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Problem StatementProblem Statement

Injection pipette
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Designing Minimally Invasive Mercury-Free µµµµ−−−−drill  

for Micro Injection

Micro Injection Experiment

Medium

CellmembraneZona

Holding 

pipette



What is MicroWhat is Micro--Injection?Injection?

Zona 

Zona

Micro injection is a method widely used in cell biology.

•ICSI

(Intracytoplasmic sperm 
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Zona 

penetration

Taking out the 

dissected zona

Oolemma 

Penetration 

Injection

•Nuclear Transfer for cloning.

(Intracytoplasmic sperm 

injection).



Current SetupCurrent Setup

(for mouse ICSI)

Manipulator drive signal
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Current Feedback & Controller



DisadvantagesDisadvantages

• Piezo-ICSI needs to have highly toxic 
mercury to increase success rate. 
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• The operation is highly dependent on 
human expertise.

• Piezo-ICSI devices are considerably 
expensive



Amplitudes of the oscillations without mercuryAmplitudes of the oscillations without mercury
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Why does mercury increase the success rate ?Why does mercury increase the success rate ?



Amplitudes of the oscillations with mercuryAmplitudes of the oscillations with mercury
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E : Young’s Modulus

I : Bending moment of inertia 

ρ : Mass per unit length

V : Shear force  

M : Moment

w : Deformation function

Euler methodEuler method
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Euler methodEuler method

Separation of variables
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Mode shapesMode shapes
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Galerkin methodGalerkin method

• In this method two different models are analytically studied. The

only difference between them is the existence of the mercury.

• The aim of this analysis is to simulate the difference between the

transverse micro-dynamics of the drawn sections with and without the

mercury.
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mercury.

• In these simulations, different from the Euler method an impulse

force is applied very close to the base of the drawn section.



Simulation modelsSimulation models

Rigid part

Glass pipette shoulder 

Flexible section

drawn pipette

(1 cm length,   Simulation model Simulation model 
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Galerkin MethodGalerkin Method

dx
y

x

z

l

∑φ=
n

∫ 








∂

∂
ρ=

L

0

2

dx
t

y

2

1
T ∫ 









∂

∂
=

L

0

2

2

2

dx
x

y
EI

2

1
U

Kinetic energy Potential energy

Deformation function

11/24/2010 13

∑
=

φ=
n

1i

ii )t(q)x()t,x(y

∫ δ=φρφ
L

0

ijiji Ndx)x()x( ∫ δ=φφ
L

0

iji

``

j

``

i Sdx)x()x(EI

Ortogonality conditions between the mode shapes

∑
=

=
n

1i

2

iiqN
2

1
T & ∑

=

=
n

1i

2

iiqS
2

1
U

E : Young’s Modulus

I : Bending moment of inertia 

ρ : Mass per unit length

φi(x) : Mode shape for the ith mode of 

vibration.  

qi(t) : Time dependent generalized 

coordinate for the ith mode



Galerkin MethodGalerkin Method
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Galerkin methodGalerkin method
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Motion of the MicroMotion of the Micro--Pipette Pipette 

• The flexible pipette shows extensive lateral oscillations [1,2]. 

•The mercury increases the mass of the drawn section. Amplitudes of 

the lateral oscillations of the pipettes without the mercury are 

significantly higher than with the mercury [1,2]. 
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significantly higher than with the mercury [1,2]. 

•The natural frequencies of the pipette filled with the mercury are 

lower than the natural frequencies of the pipette without the mercury 

[1,2].

[1] Kerem Ediz, Nejat Olgac, “Micro-dynamics of the piezo-driven pipettes in ICSI”, Biomedical Engineering, IEEE Transactions 

on ,Volume:51 

[2] K. Ediz, N. Olgac, “Effect of Mercury Column on the Microdynamics of the Piezo-Driven Pipettes”, ASME Journal of Biomechanical 

Engineering, Vol. 127, pp. 531-535, June 2005)



Natural FrequenciesNatural Frequencies
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GoalGoal
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Rotationally Oscillating DrillRotationally Oscillating Drill RosRos--DrillDrill©©



Rotationally Oscillating Drill  Rotationally Oscillating Drill  RosRos--DrillDrill©©
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Rotation Profile

Pipette Tip

ω±

ROocyte

Zona

Whirling.

Eccentric

(in the air)

ω±

"Snake"ing
action with
eccentricity

3.06 3.065 3.07 3.075 3.08 3.085 3.09
-1

-0.8

-0.6

-0.4

Time (sec)



RosRos--DrillDrill©© Assembly and ControllerAssembly and Controller
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Flowchart of the Flowchart of the 

controller programcontroller program

21



Controller DesignController Design

22



Modes of OperationModes of Operation

1.1. Sperm head Sperm head 

isolationisolation
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2.2. Oocyte membrane  Oocyte membrane  

piercingpiercing



1. Sperm Head1. Sperm Head--Tail SeparationTail Separation

Sperm heads isolated 

using bidirectional

rotational pulse
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2. Oocyte Membrane Piercing2. Oocyte Membrane Piercing

Reference Reference and and ActualActual Rotational Oscillatory TrajectoriesRotational Oscillatory Trajectories
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Drilling ProtocolDrilling Protocol

1. Hold the egg with holding pipette1. Hold the egg with holding pipette

2. Set the parameters2. Set the parameters

i)   Dimple depth (i)   Dimple depth (δδ)   )   -- 90% of oocyte size90% of oocyte size

ii)  Rotation angle amplitude (ii)  Rotation angle amplitude (θθ) ) -- ~0.6~0.6--1.2 deg (pp)1.2 deg (pp)
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ii)  Rotation angle amplitude (ii)  Rotation angle amplitude (θθ) ) -- ~0.6~0.6--1.2 deg (pp)1.2 deg (pp)

iii) Rotation Frequency (f)iii) Rotation Frequency (f)-- 100100--500 Hz500 Hz

iv) Rotation acceleration time (Tiv) Rotation acceleration time (T00))-- 0.6 sec0.6 sec

v)  Duration (Tv)  Duration (T11))-- up to 3 secup to 3 sec

3. Create a dimple3. Create a dimple

4. Push the button and apply rotational oscillation with some 4. Push the button and apply rotational oscillation with some 
negative suction until successful piercing negative suction until successful piercing 



Drilling Protocol Drilling Protocol cont’dcont’d

Oolemma pierced 

rotational oscillations
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Prototype and Experimental SetupPrototype and Experimental Setup

Controller

Drill

28
Footswitch



Prototype cont’dPrototype cont’d

Controller

Drill

User Interface
Drill
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Footswitch

Micro-motor Coupling
Pipette holder

Pipette Bearings Tubing



Preliminary ExperimentsPreliminary Experiments

•Different pipette geometries
Flat

30

Conducted in Center for Regenerative Biology, 

Department of Animal Science, UCONN and 

Shriners Hospital for Children, Boston.

Jagged

Beveled

•Operational parameters.

(A, f, T0,T1 )



Preliminary Experiments Preliminary Experiments cont’dcont’d
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Oocytes were collected from female B6D2F-1 strain mice, 10 weeks old, superovulated with 7.5 IU PMSG and 7.5 IU hCG 

at 48-hour intervals, and sacrificed 14 hours after hCG injection. Embryo were cultured in CZB-G medium at 37°C in an 

atmosphere of 5% CO2.

A=0.6ο , f=100 Hz, T0 =0.5 sec and T1 =1 sec



Extensive Biological ExperimentsExtensive Biological Experiments

Success RateSuccess Rate

•Verification

32
A=0.3ο , f=500 Hz, T0 =0.5 sec

Conducted at the University of California, Davis by a biologist.

•Verification

•Comparison



NumberNumber ofof ovaova thatthat survived,survived, developeddeveloped toto 22--cellcell embryosembryos andand blastocystblastocyst afterafter injectioninjection ofof
spermsperm headsheads usingusing eithereither RosRos--DrillDrill--ICSIICSI oror PiezoPiezo--ICSIICSI.. TheThe spermsperm headsheads werewere separatedseparated

Experimental ResultsExperimental Results
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spermsperm headsheads usingusing eithereither RosRos--DrillDrill--ICSIICSI oror PiezoPiezo--ICSIICSI.. TheThe spermsperm headsheads werewere separatedseparated
byby freezefreeze--thawingthawing inin NaNa--EGTAEGTA mediummedium

Development of embryos (2Development of embryos (2--cell stage through blastocysts) after 96 hours of in vitro cell stage through blastocysts) after 96 hours of in vitro 
culture after injection of sperm heads using either culture after injection of sperm heads using either RosRos--DrillDrill--ICSI ICSI or or PiezoPiezo--ICSIICSI. . 



Development of embryos (2Development of embryos (2--cell stage through blastocysts) after 96 hours of in vitro culture. cell stage through blastocysts) after 96 hours of in vitro culture. 

Experimental Results cont’dExperimental Results cont’d
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Development of embryos (2Development of embryos (2--cell stage through blastocysts) after 96 hours of in vitro culture. cell stage through blastocysts) after 96 hours of in vitro culture. 
Sperm heads were isolated by freezeSperm heads were isolated by freeze--thaw in thaw in HCZB medium, NaHCZB medium, Na--EGTA medium and RosEGTA medium and Ros--Drill Drill 
pulses.pulses.

Number of pups born and weaned after embryo transfer of blastocysts ; sperm heads were Number of pups born and weaned after embryo transfer of blastocysts ; sperm heads were 
isolated by freezeisolated by freeze--thaw in thaw in HCZB medium, NaHCZB medium, Na--EGTA medium and RosEGTA medium and Ros--Drill pulsesDrill pulses..



Experimental Results cont’dExperimental Results cont’d
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13 days old pups and 

surrogate mother

8 days old pups and 

surrogate mother


