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14.1    Filter inductor design constraints

P
cu
= I

rms

2
R

Objective:

Design inductor having a given inductance L,

which carries worst-case current I
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 without saturating,

and which has a given winding resistance R, or, equivalently,

exhibits a worst-case copper loss of
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Example:  filter inductor in CCM buck converter



Assumed filter inductor geometry

Solve magnetic circuit:
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Usually Rc < Rg and hence



14.1.1    Constraint: maximum flux density

Given a peak winding current Imax, it is desired to operate the core flux

density at a peak value Bmax. The value of Bmax is chosen to be less

than the worst-case saturation flux density Bsat of the core material.

From solution of magnetic circuit:

Let I = Imax and B = Bmax :

This is constraint #1. The turns ratio n and air gap length lg are

unknown.

ni = BAcRg

nImax = Bmax AcRg = Bmax

lg
µ0



14.1.2 Constraint: inductance

Must obtain specified inductance L. We know that the inductance is

This is constraint #2. The turns ratio n, core area Ac, and air gap length

lg are unknown.

L = n2

Rg
=
µ0Ac n2

lg



14.1.3  Constraint: winding area

core window
area WA

wire bare area
AW

core

Wire must fit through core window (i.e., hole in center of core)

nAW

Total area of

copper in window:

KuWA

Area available for winding

conductors:

Third design constraint:

KuWA nAW



The window utilization factor Ku
also called the “fill factor”

K
u
 is the fraction of the core window area that is filled by copper

Mechanisms that cause K
u
 to be less than 1:

• Round wire does not pack perfectly, which reduces K
u
 by a

factor of 0.7 to 0.55 depending on winding technique

• Insulation reduces K
u
 by a factor of 0.95 to 0.65, depending on

wire size and type of insulation

• Bobbin uses some window area

• Additional insulation may be required between windings

Typical values of K
u
:

0.5 for simple low-voltage inductor

0.25 to 0.3 for off-line transformer

0.05 to 0.2 for high-voltage transformer (multiple kV)

0.65 for low-voltage foil-winding inductor



14.1.4  Winding resistance

The resistance of the winding is

where  is the resistivity of the conductor material, l
b
 is the length of

the wire, and A
W

 is the wire bare area. The resistivity of copper at
room temperature is 1.724 10–6 -cm. The length of the wire comprising

an n-turn winding can be expressed as

where (MLT) is the mean-length-per-turn of the winding. The mean-

length-per-turn is a function of the core geometry. The above

equations can be combined to obtain the fourth constraint:

R =
n (MLT)

AW

R =
lb

AW

lb = n (MLT )



14.1.5  The core geometrical constant Kg

The four constraints:

R =
n (MLT)

AW

KuWA nAW

These equations involve the quantities

Ac, WA, and MLT, which are functions of the core geometry,

Imax, Bmax , µ0, L, Ku, R, and , which are given specifications or

other known quantities, and

n, lg, and AW, which are unknowns.

Eliminate the three unknowns, leading to a single equation involving

the remaining quantities.

nImax = Bmax AcRg = Bmax

lg
µ0

L = n2

Rg
=
µ0Ac n2

lg



Core geometrical constant Kg

Ac
2WA

(MLT)
L2I max

2

Bmax
2 RKu

Elimination of n, lg, and AW  leads to

• Right-hand side: specifications or other known quantities

• Left-hand side: function of only core geometry

So we must choose a core whose geometry satisfies the above

equation.

The core geometrical constant Kg is defined as

Kg =
Ac

2WA

(MLT)



Discussion

Kg =
Ac

2WA

(MLT)
L2I max

2

Bmax
2 RKu

Kg is a figure-of-merit that describes the effective electrical size of magnetic

cores, in applications where the following quantities are specified:

• Copper loss

• Maximum flux density

How specifications affect the core size:

A smaller core can be used by increasing

Bmax  use core material having higher Bsat
R  allow more copper loss

How the core geometry affects electrical capabilities:

 A larger Kg  can be obtained by increase of

Ac  more iron core material, or

WA  larger window and more copper



14.2  A step-by-step procedure

The following quantities are specified, using the units noted:
Wire resistivity ( -cm)

Peak winding current I
max

(A)

Inductance L (H)

Winding resistance R ( )

Winding fill factor K
u

Core maximum flux density B
max

(T)

The core dimensions are expressed in cm:
Core cross-sectional area A

c
(cm2)

Core window area W
A

(cm2)

Mean length per turn MLT (cm)

The use of centimeters rather than meters requires that appropriate
factors be added to the design equations.



Determine core size

Kg

L2I max
2

Bmax
2 RKu

108 (cm5)

Choose a core which is large enough to satisfy this inequality

(see Appendix D for magnetics design tables).

Note the values of A
c
, W

A
, and MLT for this core.



Determine air gap length

with A
c
expressed in cm2. µ

0
 = 4 10–7 H/m.

The air gap length is given in meters.

The value expressed above is approximate, and neglects fringing flux

and other nonidealities.

lg =
µ0LI max

2

Bmax
2 Ac

104 (m)



AL

Core manufacturers sell gapped cores. Rather than specifying the air
gap length, the equivalent quantity A

L
is used.

A
L

is equal to the inductance, in mH, obtained with a winding of 1000

turns.

When A
L
 is specified, it is the core manufacturer’s responsibility to

obtain the correct gap length.

The required A
L

 is given by:

AL =
10Bmax

2 Ac
2

LI max
2 (mH/1000 turns)

L = AL n2 10– 9 (Henries)

Units:
A
c
        cm2,

L         Henries,

B
max

    Tesla.



Determine number of turns n

n =
LImax

BmaxAc

104



Evaluate wire size

AW

KuWA

n
(cm2)

Select wire with bare copper area AW  less than or equal to this value.

An American Wire Gauge table is included in Appendix D.

As a check, the winding resistance can be computed:

R =
n (MLT)

Aw
( )



14.3 Multiple-winding magnetics design
using the Kg method

The Kg design method can be extended to multiple-

winding magnetic elements such as transformers and
coupled inductors.

This method is applicable when

– Copper loss dominates the total loss (i.e. core loss is

ignored), or

– The maximum flux density Bmax is a specification rather than

a quantity to be optimized

To do this, we must

– Find how to allocate the window area between the windings

– Generalize the step-by-step design procedure



14.3.1  Window area allocation

n1  : n2

:  nk

rms current
I1

rms current
I2

rms current
Ik

v1(t)
n1

=
v2(t)
n2

= =
vk(t)
nk

Core
Window area WA

Core mean length
per turn (MLT)

Wire resistivity 

Fill factor Ku

Given:  application with k windings

having known rms currents and

desired turns ratios

Q: how should the window

area W
A
 be allocated among

the windings?



Allocation of winding area

Total window
area WA

Winding 1 allocation
1WA

Winding 2 allocation
2WA

etc.

{
{

0 < j < 1

1 + 2 + + k = 1



Copper loss in winding j

Copper loss (not accounting for proximity loss) is

Pcu, j = I j
2Rj

Resistance of winding j is

with

AW, j =
WAKu j

n j

length of wire, winding j

wire area, winding j

Hence

Rj =
l j

AW , j

l j = n j (MLT )

Rj =
n j

2 (MLT )
WAKu j

Pcu, j =
n j

2i j
2 (MLT )

WAKu j



Total copper loss of transformer

Sum previous expression over all windings:

Pcu,tot = Pcu,1 + Pcu,2 + + Pcu,k =
(MLT)
WAKu

n j
2I j

2

jj = 1

k

Need to select values for 
1
,

2
, …, 

k
  such that the total copper loss

is minimized



Variation of copper losses with 1

For
1

= 0:  wire of

winding 1 has zero area.

P
cu,1

  tends to infinity

For
1

= 1:  wires of

remaining windings have

zero area. Their copper

losses tend to infinity

There is a choice of 
1

that minimizes the total

copper loss
1

Copper
loss

0 1

Pcu,tot

P
cu,1

P cu,2
+

P cu
,3

+
...

+
P cu

,k



Interpretation of result

m =
VmIm

VjI j
n = 1

Apparent power in winding j is

Vj Ij

where Vj  is the rms or peak applied voltage

Ij  is the rms current

Window area should be allocated according to the apparent powers of

the windings



14.4.2   Example 2: CCM flyback transformer

+
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+
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Specifications

Input voltage Vg = 200V

Output (full load) 20 V at 5 A

Switching frequency 150 kHz

Magnetizing current ripple 20% of dc magnetizing current

Duty cycle D = 0.4

Turns ratio n2/n1 = 0.15

Copper loss 1.5 W

Fill factor Ku = 0.3

Maximum flux density  Bmax = 0.25 T



Basic converter calculations

I M =
n2

n1

1
D

V
R = 1.25 A

iM = 20% I M = 0.25 A

I M,max = I M + iM = 1.5 A

Components of magnetizing

current, referred to primary:

Choose magnetizing inductance:

L M =
Vg DTs

2 iM

= 1.07 mH

RMS winding currents:

I1 = I M D 1 + 1
3

iM

I M

2

= 0.796 A

I2 =
n1

n2

I M D 1 + 1
3

iM

I M

2

= 6.50 A

I tot = I1 +
n2

n1

I2 = 1.77 A



Choose core size

Kg

LM
2 I tot

2 I M,max
2

Bmax
2 Pcu Ku

108

=
1.724 10– 6 -cm 1.07 10– 3 H

2
1.77 A

2
1.5 A

2

0.25 T
2

1.5 W 0.3
108

= 0.049 cm5

The smallest EE core that satisfies this inequality (Appendix D) is the

EE30.



Choose air gap and turns

lg =
µ0L M I M,max

2

Bmax
2 Ac

104

=
4 10– 7H/m 1.07 10– 3 H 1.5 A

2

0.25 T
2

1.09 cm2
104

= 0.44 mm

n1 =
L M I M,max

BmaxAc
104

=
1.07 10– 3 H 1.5 A

0.25 T 1.09 cm2
104

= 58.7 turns

n1 = 59Round to

n2 =
n2

n1

n1

= 0.15 59

= 8.81

n2 = 9



Wire gauges

1 =
I1
I tot

=
0.796 A

1.77 A
= 0.45

2 =
n2I2
n1I tot

=
9 6.5 A

59 1.77 A
= 0.55

AW1
1KuWA

n1
= 1.09 10– 3 cm2 — use #28 AWG

AW2
2KuWA

n2
= 8.88 10– 3 cm2 — use #19 AWG



Core loss
CCM flyback example

dB(t)
dt

=
vM (t)
n1Ac

dB(t)
dt

=
Vg

n1Ac

B(t)

Hc(t)

Minor B–H loop,
CCM flyback
example

B–H loop,
large excitation

Bsat

BBmax

vM(t)

0

Vg

DTs

B(t)

Bmax

0

B

Vg

n1Ac

B-H loop for this application: The relevant waveforms:

B(t) vs. applied voltage,

from Faraday’s law:

For the first

subinterval:



Calculation of ac flux density
and core loss

Solve for B:

B =
Vg

n1Ac
DTs

Plug in values for flyback

example:

B =
200 V 0.4 6.67 µs

2 59 1.09 cm2
104

= 0.041 T

B, Tesla
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z

0.04
W/cm3

0.041

From manufacturer’s plot of core

loss (at left), the power loss density

is 0.04 W/cm3. Hence core loss is

Pfe = 0.04 W/cm3 Ac lm

= 0.04 W/cm3 1.09 cm2 5.77 cm

= 0.25 W



Comparison of core and copper loss

• Copper loss is 1.5 W

– does not include proximity losses, which could substantially increase

total copper loss

• Core loss is 0.25 W

– Core loss is small because ripple and B are small

– It is not a bad approximation to ignore core losses for ferrite in CCM

filter inductors

– Could consider use of a less expensive core material having higher

core loss

– Neglecting core loss is a reasonable approximation for this

application

• Design is dominated by copper loss

– The dominant constraint on flux density is saturation of the core,

rather than core loss



14.5  Summary of key points

1. A variety of magnetic devices are commonly used in switching

converters. These devices differ in their core flux density

variations, as well as in the magnitudes of the ac winding

currents. When the flux density variations are small, core loss can

be neglected. Alternatively, a low-frequency material can be used,

having higher saturation flux density.

2. The core geometrical constant Kg is a measure of the magnetic

size of a core, for applications in which copper loss is dominant.

In the Kg design method, flux density and total copper loss are

specified.




