sensible to 
choose the pair for which q +j is minimum. The table below specifies these "opti- 
mum" pairs for various values of ? and hJAil. By way of comparison, we have included 
the corresponding optimum (k, j) pairs associated with the approximant [Tk(A/2')]2. 
These pairs were determined from Corollary 1 in Appendix 1, and from the fact that 
about (k +j - 1)n3 flops are required to evaluate [Tk(A/2j)]2j. 

TABLE 1 
Optimum scaling and squaring parameters with diagonal Pade and Taylor series 

approximation. 

\o-3 o-6 l-9 o- 12 
- 15 

10-2 (1, 0) (1, 0) (2, 0) (3, 0) (3, 0) 
(1,0) (2,1) (3,1) (4,1) (5,1) 

10-1 (1, 0) (2, 0) (3, 0) (4, 0) (4, 0) 
(3, 0) (4, 0) (4, 2) (4, 4) (5, 4) 

100 (2, 1) (3: 1) (4,1) (5, 1) (6, 1) 
(5, 1) (7, 1) (6, 3) (8, 3) (7, 5) 

102 (2, 5) (3, 5) (4, 5) (5, 5) (6,5) 
(4, 5) (6, 5) (8, 5) (7, 7) (9, 7) 

102 (2, 8) (3, 8) (4, 8) (5, 8) (6, 8) 
(4, 8) (5, 9) (7, 9) (9, 9) (10, 10) 

10 3 (2, 11) (3, 11) (4,11) (5, 11) (6,11) 
(5, 11) (7,11) (6,13) (8,13) (8,14) 

To read the table, for a given E and IIAII the top ordered pair gives the optimum (q, j) 
associated with [Rqq(A/2j)]2' while the bottom ordered pair specifies the most efficient 
choice of (k, j) associated with [Tk(A/2j)]21. 

On the basis of the table we find that Pade approximants are generally more 
efficient than Taylor approximants. When IIAII is small, the Pade approximant requires 
about one half as much work for the same accuracy. As IhAII grows, this advantage 
decreases because of the larger amount of scaling needed. 

Relative error bounds can be derived from the above results. Noting from 
Appendix 1 that AE = EA, we have 

II[Rqq(A/2j)]2' - eAll leA (eE _,)II 

hleAhE - hleAAI 

A a IEn a e =imla n n e IAnts|. 
A similar hbounti can he, derived for the- Taylor approximants.q 
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THE EXPONENTIAL OF A MATRIX 811 

The analysis and our table does not take roundoff error into account, although 
this is the method's weakest point. In general, the computed square of a matrix R can 
be severely affected by arithmetic cancellation since the rounding errors are small 
when compared to IIRII2 but not necessarily small when compared to IIR2ll. Such 
cancellation can only happen when cond (R) is large because R 1R 2 = R implies 

cond (R) - IIR 211 

The matrices which are repeatedly squared in this method can be badly conditioned. 
However, this does not necessarily imply that severe cancellation actually takes place. 
Moreover, it is possible that cancellation occurs only in problems which involve a large 
hump. We regard it as an open question to analyze the roundoff error of the repeated 
squaring of eA/m and to relate the analysis to a realistic assessment of the sensitivity 
of eA. 

In his implementation of scaling and squaring Ward [72] is aware of the possi- 
bility of cancellation. He computes an a posteriori bound for the error, including the 
effects of both truncation and roundoff. This is certainly preferable to no error 
estimate at all, but it is not completely satisfactory. A large error estimate could be the 
result of any of three distinct difficulties: 

(i) The error estimate is a severe overestimate of the true error, which is 
actually small. The algorithm is stable but the estimate is too pessimistic. 

(ii) The true error is large because of cancellation in going over the hump, but 
the problem is not sensitive. The algorithm is unstable and another algorithm 
might produce a more accurate answer. 

(iii) The underlying problem is inherently sensitive. No algorithm can be 
expected to produce a more accurate result. 

Unfortunately, it is currently very difficult to distinguish among these three situations. 
METHOD 4. CHEBYSHEV RATIONAL APPROXIMATION. Let cqq(x) be the ratio of 

two polynomials each of degree q and consider max0,<o jcqq(x)-e-x1. For various 
values of q, Cody, Meinardus, and Varga [62] have determined the coefficients of the 
particular cqq which minimizes this maximum. Their results can be directly translated 
into bounds for lICqq(A) -eAll when A is Hermitian with eigenvalues on the negative 
real axis. The authors are interested in such matrices because of an application to 
partial differential equations. Their approach is particularly effective for the sparse 
matrices which occur in such applications. 

For non-Hermitian (non-normal) A, it is hard to determine how well cqq(A) 
A approximates e . If A has an eigenvalue A off the negative real axis, it is possible for 

cqqk(A) to be a poor approximation to eA. This would imply that Cqq(A) is a poor 
approximation to e A since 

IleA -Cqq(A )II 'i I e' -cqq (Ak)l . 

These remarks prompt us to emphasize an important facet about approximation 
of the matrix exponential, namely, there is more to approximating eA than just 
approximating eZ at the eigenvalues of A. It is easy to illustrate this with Pade 
approximation. Suppose 

0 6 0 0 
0 0 6 0 A = r sr 
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812 CLEVE MOLER AND CHARLES VAN LOAN 

Since all of the eigenvalues of A are zero, Rll(z) is a perfect approximation to eZ at 
the eige.nvalues. However, 

1 6 18 54 
0 1 6 18 

,0 0 0 1 

whereas 
1 6 18 361 

eA= ? 1 6 18 
0 0 1 6 

_? O 0 1j 
and thus, 

lieA-Rii(A)II = 18. 
These discrepancies arise from the fact that A is not normal. The example illustrates 
that non-normality exerts a subtle influence upon the methods of this section even 
though the eigensystem, per se, is not explicitly involved in any of the algorithms. 

4. Ordinary differential equation methods. Since etA and e XA0 are solutions to 
ordinary differential equations, it is natural to consider methods based on numerical 
integration. Very sophisticated and powerful methods for the numerical solution of 
general nonlinear differential equations have been developed in recent years. All 
worthwhile codes have automatic step size control and some of them automatically 
vary the order of approximation as well. Methods based on single step formulas, 
multistep formulas, and implicit multistep formulas each have certain advantages. 
When used to compute etA all these methods are easy to use and they require very 
little additional programming or other thought. The primary disadvantage is a rela- 
tively high cost in computer time. 

The o.d.e. programs are designed to solve a single system 

X =f(x, t), x(0)=Xo, 

and to obtain the solution at many values of t. With f(x, t) = Ax the kth column of eA 
can be obtained by setting x0 to the kth column of the identity matrix. All the methods 
involve a sequence of values 0 = tog tl,* .. , tj = t with either fixed or variable step size 
hi = ti+1 - ti. They all produce vectors xi which approximate x(ti). 

METHOD 5. GENERAL PURPOSE O.D.E. SOLVER. Most computer center libraries 
contain programs for solving initial value problems in ordinary differential equations. 
Very few libraries contain programs that compute etA. Until the latter programs are 
more readily available, undoubtedly the easiest and, from the programmer's point of 
view, the quickest way to compute a matrix exponential is to call upon a general 
purpose o.d.e. solver. This is obviously an expensive luxury since the o.d.e. routine 
does not take advantage of the linear, constant coefficient nature of our special 
problem. 

We have run a very small experiment in which we have used three recently 
developed o.d.e. solvers to compute the exponentials of abbut a dozen matrices and 
have measured the amount of work required. The programs are: 

(1) RKF45. Written by Shampine and Watts [108], this program uses the 
Fehlberg formulas of the Runge-Kutta type. Six function evaluations are required per 
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THE EXPONENTIAL OF A MATRIX 813 

step. The resulting formula is fifth order with automatic step size control. (See also 
[4].) 

(2) DE/STEP. Written by Shampine and Gordon [107], this program uses vari- 
able order, variable step Adams predictor-corrector formulas. Two function evalua- 
tions are required per step. 

(3) IMPSUB. Written by Starner [109], this program is a modification of Gear's 
DIFSUB [106] and is based on implicit backward differentiation formulas intended 
for stiff differential equations. Starner's modifications add the ability to solve 
"infinitely stiff" problems in which the derivatives of some of the variables may be 
missing. Two function evaluations are usually required per step but three or four may 
occasionally be used. 

For RKF45 the output points are primarily determined by the step size selection 
in the program. For the other two routines, the output is produced at user specified 
points by interpolation. For an n-by-n matrix A, the cost of one function evaluation is 
a matrix-vector multiplication or n2 flops. The number of evaluations is determined by 
the length of the integration interval and the accuracy requested. 

The relative performance of the three programs depends fairly strongly on the 
particular matrix. RKF45 often requires the most function evaluations, especially 
when high accuracy is sought, because its order is fixed. But it may well require the 
least actual computer time at modest accuracies because of its low overhead. 
DE/STEP indicates when it thinks a problem is stiff. If it doesn't give this indication, it 
usually requires the fewest function evaluations. If it does, IMPSUB may require 
fewer. 

The following table gives the results for one particular matrix which we arbitrarily 
declare to be a "typical" nonstiff problem. The matrix is of order 3, with eigenvalues 
A = 3, 3, 6; the matrix is defective. We used three different local error tolerances and 
integrated over [0, 1]. The average number of function evaluations for the three 
starting vectors is given in the table. These can be regarded as typical coefficients of n2 
for the single vector problem or of n3 for the full matrix exponential; IBM 370 long 
arithmetic was used. 

TABLE 2 
Work as a function of subroutine and local error tolerance. 

io-6 10-9 lo-12 

RKF45 217 832 3268 

DE/STEP 118 160 211 

IMPSUB 173 202 1510 

Although people concerned with the competition between various o.d.e. solvers 
might be interested in the details of this table, we caution that it is the result of only 
one experiment. Our main reason for presenting it is to support our contention that 
the use of any such routine must be regarded as very inefficient. The scaling and 
squaring method of ? 3 and some of the matrix decomposition methods of ? 6 require 
on the order of 10 to 20 n3 flops and they obtain higher accuracies than those obtained 
with 200 n3 or more flops for the o.d.e. solvers. 
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814 CLEVE MOLER AND CHARLES VAN LOAN 

This excessive cost is due to the fact that the programs are not taking advantage 
of the linear, constant coefficient nature of the differential equation. They must 
repeatedly call for the multiplication of various vectors by the matrix A because, as far 
as they know, the matrix may have changed since the last multiplication. 

We now consider the various methods which result from specializing general 
o.d.e. methods to handle our specific problem. 

METHOD 6. SINGLE STEP O.D.E. METHODS. Two of the classical techniques for the 
solution of differential equations are the fourth order Taylor and Runge-Kutta 
methods with fixed step size. For our particular equation they become 

Xi+,= (I + hA + 4 x = T4(hA)xj 

and 

xi+l = xi + 6k, + 3k2 +3k3+ 6k4, 

where k1=hAx1, k2=hA(x1+4k1), k3=hA(xj+2k2), and k4=hA(xj+k3). A little 
manipulation reveals that in this case, the two methods would produce identical 
results were it not for roundoff error. As long as the step size is fixed, the matrix 
T4(hA) need be computed just once and then x1+, can be obtained from xi with just 
one matrix-vector multiplication. The standard Runge-Kutta method would require 4 
such multiplications per step. 

Let us consider x(t) for one particular value of t, say t = 1. If h = 1/rm, then 

x(l)=x(mh)-xm = [T4(hA)]mxo. 

Consequently, there is a close connection between this method and Method 3 which 
involved scaling and squaring [54], [60]. The scaled matrix is hA and its exponential is 
approximated by T4(hA). However, even if m is a power of 2, [T4(hA)]m is usually not 
obtained by repeated squaring. The methods have roughly the same roundoff error 
properties and so there seem to be no important advantages for Runge-Kutta with 
fixed step size. 

Let us now consider the possibility of varying the step size. A simple algorithm 
might be based on a variable step Taylor method. In such a method, two ap- 
proximations to x1+, would be computed and their difference used to choose the step 
size. Specifically, let E be some prescribed local relative error tolerance and define xj+l 
and x*+1 by 

Xj+l= T5(hjA)xj, 

xj+ = T4(h,A)xj. 

One way of determining hj is to require 

||Xj+1 - x +* 
- 

? ||Xj|| 

Notice that we are using a 5th order formula to compute the approximation, and a 4th 
order formula to control step size. 

At first glance, this method appears to be considerably less efficient than one with 
fixed step size because the matrices T4(hjA) and T5(hjA) cannot be precomputed. 
Each step requires 5 n2 flops. However, in those problems which involve large 
"humps" as described in ? 1, a smaller step is needed at the beginning of the 
computation than at the end. If the step size changes by a factor of more than 5, the 
variable step method will require less work. 
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THE EXPONENTIAL OF A MATRIX 815 

The method does provide some insight into the costs of more sophisticated 
integrators. Since 

* h1A5 
xi+1 - xi+1 = 5! -Xi, 

we see that the required step size is given approximately by 

E5!E - 11/5 

The work required to integrate over some fixed interval is proportional to the inverse 
of the average step size. So, if we decrease the tolerance E from, say 10-6 to 10-9, then 
the work is increased by a factor of (103)1/5 which is about 4. This is typical of any 5th 
order error estimate-asking for 3 more figures roughly quadruples the work. 

METHOD 7. MULTISTEP O.D.E. SOLVER. As far as we know, the possibility of 
specializing multistep methods, such as those based on the Adams formulas, to linear, 
constant coefficient problems has not been explored in detail. Such a method would 
not be equivalent to scaling and squaring because the approximate solution at a given 
time is defined in terms of approximate solutions at several previous times. The actual 
algorithm would depend upon how the starting vectors are obtained, and how the step 
size and order are determined. It is conceivable that such an algorithm might be 
effective, particularly for problems which involve a single vector, output at many 
values of t, large n, and a hump. 

The problems associated with roundoff error have not been of as much concern to 
designers of differential equation solvers as they have been to designers of matrix 
algebra algorithms since the accuracy requested of o.d.e. solvers is typically less than 
full machine precision. We do not know what effect rounding errors would have in a 
problem with a large hump. 

5. Polynomial methods. Let the characteristic polynomial of A be 
n-1 

c(z) = det (zI-A) = z- CkZ 
k=o 

From the Cayley-Hamilton theorem c(A)= 0 and hence 

A= coI+c1A+ .+c_An-iA 

It follows that any power of A can be expressed in terms of I, A, ,An-1: 

n-1 

Ak = E I3k,A. 
j=0 

This implies that eA is a polynomial in A with analytic coefficients in t: 

tA tkA k 0n tk on-i 

k= k =o kjk ! =o ki=O k=k0Ok 

n-I 

Z a1(t)A'. 
j=0 
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816 CLEVE MOLER AND CHARLES VAN LOAN 

The methods of this section involve this kind of exploitation of the characteristic 
polynomial. 

METHOD 8. CAYLEY-HAMILTON. Once the characteristic polynomial is known, 
the coefficients O3kj which define the analytic functions a1(t)=E- kj tk/k! can be 
generated as follows: 

Skj (k<n) 

OkJ=cj (k =n) 
COOk-1,n-1 (k > n, 0) 

1C13 k-1,n-1+1 /k-1li-1 (k > n,j > O). 

One difficulty is that these recursive formulas for the f3kj are very prone to roundoff 
error. This can be seen in the 1-by-1 case. If A =(a) thenIko = a and ao(t) = 
E (at)k/k! is simply the Taylor series for eat. Thus, our criticisms of Method 1 apply. 
In fact, if at = -6, no partial sum of the series for eat will have any significant digits 
when IBM 370 short arithmetic is used. 

Another difficulty is the requirement that the characteristic polynomial must be 
known. If A1, , * * A,n are the eigenvalues of A, then c(z) could be computed from 
c (z) =n (z -Ai). Although the eigenvalues could be stably computed, it is unclear 
whether the resulting cj would be acceptable. Other methods for computing c(z) are 
discussed in Wilkinson [14]. It turns out that methods based upon repeated powers of 
A and methods based upon formulas for the cj in terms of various symmetric functions 
are unstable in the presence of roundoff error and expensive to implement. Tech- 
niques based upon similarity transformations break down when A is nearly deroga- 
tory. We shall have more to say about these difficulties in connection with Methods 12 
and 13. 

In Method 8 we attempted to expand etA in terms of the matrices I, A, An-. 
If {A0o ... * An-1} is some other set of matrices which span the same subspace, then 
there exist analytic functions /13(t) such that 

n-1 

e'A= E Pi (t)Ai. j=0 

The convenience of this formula depends upon how easily the Ai and 313(t) can be 
generated. If the eigenvalues A1, ... * An of A are known, we have the following three 
methods. 

METHOD 9. LAGRANGE INTERPOLATION. 

n-i n (A -AJ) tA _ _ _ _ e= E e Ait H 
1=0 k=1 (A jAk) 

ksi 

METHOD 10. NEWTON INTERPOLATION. 

n j-i 

etA eAltI+ E [Ai, .* * Aj fl (A-AkI). 
j=2 k=1 

The divided differences [A1, ... , Aj] depend on t and are defined recursively by 

[Ai, A2] = (eAlt -eA2t)/(Ai -A2), 

[A1, , Ak+1] = [A1... , Ak]-[A2, .* , Ak+1] (k ' 2). 
A I-Ak+1 
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THE EXPONENTIAL OF A MATRIX 817 

We refer to MacDuffee [9] for a discussion of these formulae in the confluent 
eigenvalue case. 

METHOD 11. VANDERMONDE. There are other methods for computing the 
matrices 

A-l (A - Ak) 

k #1 

which were required in Method 9. One of these involves the Vandermonde matrix 

1 1 ... 1 - 

A1 A2 ... An 
V=. .. . 

_A 1 A 2n- A n- 

If Pi,k is the (j, k) entry of V-1, then 
n 

Ai = Z vikA k1 
k=1 

and 
n 

etA = eAjtAj. 
j=1 

When A has repeated eigenvalues, the appropriate confluent Vandermonde matrix is 
involved. Closed expressions for the Vjk are available and Vidysager [92] has proposed 
their use. 

Methods 9, 10, and 11 suffer on several accounts. They are 0(n4) algorithms 
making them prohibitively expensive except for small n. If the spanning matrices 
AO, * * An-, are saved, then storage is n3 which is an order of magnitude greater 
than the amount of storage required by any "nonpolynomial" method. Furthermore, 
even though the formulas which define Methods 9, 10, and 11 have special form in the 
confluent case, we do not have a satisfactory situation. The "gray" area of near 
confluence poses difficult problems which are best discussed in the next section on 
decomposition techniques. 

The next two methods of this section do not require the eigenvalues of A and thus 
appear to be free of the problems associated with confluence. However, equally 
formidable difficulties attend these algorithms. 

METHOD 12. INVERSE LAPLACE TRANSFORMS. If ?[etA] is the Laplace transform 
of the matrix exponential, then 

5[etA] = (sI-A)-[. 

The entries of this matrix are rational functions of s. In fact, 

n-1 Sn-k-1 
(sI-A) '= E Z Ak 

k=O C(S) 

where c(s)= det (sI-A)=S -k=0CkS and for k = 1, ... , n: 

CnIk = -trace (Ak,lA)/k, Ak = AklA - Cn-kI (A= I). 
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818 CLEVE MOLER AND CHARLES VAN LOAN 

These recursions were derived by Leverrier and Faddeeva [3] and can be used to 
evaluate etA: 

n-1 
etA = n y-i[Sn-k-11C (s)]A 

k=O 

The inverse transforms T 
l[Sn-kl1/C(S)] can be expressed as a power series in t. Liou 

[102] suggests evaluating these series using various recursions involving the Ck. We 
suppress the details of this procedure because of its similarity to Method 8. There are 
other ways Laplace transforms can be used to evaluate etA [78], [80], [88], [89], [93]. 
By and large, these techniques have the same drawbacks as Methods 8-11. They are 
0(n4) for general matrices and may be seriously effected by roundoff error. 

METHOD 13. COMPANION MATRIX. We now discuss techniques which involve the 
computation of eC where C is a companion matrix: 

0 1 0 *.. 1 
0 01 ... 0 

C=L 
Co Cl C2 *Cn-l 

Companion matrices have some interesting properties which various authors have 
tried to exploit: 

(i) C is sparse. 
(ii) The characteristic polynomial of C is c(z) = z"n _Ekn CkZ 
(iii) If V is the Vandermonde matrix of eigenvalues of C (see Method 11), then 

V-1CV is in Jordan form. (Confluent Vandermonde matrices are involved in 
the multiple eigenvalue case.) 

(iv) If A is not derogatory, then it is similar to a companion matrix; otherwise it is 
similar to a direct sum of companion matrices. 

Because C is sparse, small powers of C cost considerably less than the usual n 
flops. Consequently, one could implement Method 3 (scaling and squaring) with a 
reduced amount of work. 

Since the characteristic polynomial of C is known, one can apply Method 8 or 
various other techniques which involve recursions with the Ck. However, this is not 
generally advisable in view of the catastrophic cancellation that can occur. 

As we mentioned during our discussion of Method 11, the closed expression for 
V-1 is extremely sensitive. Because V-1 is so poorly conditioned, exploitation of 
property (iii) will generally yield a poor estimate of eA. 

If A = YCY-1, then from the series definition of the matrix exponential it is easy 
to verify that 

e = YeCY-l 

Hence, property (iv) leads us to an algorithm for computing the exponential of a 
general matrix. Although the reduction of A to companion form is a rational process, 
the algorithm for accomplishing this are extremely unstable and should be avoided 
[14]. 

We mention that if the original differential equation is actually a single nth order 
equation written as a system of first order equations, then the matrix is already in 
companion form. Consequently, the unstable reduction is not necessary. This is the 
only situation in which companion matrix methods should be considered. 
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THE EXPONENTIAL OF A MATRIX 819 

We conclude this section with an interesting aside on computing eH where 
H = (hi1) is lower Hessenberg (hi1 = 0, j> i + 1). Notice that companion matrices are 
lower Hessenberg. Our interest in computing eH stems from the fact that any real 
matrix A is orthogonally similar to a lower Hessenberg matrix. Hence, if 

A = QHQT Q TQ= I 

then 

eA = Q e HQT 

Unlike the reduction to companion form, this factorization can be stably computed 
using the EISPACK routine ORTHES [113]. 

Now, let fk denote the kth column of eH. It is easy to verify that 
n 

Hfk= Z hikfi (k '2), 
i=k-1 

by equating the kth columns in the matrix identity HeH = eHH. If none of the 
superdiagonal entries hk-l,k are zero, then once fn is known, the other fk follow 
immediately from 

fk-1 h [Hfk E hikfi 

Similar recursive procedures have been suggested in connection with computing ec 
[104]. Since fn equals x(1) where x(t) solves Hx = x, x(O) = (O, ... , 0, 1)T it could be 
found using one of the o.d.e. methods in the previous section. 

There are ways to recover in the above algorithm should any of the hk-l,k be 
zero. However, numerically the problem is when we have a small, but non-negligible 
hk-l,k. In this case rounding errors involving a factor of 1/hk-l,k will occur precluding 
the possibility of an accurate computation of eH 

In summary, methods for computing eA which involve the reduction of A to 
companion or Hessenberg form are not attractive. However, there are other matrix 

A factorizations which can be more satisfactorily exploited in the course of evaluating e 
and these will be discussed in the next section. 

6. Matrix decomposition methods. The methods which are likely to be most 
efficient for problems involving large matrices and repeated evaluation of eA are 
those which are based on factorizations or decompositions of the matrix A. If A 
happens to be symmetric, then all these methods reduce to a simple very effective 
algorithm. 

All the matrix decompositions are based on similarity transformations of the form 

A=SBS>1. 
As we have mentioned, the power series definition of etA implies 

etA = SetBS1. 

The idea is to find an S for which e tB is easy to compute. The difficulty is that S may be 
close to singular which means that cond (S) is large. 

METHOD 14. EIGENVECTORS. The naive approach is to take S to be the matrix 
whose columns are eigenvectors of A, that is, S = V where 

V = [viK I... Ivn] 
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820 CLEVE MOLER AND CHARLES VAN LOAN 

and 

Av1 = Aivi, j = 1, ,n. 

These n equations can be written 

AV= VD. 

where D = diag (Al, , An). The exponential of D is trivial to compute assuming we 
have a satisfactory method for computing the exponential of a scalar: 

etD= diag WIX, . . . eknt) 

Since V is nonsingular we have e tA = Ve tDV-1. 

In terms of the differential equation x = Ax, the same eigenvector approach takes 
the following form. The initial condition is a combination of the eigenvectors, 

n 
x(0)= E ajvj, 

j=1 

and the solution x(t) is given by 
n 

x(t)= E a1eitvj. 
j=0 

Of course, the coefficients a1 are obtained by solving a set of linear equations 
Va =x(O). 

The difficulty with this approach is not confluent eigenvalues per se. For example, 
the method works very well when A is the identity matrix, which has an eigenvalue of 
the highest possible multiplicity. It also works well for any other symmetric matrix 
because the eigenvectors can be chosen orthogonal. If reliable subroutines such as 
TRED2 and TQL2 in EISPACK [113] are used, then the computed vj will be 
orthogonal to the full accuracy of the computer and the resulting algorithm for etA has 
all the attributes we desire-except that it is limited to symmetric matrices. 

The theoretical difficulty occurs when A does not have a complete set of linearly 
independent eigenvectors and is thus defective. In this case there is no invertible 
matrix of eigenvectors V and the algorithm breaks down. An example of a defective 
matrix is 

[o 1j 
A defective matrix has confluent eigenvalues but a matrix which has confluent eigen- 
values need not be defective. 

In practice, difficulties occur when A is "nearly" defective. One way to make this 
precise is to use the condition number, cond (V) = 11 VlI 1 V-111, of the matrix of eigen- 
vectors. If A is nearly (exactly) defective, then cond (V) is large (infinite). Any errors 
in A, including roundoff errors in its computation and roundoff errors from the 
eigenvalue computation, may be magnified in the final result by cond (V). 
Consequently, when cond (V) is large, the computed etA will most likely be inac- 
curate. For example, if 
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THE EXPONENTIAL OF A MATRIX 821 

then 

v=[ 
[0 2 E] 

D =diag (1 +, 1-E), 

and 

cond (V) = oI) . 

If E =10-5 and IBM 370 short floating point arithmetic is used to compute the 
exponential from the formula eA = VeDV-1, we obtain 

2.718307 2.750000] 
[ 0 2.718254 

Since the exact exponential to six decimals is 

2.718309 2.7182821 [ 0 2.718255]' 

we see that the computed exponential has errors of order 105 times the machine 
precision as conjectured. 

One might feel that for this example eA might be particularly sensitive to 
perturbations in A. However, when we apply Theorem 3 in ? 2 to this example, we 
find 

Ile 
A 

E)-e All -< 411E|| e211EII 

independent of E. Certainly, eA is not overly sensitive to changes in A and so Method 
14 must be regarded as unstable. 

Before we proceed to the next method it is interesting to note the connection 
between the use of eigenvectors and Method 9, Lagrange interpolation. When the 
eigenvalues are distinct the eigenvector approach can be expressed 

n e V diag (eAit)v = eitv y T 
1=1 

where yT is the jth row of V-1. The Lagrange formula is 
n 

etA E eAjtA1, 
j=1 

where 

n- (A- AI) 

Ak=1 (Ai-Ak) 
k?j 

Because these two expressions hold for all t, the individual terms in the sum must be 
the same and so 

A. = vny . 
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822 CLEVE MOLER AND CHARLES VAN LOAN 

This indicates that the Ai are, in fact, rank one matrices obtained from the eigen- 
vectors. Thus, the 0(n4) work involved in the computation of the Aj is totally 
unnecessary. 

METHOD 15. TRIANGULAR SYSTEMS OF EIGENVECTORS. An improvement in 
both the efficiency and the reliability of the conventional eigenvector approach can be 
obtained when the eigenvectors are computed by the QR algorithm [14]. Assume 
temporarily that although A is not symmetric, all its eigenvalues happen to be real. 
The idea is to use EISPACK subroutines ORTHES and HQR2 to compute the 
eigenvalues and eigenvectors [113]. These subroutines produce an orthogonal matrix 
Q and a triangular matrix T so that 

QTAQ=T. 

Since Q1 = QT, this is a similarity transformation and the desired eigenvalues occur 
on the diagonal of T. HQR2 next attempts to find the eigenvectors of T. This results in 
a matrix R and a diagonal matrix D, which is simply the diagonal part of T, so that 

TR =RD. 

Finally, the eigenvectors of A are obtained by a simple matiix multiplication V = QR. 
The key observation is that R is upper triangular. In other words, the 

ORTHES/HQR2 path in EISPACK computes the matrix of eigenvectors by first 
computing its "QR" factorization. HQR2 can be easily modified to remove the final 
multiplication of Q and R. The availability of these two matrices has two advantages. 
First, the time required to find V-1 or to solve systems involving V is reduced. 
However, since this is a small fraction of the total time required, the improvement in 
efficiency is not very significant. A more important advantage is that cond(V)= 
cond (R) (in the 2-norm) and that the estimation of cond (R) can be done reliably and 
efficiently. 

The effect of admitting complex eigenvalues is that R is not quite triangular, but 
has 2-by-2 blocks on its diagonal for each complex conjugate pair. Such a matrix is 
called quasi-triangular and we avoid complex arithmetic with minor inconvenience. 

In summary, we suspect the following algorithm to be reliable: 
(1) Given A, use ORTHES and a modified HQR2 to find orthogonal Q, diagonal 

D, and quasi-triangular R so that 

AQR = QRD. 

(2) Given xo, compute yo by solving 

Ryo= QTX0. 

Also estimate cond (R) and hence the accuracy of yo. 
(3) If cond (R) is too large, indicate that this algorithm cannot solve the problem 

and exit. 
(4) Given t, compute x (t) by 

x(t)= VetDyo. 

(If we want to compute the full exponential, then in Step 2 we solve R Y = QT for Y 
and then use eA = VeDY in Step 4.) It is important to note that the first three steps 
are independent of t, and that the fourth step, which requires relatively little work, can 
be repeated for many values of t. 

We know there are examples where the exit is taken in Step 3 even though the 
underlying problem is not poorly conditioned implying that the algorithm is unstable. 
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THE EXPONENTIAL OF A MATRIX 823 

Nevertheless, the algorithm is reliable insofar as cond (R) enables us to assess the 
errors in the computed solution when that solution is found. It would be interesting to 
code this algorithm and compare it with Ward's scaling and squaring program for 
Method 3. In addition to comparing timings, the crucial question would be how often 
the exit in Step 3 is taken and how often Ward's program returns an unacceptably 
large error bound. 

METHOD 16. JORDAN CANONICAL FORM. In principle, the problem posed by 
defective eigensystems can be solved by resorting to the Jordan canonical form (JCF). 
If 

A=P[J11?* .DJk]P- 

is the JCF of A, then 

etA = P[e tJl (D ... .? e tjkIP-l. 

The exponentials of the Jordan blocks Ji can be given in closed form. For example, if 

Ai 1 0 O- 
O Ai 1 0 

i- O Ai 1, 

-0 0 0 Ai 

then 

1 t t2/ ! t3/ ! 
(/2! 3 eJ= A 0 1 t t2 /2!. 

e 
_0 0 0 1 

The difficulty is that the JCF cannot be computed using floating point arithmetic. 
A single rounding error may cause some multiple eigenvalue to become distinct or 
vice versa altering the entire structure of J and P. A related fact is that there is no a 
priori bound on cond (P). For further discussion of the difficulties of computing the 
JCF, see the papers by Golub and Wilkinson [110] and Kagstrom and Ruhe [111]. 

METHOD 17. SCHUR. The Schur decomposition 

A = QTQT 

with orthogonal Q and triangular T exists if A has real eigenvalues. If A has complex 
eigenvalues, then it is necessary to allow 2-by-2 blocks on the diagonal of T or to 
make Q and T complex (and replace QT with Q*). The Schur decomposition can be 
computed reliably and quite efficiently by ORTHES and a short-ended version of 
HQR2. The required modifications are discussed in the EISPACK guide [113]. 

Once the Schur decomposition is available, 

e tA = Q etTQ T. 

The only delicate part is the computation of etT where T is a triangular or quasi- 
triangular matrix. Note that the eigenvectors of A are not required. 

Computing functions or triangular matrices is the subject of a recent paper by 
Parlett [112]. If T is upper triangular with diagonal elements A1, * *, A, then it is 
clear that etT is upper triangular with diagonal elements eXkt, * * *, e"-t. Parlett shows 
how to compute the off-diagonal elements of etT recursively from divided differences 
of the ekit. The example in ? 1 illustrates the 2-by-2 case. 
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824 CLEVE MOLER AND CHARLES VAN LOAN 

Again, the difficulty is magnification of roundoff error caused by nearly confluent 
eigenvalues Ai. As a step towards handling this problem, Parlett describes a general- 
ization of his algorithm applicable to block upper triangular matrices. The diagonal 
blocks are determined by clusters of nearby eigenvalues. The confluence problems do 
not disappear, but they are confined to the diagonal blocks where special techniques 
can be applied. 

METHOD 18. BLOCK DIAGONAL. All methods which involve decompositions of 
the form 

A=SBS1 

involve two conflicting objectives: 
(1) Make B close to diagonal so that etB is easy to compute. 
(2) Make S well conditioned so that errors are not magnified. 

The Jordan canonical form places all the emphasis on the first objective, while the 
Schur decomposition places most of the emphasis on the second. (We would regard 
the decomposition with S = I and B = A as placing even more emphasis on the second 
objective.) 

The block diagonal method is a compromise between these two extremes. The 
idea is to use a nonorthogonal, but well conditioned, S to produce a B which is 
triangular and block diagonal as illistrated in Fig. 2. 

B= 

FIG. 2. Triangular block diagonal form. 

Each block in B involves a cluster of nearly confluent eigenvalues. The number in 
each cluster (the size of each block) is to be made as small as possible while maintain- 
ing some prescribed upper bound for cond (S), such as cond (S)< 100. The choice of 
the bound 100 implies roughly that at most 2 significant decimal figures will be lost 
because of rounding errors when etA is obtained from eB via eA = SeBS l. A larger 
bound would mean the loss of more figures while a smaller bound would mean more 
computer time-both for the factorization itself and for the evaluation of eB B 

In practice, we would expect almost all the blocks to be 1-by-l'or 2-by-2 and the 
resulting computation of e tB to be very fast. The bound on cond (S) will mean that it is 
occasionally necessary to have larger blocks in B, but it will insure against excessive 
loss of accuracy from confluent eigenvalues. 
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THE EXPONENTIAL OF A MATRIX 825 

G. W. Stewart has pointed out that the grouping of the eigenvalues into clusters 
and the resulting block structure of B is not merely for increased speed. There can be 
an important improvement in accuracy. Stewart suggests expressing each block Bj in 
the form 

Bj = -yl + El 

where y1 is the average value of the eigenvalues in the jth cluster. If the grouping has 
been done properly, the matrices Ej should then be nearly nilpotent in the sense that 
Ek will rapidly approach zero as k increases. Since Ej is triangular, this will certainly 
be true if the diagonal part of Ej is small, that is, if all the eigenvalues in the cluster are 
close together. But it will also be true in another important case. If 

E1=[ 1]1 Ej =L -4 

where E is the computer rounding unit, then 

Ej2[ 0] 

can be regarded as negligible. The +?1 perturbations are typical when a double, 
defective eigenvalue is computed with, say, HQR2. 

The fact that Ej is nearly nilpotent means that etBi can be found rapidly and 
accurately from 

tB. y.t tE. e =e'te '; 

computing etE' by a few terms of the Taylor series. 
Several researchers, including Parlett, Ruhe, and Stewart, are currently develo- 

ping computer programs based on some of these ideas. The most difficult detail is the 
proper choice of the eigenvalue clustering. It is also important for program efficiency 
to avoid complex arithmetic as much as possible. When fully developed, these pro- 
grams will be fairly long and complicated but they may come close to meeting our 
other criteria for satisfactory methods. 

Most of the computational cost lies in obtaining the basic Schur decomposition. 
Although this cost varies somewhat from matrix to matrix because of the iterative 
nature of the QR algorithm, a good average figure is 15 n3 flops, including the further 
reduction to block diagonal form. Again we emphasize that the reduction is in- 
dependent of t. Once the decomposition is obtained, the calculation of etA requires 
about 2 n3 flops for each t. If we require only x(t) = etAx0 for various t, the equation 
Sy = x0 should be solved once at a cost of n3/3 flops, and then each x(t) can be 
obtained with n 2 flops. 

These are rough estimates. There will be differences between programs based on 
the Schur decomposition and those which work with the block diagonal form, but the 
timings should be similar because Parlett's algorithm for the exponential is very fast. 

7. Splitting methods. A most aggravating, yet interesting, property of the matrix 
exponential is that the familiar additive law fails unless we have commutivity: 

etBe tC = et(B+C)<*BC = CB. 

Nevertheless, the exponentials of B and C are related to that of B + C, for example, 
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826 CLEVE MOLER AND CHARLES VAN LOAN 

by the Trotter product formula [30]: 

eB+C= lrn (eB/meC/m)m 
m e e 

METHOD 19. SPLITrING. Our colleagues M. Gunzburger and D. Gottleib sug- 
gested that the Trotter result be used to approximate eA by splitting A into B + C and 
then using the approximation 

eA - (eB/m ec/m)m. 

This approach to computing eA is of potential interest when the exponentials of B and 
C can be accurately and efficiently computed. For example, if B =(A+ A T)/2 and 
C = (A -AT)/2 then eB and ec can be effectively computed by the methods of ? 5. 
For this choice we show in Appendix 2 that 

(7.1) leA 
- 

(eBim eC/m)mel 
g ll[AT, Ai ,?(A) lie -( 

m 
c/)mj< 4m e 

where A (A) is the log norm of A as defined in ? 2. In the following algorithm, this 
inequality is used to determine the parameter m. 

(a) Set B = (A +AT)/2 and C = (A - AT)/2. Compute the factorization B = 
Q diag (Ai)QT (QTQ=I) using TRED2 and TQL2 [113]. Variations of 
these programs can be used to compute the factorization C = UDUT where 
UTU = I and D is the direct sum of zero matrices and real 2-by-2 blocks of 
the form 

r0 al 
-a O 

corresponding to eigenvalues ?ia. 
(b) Determine m =2j such that the upper bound in (7.1) is less than some 

prescribed tolerance. Recall that Au(A) is the most positive eigenvalue of B 
and that this quantity is known as a result of step (a). 

(c) Compute X = Q diag (e i/m)QT and Y = UeD/mUT. In the latter compu- 
tation, one uses the fact that 

[0 a/] cos (aE m) sin (a/m)] 

-a/m 0 -sin (alm) cos (alm) 

(d) Compute the approximation, (XY)2, to eA by repeated squaring. 
If we assume 5 n3 flops for each of the eigenvalue decompositions in (a), then the 

overall process outlined above requires about (13 +j) n3 flops. It is difficult to assess 
the relative efficiency of this splitting method because it depends strongly on the 
scalars 11[AT, A]ll and u (A) and these quantities have not arisen in connection with any 
of our previous eighteen methods. On the basis of truncation error bounds, however, 
it would seem that this technique would be much less efficient than Method 3 (scaling 
and squaring) unless A (A) were negative and I[A T, A]ll much less than IJAIl. 

Accuracy depends on the rounding errors which arise in (d) as a result of the 
repeated squaring. The remarks about repeated squaring in Method 3 apply also here: 
there may be severe cancellation but whether or not this only occurs in sensitive eA 
problems is unknown. 
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THE EXPONENTIAL OF A MATRIX 827 

For a general splitting A = B + C, we can determine m from the inequality 

(7.2) eA (eB/m eC/m)m= I[B, C] eB+C - 
2m 

which we establish in Appendix 2. 
To illustrate, suppose A has companion form 

~0 1 O.. * 

A=[ ,7. 
Co Cl 

... 
Cn-1._ 

If 

B=ro In-1] 

T TT and C = enc where CT = (Cog .. , Cn-1) and eT= (0 , 0 *, 0, 1), then 

/ n-1 [B lk 

eB/= z V-I- 
k=O LmJk 

and 

c/eCn- J/M_ e Cm=I? -enCT 
Cn-1 

Notice that the computation of these scaled exponentials require only 0(n2) flops. 
Since ||B|| = 1, ||C|| = ||c||, and ||[B, C]||_ 211clI, (7.2) becomes 

eA (e/m ec/m)m e 1llcll 
m 

The parameter m can be determined from this inequality. 

8. Conclusions. A section called "conclusions" must deal with the obvious ques- 
tion: Which method is best? Answering that question is very risky. We don't know 
enough about the sensitivity of the original problem, or about the detailed per- 
formance of careful implementations of various methods to make any firm 
conclusions. Furthermore, by the time this paper appears in the open literature, any 
given conclusion might well have to be modified. 

We have considered five general classes of methods. What we have called poly- 
nomial methods are not really in the competition for "best". Some of them require the 
characteristic polynomial and so are appropriate only for certain special problems and 
others have the same stability difficulties as matrix decomposition methods but are 
much less efficient. The approaches we have outlined under splitting methods are 
largely speculative and untried and probably only of interest in special settings. This 
leaves three classes in the running. 

The only generally competitive series method is Method 3, scaling and squaring. 
Ward's program implementing this method is certainly among the best currently 
available. The program may fail, but at least it tells you when it does. We don't know 
yet whether or not such failures usually result from the inherent sensitivity of the 
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A problem or from the instability of the algorithm. The method basically computes e 
for a single matrix A. To compute etA for p arbitrary values of t requires about p times 
as much work. The amount of work is 0(n3), even for the vector problem etAxo. The 
coefficient of n3 increases as IJAII increases. 

Specializations of o.d.e. methods for the eA problem have not yet been im- 
plemented. The best method would appear to involve a variable order, variable step 
difference scheme. We suspect it would be stable and reliable but expensive. Its best 
showing on efficiency would be for the vector problem etAxo with many values of t 
since the amount of work is only 0(n2). It would also work quite well for vector 
problems involving a large sparse A since no "nonsparse" approximation to the 
exponential would be explicitly required. 

The best programs using matrix decomposition methods are just now being 
written. They start with the Schur decomposition and include some sort of eigenvalue 
clustering. There are variants which involve further reduction to a block form. In all 
cases the initial decomposition costs 0(n3) steps and is independent of t and IJAII. 
After that, the work involved in using the decomposition to compute etAxo for 
different t and xo is only a small multiple of n2. 

Thus, we see perhaps three or four candidates for "best" method. The choice will 
depend upon the details of implementation and upon the particular problem being 
solved. 

Appendix 1. Inverse error analysis of Pade matrix approximation. 
LEMMA 1. If IIHII < 1, then log (I + H) exists and 

IIlog (I + H)' I I 

Proof. If IIHI < 1 then log (I+H)=Zo1 (_l)k+l(Hk/k) and so 

Illog (I + H)11-< E ?-EIHII Y IIHII =k 
k=1 k - k=o 1 - IHII 

LEMMA 2. If I _ 2 and p > 0, then IIDpq(A)j 1l _ (q + p)/p. 
Proof. From the definition of Dpq (A) in ? 3, Dpq (A) = I + F where 

F=q (p+q-j)!q! (-A)1 
1= i(p +q)!(q -j)! j! 

Using the fact that 

(p +q-j)!q! c q 1 

(p+q)!(q-j)! Lp+q 

we find 
q _q i'1 q q 

11FII 1_ j-p+q IJAll j' -p+q p+Aq(e-l)' q 

and so IDpq(A)Y111 = II(I +F)-j11 _ 1/(1 - JIFII)? (q +p)/p. 
LEMMA 3. If IJAI I 2, q p, and pl- 1, then Rpq(A) = eA+F where 

?IFII 81AII p+q+l p !q! 
(pg +q)! (p +qa + 1)! 
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Proof. From the remainder theorem for Pade approximants [71], 

Rpq (A) = e A (-1)q Ap+q+Dq (A)- e(-)AuP(l -u )q du, 
(p + q)! pqAj 

and so e ARpq (A) = I + H where 

H (1I)q AP+q+lD p(A)-1 -AP )q 
(p +q)! 

By taking norms, using Lemma 2, and noting that (p + q)/p e 5 _ 4 we obtain 

1 +qlpq1 . o HII (p + q)! IIA u - u du 

-< 4IIAII+q+1 p!q! 
(p +q)!(p +q + 1)! 

With the assumption IIAII<' it is possible to show that for all admissable p and q, 
H<HII and so from Lemma 1, 

Illog(I+H)llI 
H 

811Allp+q+l p!q! 

Setting F = log (I +H), we see that e ARpq(A) = I +H = eF. The lemma now follows 
because A and F commute implying Rpq(A) = eA eF = e A+F 

LEMMA 4. If I A||' 2 then Rpq(A) = eA+F where 

JI I -<81 l4lp+'+l 
p !q! 

(p +q)!(p +q + 1)! 

Proof. The case p- q p ' 1 is covered by Lemma 1. If p + q =0, then F = -A and 
the above inequality holds. Finally, consider the case q > p, q ' 1. From Lemma 3, 
Rqp(-A) = e-A+F where F satisfies the above bound. The lemma now follows because 
11-F|| = ||F|| and Rpq(A) = [Rqp(-A)]f' = [e A+F]Vl = eA-F. 

THEOREM A. 1. If ||A 11/2j '-, then [Rpq (A/2j )]2j = eA+E where 

E Ell A p+q p!q! 1 P+q-3 p !q! 

IAII \ 2 J (p+q)!(p+q+ 1)! \21 (p+q)!(p+q+l)! 

Proof. From Lemma 4, Rpq(A/2j) = eA+F where 

? p___ p!I.q! 
[2' (p + q)!(p + q + 1)!! 

The theorem follows by noting that if E = 2jF, then 

[Rpq()] 2 [e A/2 2 = eA+E 

COROLLARY 1. If ||A||/2'- ?, then [Tk(A/2j)] - e where 

I II _8 I?8/ 
k 

A ) kk3 1 
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830 CLEVE MOLER AND CHARLES VAN LOAN 

COROLLARY 2. If ||A ||/2' 2, then [Rqq (A/2j)] - eA, where 

|JE|| {IIA 11 2q (q !)2 = 82q-3 (q !)2 
IJA II k21 (2q)!(2q + 1)! k2J (2q)!(2q + 1)! 

Appendix 2. Accuracy of splitting techniques. In this appendix we derive the 
inequalities (7.1) and (7.2). We assume throughout that A is an n-by-n matrix and 
that 

A = B + C 

It is convenient to define the matrices 

Sm = eA/m 

and 

TM = eB/m eC/m 

where m is a positive integer. Our goal is to bound IlSm - Tm I. To this end we shall 
have to exploit the following properties of the log norm A (A) defined in ? 2: 

(i) I Ie'All -<e e(A)t (t '-: O) 

(ii) A (A)< = tlAII 

(iii) ,u(B +C) = ,u(B) +IICII. 

These and other results concerning log norms are discussed in references [35]-[42]. 
LEMMA 1. If E0- max {, (A), A (B)+ A (C)} then 

m- Tml ' m eO(M-i)/miS -T 

Proof. Following Reed and Simon [11] we have 
m-1 

STm Z rrsm _ v wSk (SmT 1-k sm1m-Tm= hmtJ m 
k=O 

Using log norm property (i) it is easy to show that both IISm.I and IlTmll are bounded 
above by e/lm and thus 

m-1 
Sm-T l Sm - Trn m rn_ eern eT 0(rn-i-k 
mTm 11 =< 1Im1 I 11 m 1m 

kO=O 

=- ||Sm-T || E e Ok/m e 0(m-l-k)/m 
k =O 

from which the lemma immediately follows. 
In Lemmas 2 and 3 we shall make use of the notation 

t=tl 

F(t) = F(tj)-F(to), 
t = to 

where F(t) is a matrix whose entries are functions of t. 
LEMMA 2. 

Tm Sm = { etB/me(1-t)A/mr cj etc/rm dt. 
n ~~m 

This content downloaded from 160.75.27.11 on Mon, 10 Feb 2014 04:58:41 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


THE EXPONENTIAL OF A MATRIX 831 

Proof. We have Tm-Sm =et e (1-0A/m e tc/m t-1 and thus 

Tm-Sm {1 d [etB/M e(1-t)A/m etc/m]} dt. 

The lemma follows since 

d tB/m e(1t)A/m etc/] tBM (-t)A/m-C etc/rn dt e/r[(t/m, 

LEMMA 3. If X and Y are matrices then 

11[e', Y1]||_<e (X) I[X, Y]||. 

Proof. We have [eX, Y] = etxYe(-t)X t=and thus 

[ex, Y] = i Id[etxYe(1-t)x]} dt. 

Since d/dt[etXYe(l-t)X] = etx[X, Y] e(l-t)xwe get 

11- 
1eX, YIII_ - lt IIe`II[X, Y]IIIIe xl-xl dt 

' II[X9 YIII e I(X)t e 'L(x)(1 -t) dt 

from which the lemma immediately follows. 
THEOREM A.2. If 0?max{A(A), A(B)+A(C)}, then 

m ~~~1 
lsm- Tmll _- e'|[B, C]II. 2m 

Proof. If 0' t ?1 then an application of Lemma 3 with X-(1-t)A/m and 
Y-C/m yields 

11e (1-t)A/m C/nm ] _ e IL(A)(1-t)/mrn[(1 - t)A/m, C/m]II 

'e 0(1-0/M(l 
- 

t) I[B9 C]II. 
m 

By coupling this inequality with Lemma 2 we can bound 11Tm - Smr 

ITrn - Smii | lie tB/ilm fl[e (1-t)A/m C/m] liIe tC||n1 dt 

e |, e jB(B)t/rn e0(-t)/m (1-t) c]fl e L(C)t/m dt 
m 

1 iim II[B, C]ii 
<- e/r 2 
2 m m 

The theorem follows by combining this result with Lemma 1. 
COROLLARY 1. If B = (A + A*)/2 and C = (A -A*)/2 then 

mS - Tm| _ 1 e I(A)II[A*, A]ii. iism m 4A 
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Proof. Since A (A)=A(B) and ,(C)=O, we can set E= A (A). The corollary is 
established by noting that [B, C] = 2[A*, A]. 

COROLLARY 2. 

|m - Tm||- e1 (B)?IICII[B, C]jj 2m e IIBII+IICII;[B, C]||. 

Proof. max {, (A), A (B) + A (C)} C A (B) + IICII _ JIB 11 + ||C||. 
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