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Bir psikolog fizikcileri nicin kiskanir......

1964

THE MATHEMATICS USED IN MATHEMATICAL PSYCHOLOGY

R.Duncan Luce R. DUNCAN LUCE, University of Pennsylvania
i Introduction. The main issue in applying mathematics to psychological prob-
1925-2012

lems today, and most likely for some time to come, is the formulation of these
problems i in mathematical terms. The sc-lutmn of difficult but well-formulated

li roblems in terms
of precise and well-confirmed theories are more secondary efforts. We do not
yet have the basic concepts and variables staked out in a way that makes the
introduction of mathematics the relatively straightforward business that it has
become in much of physical science. We are in a situation somewhat analogous

to sixteenth, or hopefully seventeenth, century physics, but the analogy is far
Wmﬂﬂe—mmmﬁﬁmwﬁw

and always slow, to isolate and purify the fundamental variables from the
(1 myriad, vague, commonsense psychological ideas and concepts. We differ in the "\
range of techniques available to us. The modern electronics technology, includ-
ing high speed computers, provides us with a control over experimental condi-
tions and a computational capacity for data analysis incomparably more ex-
tensive and subtle than those with which the early physicists had to contend.
In addition, most of the mathematics and statistics we now use was quite un-

\_known three centuries ago. )




Biyologlar da kiskanmakta....

Biochemisiry { Moscow), Vol. 69, No. 12, 2004, pp. 1403-1406.
Copyright © 2002 by CELL PRESS.

DISCUSSIONS

Can a Biologist Fix a Radio? —
or, What I Learned while Studying Apoptosis

Yuri Lazebnik

Y. Lazebnik

Cold Spring Harbor Laboratory, Cold Spring Harbor,
New York 11724, USA; E-mail: lazebnik @cshl.org

This article by Yu. Lazebnik, “Can a Biologist Fix a Radio? — or, What I Learned while Studying Apoptosis™ has already been
published in English (Cancer Cell, 2002, 2, 179-182) and in Russian ( Uspekhi Gerontologii, 2003, No. 12, 166-171). Nevertheless, we
have undertaken its secondary publication in our journal for two reasons: first, ourjournal has different readers, and, second, the great
significance of this manifest of Yuri Lazebnik. The author in bright and clever form shows the emerging necessity to create formal-
ized language designed to describe complicated systems of regulation of biochemical processes in living cells. The article is published
with permission of Cancer Cell and Uspekhi Gerontologii.

Editor-in-Chief of Biokhimiya/Biochemistry { Moscow) V. P. Skulachev

http://www.onclive.com/publications/Oncology-live/2012/january-2012/5-Questions-for-Yuri-Lazebnik-PhD



Matematik: Doganin kitabinin dili

Galileo Galilei
1564-1642
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Isaac Newton
1643-1727
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Antikythera Diizenegi MO 150-100

Leibniz Carki 1673

https://en.wikipedia.org/wiki/Antikythera_mechanism https://en.wikipedia.org/wiki/Leibniz_wheel https://en.wikipedia.org/wiki/Analytical_Engine
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MIND
A QUARTERLY REVIEW
OF :

PSYCHOLOGY AND PHILOSOPHY

I COMPUTING MACHINERY AND
' INTELLIGENCE

By A M. Turixg

1. The Imitation Game.

I prorosE to consider the question, ‘ Can machines think ?°
This should begin with definitions of the meaning of the terms
‘machine *and ‘ think '. The definitions might be framed so as to
reflect so far as possible the normal use of the words, but this
attitude is dangerous. If the meaning of the words ‘ machine’
and ° think ’ are to be found by examining how they are commonly
used it is difficult to escape the conclusion that the meaning
and the answer to the question, ‘ Can machines think ? " is to be
gought in a statistical survey such as a Gallup poll. But this is
absurd. Instead of attempting such a definition I shall replace the
question by another, which is closely related to it and is expressed
in relatively unambiguous words,

The new form of the problem can be described in terms of
a game which we call the ‘imitation game’. It is played with
three people, a man (A), a woman (B), and an interrogator (C) who
may be of either sex. The interrogator stays in a room apart
from the other two. The object of the game for the interrogator
i8 to determine which of the other two is the man and which is
the woman. He kmows them by labels X and Y, and at the end
of the game he says either ‘X is Aand Yis B’ or ‘XisBand Y
is A’ The interrogator is allowed to put questions to A and B
thus :

C: Will X please tell me the length of his or her hair %

Now suppose X is actually A, then A must answer. It is A's
28 433

Alan Turing
1912-1954

Insan tarzi zekayl mekaniklestirme
olasiligi

Makineler distnebilir mi? Sorusu
yerine Turing testi

‘Zeki’ bilgisayara ulasma olasigi aleyine
savlar

Yetiskin zihnini taklit etme yerine cocuk
zihnini taklit eden programi egitme



Yapay Zeka Dartmouth Yaz okulu 1956
- -__ "
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Walter Pitts: Sayin Farley, Clark, Selfridge ve Dinneen sinir sistemini
taklit ederlerken, Sayin Newell, geleneksel olarak zihin denilen, nihai
sebepler, sebepler hiyerarsisini taklit etmeyi tercih ediyor. Sonunda
hepsi hi¢c stiphesiz ayni kapiya cikacak. *

https://medium.com/h-farm-industry/ai-glossary-1bcdd483f12a *N.J. Nilsson,’Yapay Zeka’ Bogazici Universitesi Yayinlari



Perceptron 1958
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Giri Katmani o L
Ka‘rmim Girig Birinci Cikis Frank Rosenblatt
Katmani Katman Katmani
1928-1971

Sabit agirliklar, Baglanti agirliklart,

sabit fonksiyonlar egitim kimesi ile
belirlenen tek bir néron
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ADALINE-MADALINE 1960
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Fig. 8. Two-Adaline form of Madaline.
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Example two-layer backpropagation network architecture,

https://www.researchgate.net/figure/ADALINE-An-adaptive-linear-neuron-Manually-adapted-synapses-Designed-and-built-by-Ted _fig2 26578943
Widrow lLehr 30 Years of Adaptive Neural Networks: Percentron Madaline and Backnronasation Proc of IEEE 1990



Neocognitron 1983
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Fig. 1. Comparison between hierarchical model by Hubel and Wiesel and structure of neural network of neccognitron.

828 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. SMC-13, NO. 5, SEPTEMBER /OCTOBER 1983
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Fig. 2. Schematic diagram illustrating synaptic connections between layers in neocognitron.
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Fig. 3. One-dimensional view of interconnections between cells of dif- employed in neocognitron
ferent cell planes. Only one cell plane is drawn in each layer.
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Fig. 4. Input-to-output characteristics of § cell: typical example of cells
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Fig. 5. Synaptic connections converging to § cell.



Yinelemeli Ag- Recurrent Neural network 1990

Jeffrey L. Elman
1948-2018
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Figure 6. Graph of rcot mean squared error in letter-in-word precition task.



Long-Short Term Memory 1997

TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2
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Figure 1. Detailed schematic of the Simple Recurrent Network (SRN) unit (left) and a Long Short-Term Memory block (right) as used in the hidden layers of
a recurrent neural network.

Greff, Klaus, et al. "LSTM: A search space odyssey." IEEE neural networks and learning systems (2017)

MDLSTM Feed MDLSTM Feed MDLSTM  Output Layer
4x4 cells Forward  4x20 Forward 4x100 1000 (Labels)
12xtanh cells 20xtanh cells

Fig. 5. The proposed 2D-LSTM architecture, with 4, 20 and 100 hidden layers. The 4 different colors in hidden layers; represent the direction in which pixel
value has been read. Each cell is fully connected with all cells in the next layer.

Ahmad, Riaz, et al. "Scale and rotation invariant OCR for Pashto cursive script using MDLSTM network." 2015

Jurgen Schmidhuber
1963



Katlamali Ag Yapilari — Convolutional Neural Networks

ImageNet Classification with Deep Convolutional
Neural Networks 2012

Alex Krizhevsky Ilya Sutskever Geoffrey E. Hinton
University of Toronto University of Toronto University of Toronto
kriz@cs.utoronto.ca ilya@cs.utoronto.ca hintonf@cs.utoronto.ca

Abstract

We trained a large, deep convolutional neural network to classify the 1.2 million
high-resolution images in the ImageNet LSVRC-2010 contest into the 1000 dif-
ferent classes. On the test data, we achieved top-1 and top-5 error rates of 37.5%
and 17.0% which is considerably better than the previous state-of-the-art. The
neural network, which has 60 million parameters and 650,000 neurons. consists
of five convolutional layers, some of which are followed by max-pooling layers,
and three fully-connected layers with a final 1000-way softmax. To make train-

ing faster, we used non-saturating neurons and a very efficient GPU implemen- G ff E H 1 t

tation of the convolution operation. To reduce overfitting in the fully-connected eo rey . I n O n
layers we employed a recently-developed regularization method called “dropout™

that proved to be very effective. We also entered a variant of this model in the 1 9 47
ILSVRC-2012 competition and achieved a winning top-5 test error rate of 15.3%.

compared to 26.2% achieved by the second-best entry.

» e
: \
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1000
128 Max tom L
Max Max pooling 2 2048
pooling pooling
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Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253.440-186.624-64,896-64,896-43.264—
4096-4096-1000.



EVIEW

d01:10.1038/nature14539

Deep learni

Yann LeCun'?, Yoshua Bengio® & Ge

Deep learning allows computati
datawith multiple levels of abst:
ognition, visual object recognitic
learning discovers intricate struc
should change its internal param
the previous layer. Deep convoh
audio, whereas recurrent nets h:

REVIEW

Vision Language
Deep CNN Generating RNN
® ~ A group of people
—® - shopping at an outdoor
® ~ - ® market.
o - -® There are many
® vegetables at the
® fruit stand.

A woman is throwing a frisbee in a park. A dog is standing on a hardwood floor. A stop sign is on a road with a
mountain in the background

A little girl sitting on a bed with a teddy bear. A group of people sitting on a boat in the water. A giraffe standing in a forest with
trees in the background.

Figure 3 | From image to text. Captions generated by a recurrent neural with permission from ref. 102. When the RNN is given the ability to focus its
network (RNN) taking, as extra input, the representation extracted by a deep attention on a different location in the input image (middle and bottom; the
convolution neural network (CNN) from a test image, with the RNN trained to lighter patches were given more attention) as it generates each word (bold), we
‘translate’ high-level representations of images into captions (top). Reproduced ~ found™ that it exploits this to achieve better ‘translation’ of images into captions.



ARTICLE

doi:10.1038/ nature 16961

Mastering the game of Go with deep
neural networks and tree search

David Silver'*, Aja Huang'*, Chris J. Maddison!, Arthur Guez!, Laurent Sifre!, George van den Driessche!,

Julian Schrittwieser!, Inannis Antonoglou!, Veda Panneershelvam’, Marc Lanctot, Sander Dieleman’, Dominik Grewe!,
John Nham?, Nal Kalchbrenner!, Ilya Sutskever?, Timothy Lillicrap', Madeleine Leach!, Koray Kavukcuoglu',

Thore Graepel' & Demis Hassabis'

The game of Go has long been viewed as the most challenging of classic games for artificial intelligence owing to its
enormous search space and the difficulty of evaluating board positions and moves. Here we introduce a new approach
to computer Go that uses ‘value networks’ to evaluate board positions and ‘policy networks’ to select moves. These deep
neural networks are trained by a novel combination of supervised learning from human expert games, and reinforcement
learning from games of self-play. Without any lookahead search, the neural networks play Go at the level of state-
of-the-art Monte Carlo tree search programs that simulate thousands of random games of self- play. We also introduce a
new search algorithm that combines Monte Carlo simulation with value and policy networks. Using this search algorithm,
our program AlphaGo achieved a 99.8%, winning rate against other Go programs, and defeated the human European Go
champion by 5 games to 0. This is the first time that a computer program has defeated a human professional player in the
full-sized game of Go, a feat previously thought to be at least a decade away.

1997°de Garry Kasparov Deep Blue’ya karsi kaybettiginde [IBM’in
aciklamasi: Deep Blue, yapay zeka kullaniyor mu? Kisaca yanit ‘hayir’dir.
Insan disinisini taklit etmeye calisan eski bilgisayar tasarimlari, bu
iste pek iyi degildi. Sezgilere karsilik gelen bir formul yok... Deep Blue
daha cok hesaplama glicline, ayrica basit arama ve degerlendirme
islevlerine dayanir. .... Deep Blue ugrassa bile asla bir HAL-9000 olamaz.
Hatta Deep Blue, ‘ugrasmak’ ne demek onu da bilmez. *

*N.J. Nilsson,’Yapay Zeka’ Bogazici Universitesi Yayinlari
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Dopamine neurons report an error in
the temporal prediction of reward
during learning

Jeffrey R. Hollerman!-2 and Wolfram Schultz!

! Institute of Physiology, University of Fribourg, CH- 1700 Fribourg, Switzeriand
< Present address: Department of Psychology, Allegheny Collcge, Meadville, Pennsylvania, 16335, USA
Correspondence should be addressed to WS,  Wolfram. Schultz @ unifreh)

Many behaviors are affected by rewards, undergoing long-term changes when rewards are different
than predicted but remaining unchanged when rewards occur exactly as predicted. The discrepancy
between reward occurrence and reward prediction is termed an “error in reward prediction’.
Dopamine neurons in the substantia nigra and the ventral tegmental area are believed to be
involved in reward-dependent behaviors. Consistent with this role, they are activated by rewards,
and because thev are activated more stronalv by unpredicted than bv predicted rewards thev mav
play a role in learning. The present study investigated whether monkey dopamine neurons code an
error in reward prediction during the course of learning. Dopamine neuron responses reflected the
changes in reward prediction during individual learning episodes; dopamine neurons were activated
by rewards during early trials, when errors were frequent and rewards unpredictable, but activation
was progressively reduced as performance was consolidated and rewards became more predictable.
These neurons were also activated when rewards occurred at unpredicted times and were depressed
when rewards were omitted at the predicted times. Thus, dopamine neurons code errors in the pre-
diction of both the occurrence and the time of rewards. In this respect, their responses resemble the
teaching signals that have been employed in particularly efficient computational learning models.

Received: 24 November 1997 / Accepted: 30 April 1998



Pekistirmeli Ogrenme — Bir Hesaplamali Model

Neuronlike Adaptive Elements That Can Solve

Difficult Learning Control Problems

ANDREW G RARTO. memeer. 1eEe. RICHARD S. sUTTON. . the pole under the conditions usually assumed by control

Abstract—1t is
adaptive elements ¢
to balance a pole th
cart’s base. It is as
system are not knov
a failure signal that
vertical, or the cart

Manuscript recei
was supported by
Laboratory under C

The authors are
Science, University
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Fig. 3. ASE and ACE configured for pole-balancing task. ACE receives same nonreinforcing input as ASE and uses it to
compute an improved or internal reinforcement signal to be used by ASE.
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Dopamin noronlari odulu ongoruyor — bir hesaplamali model
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W.Schultz,P.Dayan, R.E. Montague 1997, Science R.E. Suri, W.Schultz, 1998, Exp Brain Res



Hlcre davranislarini aciklayacagimiz bir matematik ara¢ var mi?

Dallanma (Bifurcation
Periodic Spiki F‘JF‘— ( )
eriodic Spiking
., dx
turbat iy — = f (X), X e Rn
Neural Excitability _/J dt
M i~ dx
Periodic Bursting - £ f (X,Ol), X € Rn’ o= Rm
dt
= (a) resting (b) excitable (c) periodic spiking
- . .
3 Dallanma: Bir parametrenin
1= ik v X a9
2 SPe degisimi ile topolojik olarak
g e / esdeger olmayan durum
§ F’Tﬁp " Ve //// portresinin olusumuna
time, t “ ” -
stimulus — A B dallanma denir.
stimuli
= spike
FNI— A8
+
=

membrane potential, V

E.M. Izhikevich, “Neural exciability, spiking and bursting ”, Int.J.Bif. and Chaos, vol. 10,n0.6, 2000



Matematik sinirbilimde ise yariyor mu, nasil?

Activity Patterns in a Model for the Subthalar

the Basal Ganglia

D. Terman,’ J. E. Rubin,® A. C. Yew," and C. J. Wilson?

Antonio, San Antonio, Texas 78249

2066 J. Neurosci., April 1, 2002, 22(7):2063-2976 Terman et al. « Subthalamopalidal Actwity Pattamns.
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Figure 1. Properties of STN model neuron. a, Current as a function of voltage. For fixed voltages, steady-state currents were computed with slow gating
wvariables set to their limiting values [X — X_(v); sec Matcrials and Methods]. In this and all subsequent figures, omitted units are as in Tables 1 and 2.
b, Membrane potential of a model STN cell under various current injections. The parameter gy, has been set to 0 to mimic the behavior of an STN cell
in the presence of sufficient concentration of TTX to block spiking. <, Splkc frequency as a function of injected current (solid line, full model; dorted line,
Sanp = 0; dashed line, g, = gy = 0). d, Duration of after high-freq 'y spiking. A constant current pulse was applied to a model
STN cell for 500 msec. After this, a prolonged afterhyperpolarization occurred before the cell returned to regular spiking. Its duration is plotted against
the strength of applied current. ¢, f, STN rebound bursts after hy e, Mode of STN cell to currents of varying duration:
25 pA/um? of current applicd for 300 (top), 450 (middle). and 600 (bottom) msec. Longer current icatis ivation of Iy,
rcbuund . Responses to mncnls of varying magnitude: 20 (top), 30 (middle), and 40 (bottorn) pA/um? of current applied for 300 mscc. Stronger current
ion of Iy, ing rebound.

2 The Ohio State University, Columbus, Ohio 43270
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Figure 4. Mechanisms underlying episodic activity patterns. The gray
trace in the top bor shows the evolution of voltage over time for a single
GPe cell in an episodic pattern, whereas the black srace shows the voltage
for a single STN cell. The bores below show the intracellular calcium
concentration of each cell as a function of time. Initially, GPe spikes
closely follow STN spikes. Here [, is sufficicnily strong such that the
build-up of calcium terminates the GPe activity of the cell eventually,
after which the STN cell fires one last volley of rebound spikes until about
2600 msec. Subsequent decay of calcium allows STN activity to resume
after time 3200 msec; this recruits the GPe cell again.
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Figure 3. Activity patterns in a random, sparscly connected architecture. a, Arrangement of the model network. Each STN nearon excites a single GPe
neuron sclected at random, and each GPe ncuron inhibits three randomly chosen STN cells. GPe cells also inhibit cach other through all-to-all
connections. b, D o of activity p on i hsge .a andgs_.(« Weak STN— GPe excitation or strong GPe— GPe inhibition leads
o sparse mtgular firing patterns. Intermediate values 1 vxcld cplsod«: patterns, whereas high levels of excitation and low levels of GPe mutual inhibition
give rise to continuous uncorrelated activity. ¢, Mcmbranc potential (in mxlh\ulls) as a function of time (mxlhsccunds) for individual cells in cach of the

activity patterns: sparse au' ity (2c. .(, = D%I\SIP =003 nSpm =25nS/jum? 3 Lapp = —1.2 pA/um %), episodic, a!mosl—synchronuod
spiking (gg_.qg =0 nS.pm 6 nS/pum 25 nS/um Lpp = PA/pm*), and conunuous irregular spiking (g . = 0.02 nSjum?;
8s.q =01 nSyym £c. 5 rLS'pm Top = 712 pA/um?). d, Network activity in various patterns. In each plot, 10 rows show the voltage traces

of 10 cells, with time evolving over 2000 mset to the nyxl along each row. Voltage is coded in grayscale as shown. Because they are so brief, individual
action potentials (dark gray line segments) are not prominent, but are more clearly indicated by their afterhyperpolarization (white bars).
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Striatal origin of the pathologic beta oscillations
in Parkinson’s disease

M. M. McCarthy*', C. Moore-Kochlacs®?, X. Gu™?, E. 5. Boyden®, X. Han® and N. Kopell®!

of Mathematics a isti oston University, Boston, MA 02215; "Department of Biomedical Engineering, Photonics Center,
Boston University, Boston, MA 02215; and “Media Lab, Massachusetts Institute of Technology, Cambridoe, MA 02139

A Normal striatum F Parkinsonian striatum
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Fig. 1. Beta osdllations emerge in the model striatum under normal con-
ditiors and become enhanced under parkirsonian conditions. A-F are taken
from the same 7-< simulation under normal conditions, and F</ are from the
same 7% simulation under parkinsonian conditions. (4) Raster plot of 100
reciprocally connected medium spiking neurons (MSMs) under normal, non-
parkinsonian conditions. (B) Power spectral dersity of the model LFP. (C)
Spectrogram of the model LFP. (D) Membrane voltage fluctuations from one
MSHN in the network. (E) Waxing and waning of the model LFP trace under
normal conditions. (F) Raster plot of 100 redprocally connected MSNs under
parkinsonian conditions. (G) Power spectral density of the model LFP. (H)
Spectrogram of the model LFP. () Membrane voltage fluctuations from one
MSHN in the parkinsonian network. () The model LFP trace under parkinsonian
conditions.

The results presented here highlight the powerful combination
of mathematical and experimental approaches in addressing
problems in systems neuroscience. Dynamics of biological sys-
tems do not readily vield to direct observation using even the
most sophisticated experimental approaches. We show here
that informed biophysical modeling can be highly predictive of
complex biological dynamics. Additionally, these findings also
have broad implications in understanding beta oscillations in
normal motor function as well as their inappropriate expression
in other disorders with striatal involvement.
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Neurogrid simulates one million
neurons with two subcellular
compartments each, a choice
motivated by neurophysiological
studies. Nonlinear interactions
between projections that
terminate in distinct cortical layers
have been replicated in a
pyramidal-cell model with just two
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firing patterns of various
pyramidal-cell types. Capturing
these behaviors using the smallest
number of compartments minimizes
the number of distinct ion-channel
populations that need to be
simulated, thereby maximizing the
number of neurons a model can
have.

and demonstrate their features with experimental results, measured from a wide range of
fabricated VLSI chips.
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grid simulates a million neurons connected by billions
synapses in real-time, rivaling a supercomputer while
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A reconfigurable on-line learnin
spiking neuromorphic processc
comprising 256 neurons and 12
synhapses
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FIGURE 12 | (A) Image classification example using inputs from a DVS.
(A) Top: neural network architecture. Two different classes of mages
{hare motorbikes or cars) are displayed on a screen with & amal jitter
sppled at 10Hz. A random subsat of the spikes emitted by the DVS
gre mapped fo 128 hidden layer neurons. Specifically, each of tha 128
naurone is connected to 64 randomly selected pixels with sither postive
or negative weights, ako set at random. The cutput newons n the last
layer recave spikes from all the 128 hiddan layer neurons, via plastic
syrapsee. The output leyer neurons are also driven by en extamnal

i trained neurons
s (motorbikes)
T

long-term plasticity
synapses

“teacher” signd which is comalated with one of the image classes. (A)
Bottom: diagram of tha ewpenmental protocal tmelne. Notice the
presenca of a saccade inhibition mechanism which electronically
suppressee OVS nput dunng & wirtual saccads, ie., when the displayed
image is replaced with the next one. (B) Synaptic matrices of the
ROLLS nawromorphic processor showing the herdwere configuration of
the classfication neural network. The STP syrapses reprecant the
synapses of the hidden layer; the LTP synapses represant the synapses
of the output layer.
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Fig. 3. Single-channel BG network, as exported from SpineCreator.
Rectangular boxes are neural populations. The population name, number of
elements, and SpineML component are shown in the box. Gray circles repre-
sent Poisson spike train sources. Green arrows are projections with element
to element connectivities that are parameterized as in the SpiNNaker-based
model and reported in Tables I-III. Projections with arrow heads are excita-
tory, those with circles for heads are inhibitory. The thinner, red lines which
connect populations to arrowheads connect the membrane voltage variable
v(f) [defined in (1)] in the efferent population to the synapse component in
each projection (on a one to one basis), allowing the synaptic current to be
computed.

Sen-Bhattacharya, B. et al. "Building a Spiking Neural Network Model of the Basal Ganglia on SpiNNaker." IEEE Cognitive and Developmental Systems (2018).
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Hareket Secimini Ogrenme
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Uyaran Hareket Seciminin Olusmasina dair bir Model
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Sekil 1: Odiile dayali eylem secimine iliskin model.

Ercelik ,Elibol &Sengbr, SiU, 2015,
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Sekil 4: (a): Talamus y1Zin modeli degerleri. (b): Duyu girisleri
ile duyu korteksi kanallan arasindaki baglanti agirhklary. (c):
Verilen odiil ile dopamin (DA) degerindeki degisim.
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Sekil 3: (a): Strniatum D1, (b): D2 néronlan vuru sayilan. (c):
Globus Pallidus Internal yigin modeli degerleri.
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