OO ot

— Q.
Maching Learing
{ "8

‘
ITU
Machine Learning Lessons

OF

Lesson2

CLASSIFICATION

1) Logistic Regression

This is new: We know this:
Action (Y/N) Salary ($)
A A 2
1 - & T T T
o y = bg *+ by
[& > >
Age Experience

Machine Learning, Fall

LOGISTIC REGRESSION

--+----++++i-

Machine Learning, Fall

LOGISTIC

- REGRESSoN—

N

522200 ¥

=802

i

p =0.7%

P (Probability)
A

<

<

20

30

40

v

50

Machine Learning, Fall

LOGISTIC REGRESSION

Machine Learning, Fall

K-NEAREST NEIGHBOR (KNN)

Before K-NN
A

Category 1

op
ot

ty

r
5 T

on qr
Category 2
L
New data point

hy

After K-NN
A

3+

Category 1

o
P

Lh

* Cat 2::]:l
ategory
< -|-\

New data point assigned

to Category 1

Machine Learning, Fall

K-NEAREST NEIGHBOR y o
V yi ooy
STEP 1: Choose the number K of neighbors 1 —

@ Euclidean Distance between Py and Py = 1/ (x — x1)? + (y2 — y1)?

STEP 2: Take the K nearest neighbors of the new data point, according to the Euclidean distance

4

STEP 3: Among these K neighbors, count the number of data points in each category

4

STEP 4: Assigh the new data point to the category where you counted the most neighbors

g

Your Model is Ready

Machine Learning, Fall

K-NEAREST NEIGHBOR
- _(knNy-___

STEP 2: Take the K = 5 nearest neighbors of the new data point. g71Ep 3. Among these K neighbors, count the number of data points in each category
according to the Euclidean distance

Category 1

%4}
e F

Category 2

New data point

P

A 4

/

\

g T @

@4},4}’
@

L] ’
Cat 1:3 hb
@ @N:ategoryz ategory neighbors
Category 2: 2 neighbors

+ @ New data point

L
O+,

$+ *

Category 1

Machine Learning, Fall

K-NEAREST NEIGHBOR

STEP 4: Assign the new data point to the category where you counted the most

neighbors
A
op
ok 9P
@ d T
@ éategoryzl{}: Category 1: 3 neighbors
Category 2: 2 neighbors
+ @ New data point Sinis &
e
+ o+,
5
Category 1

>

Machine Learning, Fall

Support Vector Machine

A\ 4

Maximum Margin

Maximum Margin

Hyperplane
(Maximum Margin Classifier)

Support
Vectors

L
Cail

Machine Learning, Fall

What'’s So Special About
SVMs?

Machine Learning, Fall

Support Vector Machine

Support
Vectors

| >

Support vectors are the examples of extremely ordinary part of
their classes. In the other words, support vectors are look like an
apple orange and an apple look like an orange

Machine Learning, Fall

KERNEL SVM

Linearly Separable

Not Linearly Separable

= *
A & ++..l'|'
& % + *
dh e = &
'&'.g.'ﬂ’ > + .g,#.ﬂ, =
o or F
& & + 'l'*#.ﬂ_##‘.
+ + + ¥ e,
& + + &
* & &E T =
+ 5 + * + 4 *
B += * 5 ¥
+ + v ¢

Machine Learning, Fall

KERNEL SVM

Mapping to Higher Dimension

f=x-5
q
! s —d—d—ap—p—p—>
:
Ji=XE25

T >
0

Machine Learning, Fall

KERNEL SVM

New
2D Space Dimension ‘ q

+
. . e Hyperplane
+ + . & \
® F »
+ e Tt s
s *+ 7 + ¢(x1, %) = (x1, %, 2)
+ *
$ F * & +
+ $ * ¥
+
+
* + ¥

Machine Learning, Fall

KERNEL SVM

3D Space

Machine Learning, Fall

KERNEL SVM

But there's a problem with this algorithm and the problem is that mapping to a
higher dimensional space can be highly compute intensive so it might require a lot
of computation and a lot of processing power

In that reason and we're going to explore something else we're going explore a
different approach which is called In mathematics the kernel trick.

. __|
Machine Learning, Fall

Kernel Trick

Gaussian RBF Kernel

ource: http://www.cs.toronto.edu/~duvenaud/cookbook/index.html
]

Machine Learning, Fall

Kernel
- e

2D Space

Machine Learning, Fall

Kernel

2D Space

'l'"'.|.

Machine Learning, Fall

Kernel

Machine Learning, Fall

Kernel

- ek

K(% ')+ K(%,1%)

(Simplified Formula)

+ Green when:

* e k(X)) +K(X12)>0

o
+ * Red when:

« VKGR +K(E DY) =0

>

L

Machine Learning, Fall

Kernel Types

BN

Sine-Squared Kernel Jau |) Gaussian RBF Kernel K(x ll) =e 7
) f Sigmoid Kernel K(X,Y) = tanh(y - XTY +71)

‘ﬂ N A Polynomial Kernel KXN=@-XTY+r%y>0

Squared-Distance Kernel

Component 3

L0 -1.0

Gaussian Kernel

Chi-Squared Kernel

Component 3

Component 3

|
o
wn

-1.0

Machine Learning, Fall

Component 3

Laplacian Kernel

€ jueuocdwod

Kernel
e D B & T m—

Polynomial Kernel

= =
o w

omponent 3
=
n

-0.5

=}
o
Component 3

-1.5

—s: -1.0
5

<)

%, -1.5

Periodic Kernel 15 45

Rational-Quadratic Kernel

Component 3

Matern Kernel

Component 3

Q P R

o
o

Machine Learning, Fall

Component 3

Naive Bayes Classification

mlT ml ml ml ml ml ml ml ml ml ml ml mil

it

m2 m2 m2 m2 m2 m2 mZ2 m2 m2 m2

iy

What's the probability?
&

Machine Learning, Fall

Naive Bayes
- classmceartonr

Bayes What's the probability?
Theoremr,(BlA) « P(A) .
P(AIB) = ——5 s

ml ml ml ml ml ml ml ml ml ml ml ml ml

titntt

m2 m2 m2 m2 m2 m2 m2 m2 m2 m2

i

Machine Learning, Fall

Naive Bayes
- cassrmecaroern

Mach1: 30 wrenches / hr -> P(Mach1)=30/50=0.6

Mach2: 20 wrenches / hr -> P(Mach2)=20/50 = 0.4

Out of all produced parts:

We can SEE that 1% are defective -> P(Defect) = 1%

S’v“t of ﬂg :Eeﬁ‘ﬂ:‘;&fm . s -> P(Mach! | Defect) = 50%
e can a came from mac =

And 50% came from mach2 > P(Mach2 | Defect) = 50%

Question:

What is the probability that a part
produced by mach2 is defective = ? -> P(Defect | Mach2) =?

Machine Learning, Fall

Naive Bayes Classification

Mach1: 30 wrenches / hr -> P(Mach2) = 20/50 = 0.4
Mach2: 20 wrenches / hr -> P(Defect) = 1%

Out of all produced parts: -> P(Mach2 | Defect) = 50%
We can SEE that 1% are defective -> P(Defect | Mach2) =2

Out of all defective parts:

We can SEE that 50% came from mach1
And 50% came from mach2

Question:

What is the probability that a part
produced by mach2 is defective =?

P(Mach2 | Defect) * P(Defect)
P(Mach2)

05 * 0.01

P(Defect | Mach2) = oA =0.0125

P(Defect | Mach2) =

Machine Learning, Fall

Naive Bayes

P(Mach2 | Defect) * P(Defect)m
P(Defect | Mach2)z —————————————————— %

P(MachZ)m

Let’s look at an example:

1000 wrenches

4£00 came from Mach2

1% have a defect=10

of them 50% came from Mach2=5

% defective parts from Mach2 = 5/400 = 1.25%

Machine Learning, Fall

Naive Bayes
- cnassmcaaorr

Salary E m
i Likelihood i ili
A Drives Posterior Probability SELES ey Faceelty
= . G o \ l /
LH

P(X\Walks) * P(Walks
e % P(Walks|X) = & JE()
op

+ o P (X)
& L op
+
+ 1\ \
M L New data point
- E Marginal Likelihood

Age
Likelihood Prior Probabili
Posterior Probability E l m ; robability

P(X|Drives) * P(Drives
P(Drives|X) = (1) * P()

P(Walks|X) v.s. P(Drives|X) P(X)\
EMarginal Likelihood

Machine Learning, Fall

Naive Bayes
- cassmnreatonm

#1. P(Walks)
.
A g, S Number of Walkers
3 % - P(Walks) = :
L Total Observations
s * ¥ "
¢ 8 T % e 10
waks ¥ e s ¥ P(Walks) = 5
& L A - . L
= =2
=
Age
Prior Probability

Machine Learning, Fall

Naive Bayes
- classmicatonm

#2. P(X)
Drives

A + P(X) Number of Similar Observations
qp b — .
¥ ¢ g b Total Observations
o gp dp o qp
. TN * N = + 4
Walks ” ; 1:\4}, & P(X):—
' 30
B s \ + ’ L
& ==]
hl s
>
Age
Imaginary circle with radius you decide but,this -
radius effect the scores, of course naive bayes Marglnal
accept an optimize radius and make calculations. Likelihood

Machine Learning, Fall

Naive Bayes
- cassmreatonm

#3. P(X|Walks)

A PIges Number of Similar
Observations
A th ho Walk
' = P(X|Walks) = mong those who Wa
Walks ¥ l{'," Y Total number of Walkers
) 3
o S P(X|Walks) = —
o o 10
5
Age
Likelihood

Machine Learning, Fall

Naive Bayes

Likelihood | Prior Probabilit
Posterior Probability M \ ﬂ) rekaRIlly

PWalks|x) =030 _ .75

Marginal Likelihood

Machine Learning, Fall

Naive Bayes

m Posterior Probability E LikelIood m 7Probability
\ P(X|Drives) = P(Drives
P(Drives|X) = & PEX) ()

M arginal Likelihood

L|kel|hood P Probabilit
Posterior Probability M m rior Probability

k
P(Drives|X) = 20430 — 025 °

M Marginal Likelihood

Machine Learning, Fall

Naive Bayes

e
o I
e

+ 5

i e

o
T o=

oar
e ok
. o r
+ * o=
9F dk +
N
o
New data point

S
Age

Machine Learning, Fall

Decision Tree

Regression
Trees

Machine Learning, Fall

Decision Tree

Machine Learning, Fall

Decision Tree
W

The point is that decision trees are though a very simple tool.

They aren't very powerful on their own but they're used in other methods that
leverage their simplicity and create some very powerful machine learning

algorithms and such algorithms even are used to perform facial recognition
like on your iPhone.

It is quite a simple method but at the same time it lies in the foundation of
some of the more modern and more powerful methods in machine learning.

. __|
Machine Learning, Fall

Random Forest
- classmiatornr

STEP 1: Pick at random K data points from the Training set.

¥

STEP 2: Build the Decision Tree associated to these K data points.

3

STEP 3: Choose the number Ntree of trees you want to build and repeat STEPS 1 & 2

3

STEP 4: For a new data point, make each one of your Ntree trees predict the category to
which the data points belongs, and assign the new data point to the category that wins
the majority vote.

Machine Learning, Fall

Random Forest

Machine Learning, Fall

Random Forest
L I1ASSITICAIIO)]

No Joystick
No Steering
wheel

Machine Learning, Fall

Random Forest

Real-Time Human Pose Recognition in Parts from Single Depth Images

Jamie Shotton Andrew Fitzgibbon

Richard Moore

Mat Cook
Alex Kipman

Toby Sharp Mark Finocchio

Andrew Blake

Microsoft Research Cambridge & Xbox Incubation

Abstract

We propose a new method to quickly and accurately pre-
dict 3D positions of bedy joints from a single depth image,
using no temporal information. We take an object recog-
nition approach, designing an intermediate body parts rep-
resentation that maps the difficult pose estimation problem
into a simpler per-pixel classification problem. Our large
and highly varied training dataset allows the classifier to
estimate body parts invariant to pose, body shape, clothing,

etc. Finally we generate confidence-scored 3D proposals of

several body joints by reprojecting the classification result
and finding local modes.

The system runs at 200 frames per second on consumer
hardware. Our evaluation shows high accuracy on both
synthetic and real test sets, and investigates the effect of sev-
eral training parameters. We achieve state of the art accu-
racy in our comparison with related work and demonstrate
improved generalization over exact whole-skeleton nearest
neighbor matching.

1. Introduction

Robust interactive human body tracking has applica-
tions including gaming, human-computer interaction, secu-
rity, telepresence, and even health-care. The task has re-
cently been greatly simplified by the introduction of real-

time denth cameras [1 However even

& P“ e
‘ &L_\‘_ 7

depthimage =% bodyparts = 3D joint proposals

Figure 1. Overview. From an single input depth image, a per-pixel
body part distribution is inferred. (Colors indicate the most likely
part labels at each pixel, and correspond in the joint proposals).
Local modes of this signal are estimated to give high-quality pro-
posals for the 3D locations of body joints, even for multiple users.

joints of interest. Reprojecting the inferred parts into world
space, we localize spatial modes of each part distribution
and thus generate (possibly several) confidence-weighted
proposals for the 3D locations of each skeletal joint.

We treat the segmentation into body parts as a per-pixel
classification task (no pairwise terms or CRF have proved
necessary). Evaluating each pixel separately avoids a com-

\

&R0 - D
¥ R /oA i

/'o’; 4. LEX TN u
4
nivie e i

synthetic (train & test)
real (test)

Figure 2. Synthetic and real data. Pairs of depth image and ground truth body parts. Note wide variety in pose, shape, clothing, and crop.

simplify the task of background subtraction which we as-
sume in this work. But most importantly for our approach,
it is straightforward to synthesize realistic depth images of
people and thus build a large training dataset cheaply.

2.2. Motion capture data

The human body is capable of an enormous range of
poses which are difficult to simulate. Instead, we capture a
laree database of motion canture (mocan) of human actions.

igure 3. Depth image features. The yellow crosses indicates the
xel x being classified. The red circles indicate the offset pixels
i defined in Eq. 1. In (a), the two example features give a large
:pth difference response. In (b), the same two features at new
aage locations give a much smaller response.

arts for left and right allow the classifier to disambiguate
ie left and right sides of the body.

Of course, the precise definition of these parts could be
1anged to suit a particular application. For example, in an
pper body tracking scenario, all the lower body parts could

2 maarrad Darts chanld ha coffaiantlas cman 1 4 namiieatals:

tree 1

the appearance variations we hope to recognize at test time.
While depth/scale and translation variations are handled ex-
plicitly in our features (see below), other invariances cannot
be encoded efficiently. Instead we learn invariance from the
data to camera pose, body pose, and body size and shape.
The synthesis pipeline first randomly samples a set of
parameters, and then uses standard computer graphics tech-

niques to render depth and (see below) body part images
Frnrn taviiaea mmanna A 2N vmachan

Tha snnacn o vataeeat

Lx) %)

tree T

I Pi() P’(C)“L.l

Figure 4. Randomized Decision Forests. A forest is an ensemble
of trees. Each tree consists of split nodes (blue) and leaf nodes
(green). The red arrows indicate the different paths that might be
taken by different trees for a particular input.

3.3. Randomized decision forests

Randomized decision trees and forests [*°, (), ’,] have
proven fast and effective multi-class classifiers for many
tasks [1), 24, 0], and can be implemented efficiently on the
GPU [/]. As illustrated in Fig. 4, a forest is an ensemble
of T decision trees, each consisting of split and leaf nodes.

Machine Learning, Fall

Classification Models Performance

B -

False Positive
Y (Actual DV) " (Type | Error)
| #2 A.

#]/' #3

False Negative
(Type Il Error)

Machine Learning, Fall

Classification Models Performance

Confusion Mat

Y (Predicted DV)

False Positive
(Type | Error)

Calculate two rates

1. Accuracy Rate = Correct / Total
AR = 85/100 = 85%

>
(@]
E]
P
J
<
>

2. Error Rate = Wrong / Total
ER = 15/100 = 15%

False Negative
(Type Il Error)

Machine Learning, Fall

Classification Models Performance

Y (Predicted DV) Scenario I:

Accuracy Rate = Correct / Total
AR = 9,800/10,000 = 98%

Y (Actual DV)

Machine Learning, Fall

Classification Models Performance

Y (Predicted DV) You should not base your judgment just on accuracy right, because things like this can happen

and even though obviously you're not using a model any more which means that you're not
applying any kind of logic into your decision making process; your accuracy rate is going up, so
it's misleading you into a wrong conclusion that you should stop using models.

This effect is called the accuracy paradox.

Y (Actual DY)

Y (Predicted DV) Scenario I:

Accuracy Rate = Correct / Total
AR = 9,800/10,000 = 98%

Scenario 2:

Accuracy Rate = Correct / Total
AR = 9,850/10,000 = 98.5%'

S
(=]
T
=
3]
i
>

Machine Learning, Fall

Classification Models Performance

CAP Curve(Cumulative Accuracy
Pi purchased & Crystal Ball Good Model

100%
80%
60%
40% Poor Model
_— Random
0 —~ ' : -

0
0 1OA) 20% 40% 60% 80% 100% Total Contacted

Machine Learning, Fall

Classification Models Performance
N T T Ty —

Purchased , Perfect Model Good Model Purchased Perfect Model Good Model

/

100% -+ 100% -+

80% 80% -

60% -+

60% -+

40% +
40% +

Random Model
20% -

Random Model
20% -

0

0 20% 40% 60% 80% 100% Total Contacted

20% 40% 60% 80% 100% Total Contacted

0

0<AR<1

AR ~ 0 Very Bad Model
AR ~ 1 Very Good Model
AR = 1 Overfitting

Machine Learning, Fall

Purchased

100%
X%
80%
60%
40%
20%

0

Classification Models Performance

Perfect Model Good Model

F 9

Q0% < X < 100% Too Good
80% < X < 90% Very Good
70% < X < 80% Good
\ 60% < X < 70% Poor
Random Model X < 60% Rubbish

0 20% 40% 60% 80% 100% Total Contacted

Machine Learning, Fall

Classification Models Performance
evamaaorr ...

How do | know which model to choose for my
problem ?

You first need to figure out whether your problem is linear or non linear.

If your problem is linear, you should go for Logistic Regression or SVM.7
If your problem is non linear, you should go for K-NN, Naive Bayes, Decision Tree or Random Forest.

Logistic Regression or Naive Bayes when you want to rank your predictions by their probability. For example if you want to rank
your customers from the highest probability that they buy a certain product, to the lowest probability. Eventually that allows you to
target your marketing campaigns. And of course for this type of business problem, you should use Logistic Regression if your
problem is linear, and Naive Bayes if your problem is non linear.

SVM when you want to predict to which segment your customers belong to. Segments can be any kind of segments, for example
some market segments you identified earlier with clustering.

Decision Tree when you want to have clear interpretation of your model results.

Random Forestwhen you are just looking for high performance with less need for interpretation.

. __|
Machine Learning, Fall

See You Next Week :)

Next Week Topic :
Clustering

Python Codes (Regression /
Classification)

Machine Learning, Fall

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52

