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The Engineering Design Process

1. Specifications and other design goals are defined.
2. A circuit is proposed. This is a creative process that draws on the

physical insight and experience of the engineer.
3. The circuit is modeled. The converter power stage is modeled as

described in Chapter 7. Components and other portions of the system
are modeled as appropriate, often with vendor-supplied data.

4. Design-oriented analysis of the circuit is performed. This involves
development of equations that allow element values to be chosen such
that specifications and design goals are met. In addition, it may be
necessary for the engineer to gain additional understanding and
physical insight into the circuit behavior, so that the design can be
improved by adding elements to the circuit or by changing circuit
connections.

5. Model verification. Predictions of the model are compared to a
laboratory prototype, under nominal operating conditions. The model is
refined as necessary, so that the model predictions agree with
laboratory measurements.



Design Process

6. Worst-case analysis (or other reliability and production yield
analysis) of the circuit is performed. This involves quantitative
evaluation of the model performance, to judge whether
specifications are met under all conditions. Computer
simulation is well-suited to this task.

7. Iteration. The above steps are repeated to improve the design
until the worst-case behavior meets specifications, or until the
reliability and production yield are acceptably high.

This Chapter:  steps 4, 5, and 6



Buck-boost converter model
From Chapter 7
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Bode plot of control-to-output transfer function
with analytical expressions for important features
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Design-oriented analysis

How to approach a real (and hence, complicated) system

Problems:

Complicated derivations

Long equations

Algebra mistakes

Design objectives:

Obtain physical insight which leads engineer to synthesis of a good design

Obtain simple equations that can be inverted, so that element values can
be chosen to obtain desired behavior. Equations that cannot be inverted
are useless for design!

Design-oriented analysis is a structured approach to analysis, which attempts to
avoid the above problems



Some elements of design-oriented analysis,
discussed in this chapter

• Writing transfer functions in normalized form, to directly expose salient
features

• Obtaining simple analytical expressions for asymptotes, corner
frequencies, and other salient features, allows element values to be
selected such that a given desired behavior is obtained

• Use of inverted poles and zeroes, to refer transfer function gains to the
most important asymptote

• Analytical approximation of roots of high-order polynomials

• Graphical construction of Bode plots of transfer functions and
polynomials, to

avoid algebra mistakes
approximate transfer functions

obtain insight into origins of salient features



8.1.  Review of Bode plots

Decibels

G
dB

= 20 log10 G

Table 8.1. Expressing magnitudes in decibels

Actual magnitude Magnitude in dB

1/2 – 6dB

1 0 dB

2 6 dB

5 = 10/2 20 dB – 6 dB = 14 dB

10 20dB

1000 = 103
3 ⋅ 20dB = 60 dB

Z
dB

= 20 log10

Z
Rbase

Decibels of quantities having
units (impedance example):
normalize before taking log

5Ω is equivalent to 14dB with respect to a base impedance of Rbase =
1Ω, also known as 14dBΩ.

60dBµA is a current 60dB greater than a base current of 1µA, or 1mA.



Bode plot of fn

G =
f
f0

n

Bode plots are effectively log-log plots, which cause functions which
vary as fn to become linear plots. Given:

Magnitude in dB is

G
dB

= 20 log10

f
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= 20n log10
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• Slope is 20n dB/decade

• Magnitude is 1, or 0dB, at
frequency f = f0



8.1.1.  Single pole response
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G(jω)  and || G(jω) ||
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Asymptotic behavior: low frequency

G( j ) = 1
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For small frequency,
ω << ω0 and f << f0 :

Then || G(jω) ||
becomes

Or, in dB,

This is the low-frequency
asymptote of || G(jω) ||



Asymptotic behavior: high frequency
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ω >> ω0 and f >> f0 :

Then || G(jω) ||
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The high-frequency asymptote of || G(jω) || varies as f-1.
Hence, n = -1, and a straight-line asymptote having a
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a value of 1 at f = f0 .
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Deviation of exact curve near f = f0

Evaluate exact magnitude:

at f = f0:

G( j 0) = 1

1 + 0

0

2
= 1

2

G( j 0) dB
= – 20 log10 1 + 0

0

2

– 3 dB

at f = 0.5f0 and 2f0 :

Similar arguments show that the exact curve lies 1dB below
the asymptotes.



Summary: magnitude
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Phase of G(jω)
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Phase asymptotes

Low frequency: 0˚

High frequency: –90˚

Low- and high-frequency asymptotes do not intersect

Hence, need a midfrequency asymptote

Try a midfrequency asymptote having slope identical to actual slope at
the corner frequency f0. One can show that the asymptotes then
intersect at the break frequencies

fa = f0 e– / 2 f0 / 4.81
fb = f0 e / 2 4.81 f0



Phase asymptotes

fa = f0 e– / 2 f0 / 4.81
fb = f0 e / 2 4.81 f0
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Phase asymptotes: a simpler choice
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Summary: Bode plot of real pole
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8.1.2.  Single zero response

G(s) = 1 + s
0

Normalized form:

G( j ) = 1 +
0

2

G( j ) = tan– 1

0

Magnitude:

Use arguments similar to those used for the simple pole, to derive
asymptotes:

0dB at low frequency, ω <<  ω0

+20dB/decade slope at high frequency, ω >> ω0

Phase:

—with the exception of a missing minus sign, same as simple pole



Summary: Bode plot, real zero
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8.1.3.  Right half-plane zero

Normalized form:

G( j ) = 1 +
0

2

Magnitude:

—same as conventional (left half-plane) zero. Hence, magnitude
asymptotes are identical to those of LHP zero.

Phase:

—same as real pole.

The RHP zero exhibits the magnitude asymptotes of the LHP zero,
and the phase asymptotes of the pole

G(s) = 1 – s
0

G( j ) = – tan– 1

0
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G(s) = 1 – s
0



8.1.4.  Frequency inversion

Reversal of frequency axis. A useful form when describing mid- or
high-frequency flat asymptotes. Normalized form, inverted pole:

An algebraically equivalent form:

The inverted-pole format emphasizes the high-frequency gain.

G(s) = 1

1 + 0
s

G(s) =

s
0

1 + s
0



Asymptotes, inverted pole
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Inverted zero

Normalized form, inverted zero:

An algebraically equivalent form:

Again, the inverted-zero format emphasizes the high-frequency gain.

G(s) = 1 + 0
s

G(s) =
1 + s

0

s
0



Asymptotes, inverted zero
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8.1.5.  Combinations

Suppose that we have constructed the Bode diagrams of two
complex-values functions of frequency, G1(ω) and G2(ω). It is desired
to construct the Bode diagram of the product, G3(ω) = G1(ω) G2(ω).

Express the complex-valued functions in polar form:

G1( ) = R1( ) e j 1( )

G2( ) = R2( ) e j 2( )

G3( ) = R3( ) e j 3( )

The product G3(ω) can then be written

G3( ) = G1( ) G2( ) = R1( ) e j 1( ) R2( ) e j 2( )

G3( ) = R1( ) R2( ) e j( 1( ) + 2( ))



Combinations

G3( ) = R1( ) R2( ) e j( 1( ) + 2( ))

The composite phase is

3( ) = 1( ) + 2( )

The composite magnitude is

R3( ) = R1( ) R2( )

R3( )
dB

= R1( )
dB

+ R2( )
dB

Composite phase is sum of individual phases.

Composite magnitude, when expressed in dB, is sum of individual
magnitudes.



Example 1: G(s) =
G0

1 + s
1

1 + s
2
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with G0 = 40 ⇒ 32 dB, f1 = ω1/2π = 100 Hz, f2 = ω2/2π = 2 kHz



Example 2

|| A ||
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Determine the transfer function A(s) corresponding to the following
asymptotes:



Example 2, continued

One solution:

A(s) = A0

1 + s
1

1 + s
2

Analytical expressions for asymptotes:

For f < f1

A0

1 + s
1

➚

1 + s
2

➚
s = j

= A0
1
1

= A0

For f1 < f < f2

A0

1➚ + s
1

1 + s
2

➚
s = j

= A0

s
1 s = j

1
= A0

1
= A0

f
f1



Example 2, continued

For f > f2

A0

1➚ + s
1

1➚ + s
2

s = j

= A0

s
1 s = j

s
2 s = j

= A0
2

1
= A0

f2
f1

So the high-frequency asymptote is

A = A0

f2
f1

Another way to express A(s): use inverted poles and zeroes, and
express A(s) directly in terms of A∞

A(s) = A
1 + 1

s

1 + 2
s



8.1.6  Quadratic pole response: resonance

+
–

L

C Rv1(s)

+

v2(s)

–

Two-pole low-pass filter example

Example

G(s) =
v2(s)
v1(s)

= 1
1 + s L

R + s2LC

Second-order denominator, of
the form

G(s) = 1
1 + a1s + a2s2

with a1 = L/R and a2 = LC

How should we construct the Bode diagram?



Approach 1: factor denominator

G(s) = 1
1 + a1s + a2s2

We might factor the denominator using the quadratic formula, then
construct Bode diagram as the combination of two real poles:

G(s) = 1
1 – s

s1
1 – s

s2

with s1 = –
a1

2a2
1 – 1 –

4a2

a1
2

s2 = –
a1

2a2
1 + 1 –

4a2

a1
2

• If 4a2 ≤ a1
2, then the roots s1 and s2 are real. We can construct Bode

diagram as the combination of two real poles.
• If 4a2 > a1

2, then the roots are complex. In Section 8.1.1, the
assumption was made that ω0 is real; hence, the results of that
section cannot be applied and we need to do some additional work.



Approach 2: Define a standard normalized form
for the quadratic case

G(s) = 1
1 + 2 s

0
+ s

0

2 G(s) = 1
1 + s

Q 0
+ s

0

2or

• When the coefficients of s are real and positive, then the parameters ζ,
ω0, and Q are also real and positive

• The parameters ζ, ω0, and Q are found by equating the coefficients of s

• The parameter ω0 is the angular corner frequency, and we can define f0
= ω0/2π

• The parameter ζ is called the damping factor. ζ controls the shape of the
exact curve in the vicinity of f = f0. The roots are complex when ζ < 1.

• In the alternative form, the parameter Q is called the quality factor. Q
also controls the shape of the exact curve in the vicinity of f = f0. The
roots are complex when Q > 0.5.



The Q-factor

Q = 1
2

In a second-order system, ζ and Q are related according to

Q is a measure of the dissipation in the system. A more general
definition of Q, for sinusoidal excitation of a passive element or system
is

Q = 2
(peak stored energy)

(energy dissipated per cycle)

For a second-order passive system, the two equations above are
equivalent. We will see that Q has a simple interpretation in the Bode
diagrams of second-order transfer functions.



Analytical expressions for f0 and Q

G(s) =
v2(s)
v1(s)

= 1
1 + s L

R + s2LC

Two-pole low-pass filter
example: we found that

G(s) = 1
1 + s

Q 0
+ s

0

2

Equate coefficients of like
powers of s with the
standard form

Result:
f0 = 0

2
= 1

2 LC

Q = R C
L



Magnitude asymptotes, quadratic form

G( j ) = 1

1 –
0

2 2

+ 1
Q2 0

2

G(s) = 1
1 + s

Q 0
+ s

0

2
In the form

let s = jω and find magnitude:

Asymptotes are

G 1 for << 0

G
f
f0

– 2

for >> 0

f
f0

– 2

–40 dB/decade

f
f00.1f0 10f0

0 dB

|| G(j ) ||dB

0 dB

–20 dB

–40 dB

–60 dB



Deviation of exact curve from magnitude asymptotes

G( j ) = 1

1 –
0

2 2

+ 1
Q2 0

2

At ω = ω0, the exact magnitude is

G( j 0) = Q G( j 0) dB
= Q

dBor, in dB:

The exact curve has magnitude
Q at f = f0. The deviation of the
exact curve from the
asymptotes is | Q |dB

|| G ||

f0

| Q |dB0 dB

–40 dB/decade



Two-pole response: exact curves
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8.1.7.  The low-Q approximation

G(s) = 1
1 + a1s + a2s2 G(s) = 1

1 + s
Q 0

+ s
0

2

Given a second-order denominator polynomial, of the form

or

When the roots are real, i.e., when Q < 0.5, then we can factor the
denominator, and construct the Bode diagram using the asymptotes
for real poles. We would then use the following normalized form:

G(s) = 1
1 + s

1
1 + s

2

This is a particularly desirable approach when Q << 0.5, i.e., when the
corner frequencies ω1 and ω2  are well separated.



An example

A problem with this procedure is the complexity of the quadratic
formula used to find the corner frequencies.

R-L-C network example:

+
–

L

C Rv1(s)

+

v2(s)

–

G(s) =
v2(s)
v1(s)

= 1
1 + s L

R + s2LC

Use quadratic formula to factor denominator. Corner frequencies are:

1, 2 =
L / R ± L / R

2
– 4 LC

2 LC



Factoring the denominator

1, 2 =
L / R ± L / R

2
– 4 LC

2 LC

This complicated expression yields little insight into how the corner
frequencies ω1 and ω2 depend on R, L, and C.

When the corner frequencies are well separated in value, it can be
shown that they are given by the much simpler (approximate)
expressions

1
R
L , 2

1
RC

ω1 is then independent of C, and ω2  is independent of L.

These simpler expressions can be derived via the Low-Q Approximation.



Derivation of the Low-Q Approximation

G(s) = 1
1 + s

Q 0
+ s

0

2

Given

Use quadratic formula to express corner frequencies ω1 and ω2 in
terms of Q and ω0 as:

1 = 0

Q
1 – 1 – 4Q2

2 2 = 0

Q
1 + 1 – 4Q2

2



Corner frequency ω2

2 = 0

Q
1 + 1 – 4Q2

2

2 = 0

Q
F(Q)

F(Q) = 1
2

1 + 1 – 4Q2

2
0

Q
for Q << 1

2

F(Q)

0 0.1 0.2 0.3 0.4 0.5

Q

0

0.25

0.5

0.75

1

can be written in the form

where

For small Q, F(Q) tends to 1.
We then obtain

For Q < 0.3, the approximation F(Q)�=�1 is
within 10% of the exact value.



Corner frequency ω1

F(Q) = 1
2

1 + 1 – 4Q2

F(Q)

0 0.1 0.2 0.3 0.4 0.5

Q

0

0.25

0.5

0.75

1

can be written in the form

where

For small Q, F(Q) tends to 1.
We then obtain

For Q < 0.3, the approximation F(Q)�=�1 is
within 10% of the exact value.

1 = 0

Q
1 – 1 – 4Q2

2

1 =
Q 0

F(Q)

1 Q 0 for Q << 1
2



The Low-Q Approximation

f2 =
f0F(Q)

Q
f0
Q

–40dB/decade

f00dB

|| G ||dB

–20dB/decade

f1 =
Q f0

F(Q)
Q f0



R-L-C Example

1 Q 0 = R C
L

1
LC

= R
L

2
0

Q
= 1

LC
1

R C
L

= 1
RC

G(s) =
v2(s)
v1(s)

= 1
1 + s L

R + s2LC
f0 = 0

2
= 1

2 LC

Q = R C
L

For the previous example:

Use of the Low-Q Approximation leads to



8.1.8. Approximate Roots of an
Arbitrary-Degree Polynomial

Generalize the low-Q approximation to obtain approximate
factorization of the nth-order polynomial

P(s) = 1 + a1 s + a2 s2 + + an sn

It is desired to factor this polynomial in the form

P(s) = 1 + 1 s 1 + 2 s 1 + n s

When the roots are real and well separated in value, then approximate
analytical expressions for the time constants τ1, τ2, ... τn can be found,
that typically are simple functions of the circuit element values.
Objective: find a general method for deriving such expressions.
Include the case of complex root pairs.



Derivation of method

Multiply out factored form of polynomial, then equate to original form
(equate like powers of s):

a1 = 1 + 2 + + n

a2 = 1 2 + + n + 2 3 + + n +

a3 = 1 2 3 + + n + 2 3 4 + + n +

an = 1 2 3 n

• Exact system of equations relating roots to original coefficients

• Exact general solution is hopeless

• Under what conditions can solution for time constants be easily
approximated?



Approximation of time constants
when roots are real and well separated

a1 = 1 + 2 + + n

a2 = 1 2 + + n + 2 3 + + n +

a3 = 1 2 3 + + n + 2 3 4 + + n +

an = 1 2 3 n

System of equations:

(from previous slide)

Suppose that roots are real and well-separated, and are arranged in
decreasing order of magnitude:

1 >> 2 >> >> n

Then the first term of each equation is dominant

⇒  Neglect second and following terms in each equation above



Approximation of time constants
when roots are real and well separated

System of equations:

(only first term in each
equation is included)

a1 1

a2 1 2

a3 1 2 3

an = 1 2 3 n

Solve for the time
constants:

1 a1

2

a2

a1

3

a3

a2

n

an

an – 1



Result
when roots are real and well separated

If the following inequalities are satisfied

a1 >>
a2

a1

>>
a3

a2

>> >>
an

an – 1

Then the polynomial P(s) has the following approximate factorization

P(s) 1 + a1 s 1 +
a2

a1

s 1 +
a3

a2

s 1 +
an

an – 1

s

• If the an coefficients are simple analytical functions of the element
values L, C, etc., then the roots are similar simple analytical
functions of L, C, etc.

• Numerical values are used to justify the approximation, but
analytical expressions for the roots are obtained



When two roots are not well separated
then leave their terms in quadratic form

Suppose inequality k is not satisfied:

a1 >>
a2

a1

>> >>
ak

ak – 1

>>✖
ak + 1

ak

>> >>
an

an – 1

not
satisfied

Then leave the terms corresponding to roots k and (k + 1) in quadratic
form, as follows:

P(s) 1 + a1 s 1 +
a2

a1

s 1 +
ak

ak – 1

s +
ak + 1

ak – 1

s2 1 +
an

an – 1

s

This approximation is accurate provided

a1 >>
a2

a1

>> >>
ak

ak – 1

>>
ak – 2 ak + 1

ak – 1
2

>>
ak + 2

ak + 1

>> >>
an

an – 1



When the first inequality is violated
A special case for quadratic roots

a1 >>✖
a2

a1

>>
a3

a2

>> >>
an

an – 1

not
satisfied

When inequality 1 is not satisfied:

Then leave the first two roots in quadratic form, as follows:

This approximation is justified provided

P(s) 1 + a1s + a2s2 1 +
a3

a2

s 1 +
an

an – 1

s

a2
2

a3

>> a1 >>
a3

a2

>>
a4

a3

>> >>
an

an – 1



Other cases

• When several isolated inequalities are violated

—Leave the corresponding roots in quadratic form

—See next two slides

• When several adjacent inequalities are violated

—Then the corresponding roots are close in value

—Must use cubic or higher-order roots



Leaving adjacent roots in quadratic form

a1 >
a2

a1

> >
ak

ak – 1

ak + 1

ak

> >
an

an – 1

In the case when inequality k is not satisfied:

P(s) 1 + a1 s 1 +
a2

a1

s 1 +
ak

ak – 1

s +
ak + 1

ak – 1

s2 1 +
an

an – 1

s

Then leave the corresponding roots in quadratic form:

This approximation is accurate provided that

a1 >
a2

a1

> >
ak

ak – 1

>
ak – 2 ak + 1

ak – 1
2 >

ak + 2

ak + 1

> >
an

an – 1

(derivation is similar to the case of well-separated roots)



When the first inequality is not satisfied

The formulas of the previous slide require a special form for the case when
the first inequality is not satisfied:

a1
a2

a1

>
a3

a2

> >
an

an – 1

P(s) 1 + a1s + a2s2 1 +
a3

a2

s 1 +
an

an – 1

s

We should then use the following form:

a2
2

a3

> a1 >
a3

a2

>
a4

a3

> >
an

an – 1

The conditions for validity of this approximation are:



Example
Damped input EMI filter

+
–vg

ig ic

C
R

L1

L2 Converter

G(s) =
ig(s)
ic(s)

=
1 + s

L1 + L2
R

1 + s
L1 + L2

R + s2L1C + s3 L1L2C
R



Example
Approximate factorization of a third-order denominator

The filter transfer function from the previous slide is

—contains a third-order denominator, with the following coefficients:

a1 =
L1 + L2

R

a2 = L1C

a3 =
L1L2C

R

G(s) =
ig(s)
ic(s)

=
1 + s

L1 + L2
R

1 + s
L1 + L2

R + s2L1C + s3 L1L2C
R



Real roots case

Factorization as three real roots:

1 + s
L1 + L2

R 1 + sRC
L1

L1 + L2
1 + s

L2

R

This approximate analytical factorization is justified provided

L1 + L2

R >> RC
L1

L1 + L2
>>

L2

R

Note that these inequalities cannot be satisfied unless L1 >> L2. The
above inequalities can then be further simplified to

L1

R >> RC >>
L2

R
And the factored polynomial reduces to

1 + s
L1

R 1 + sRC 1 + s
L2

R

• Illustrates in a simple
way how the roots
depend on the
element values



When the second inequality is violated

L1 + L2

R >> RC
L1

L1 + L2
>>✖

L2

R

not
satisfied

Then leave the second and third roots in quadratic form:

1 + s
L1 + L2

R 1 + sRC
L1

L1 + L2
+ s2 L1||L2 C

P(s) = 1 + a1s 1 +
a2
a1

s +
a3
a1

s2

which is



Validity of the approximation

This is valid provided

L1 + L2

R
>> RC

L1

L1 + L2
>>

L1||L2

L1 + L2
RC (use a0 = 1)

These inequalities are equivalent to

L1 >> L2, and
L1

R >> RC

It is no longer required that RC >> L2/R

The polynomial can therefore be written in the simplified form

1 + s
L1

R 1 + sRC + s2L2C



When the first inequality is violated

Then leave the first and second roots in quadratic form:

which is

L1 + L2

R >>✖ RC
L1

L1 + L2
>>

L2

R

not
satisfied

1 + s
L1 + L2

R + s2L1C 1 + s
L2

R

P(s) = 1 + a1s + a2s2 1 +
a3
a2

s



Validity of the approximation

This is valid provided

These inequalities are equivalent to

It is no longer required that L1/R >> RC

The polynomial can therefore be written in the simplified form

L1RC
L2

>>
L1 + L2

R
>>

L2

R

L1 >> L2, and RC >>
L2

R

1 + s
L1

R + s2L1C 1 + s
L2

R



8.2.  Analysis of converter transfer functions

8.2.1.  Example: transfer functions of the buck-boost converter
8.2.2.  Transfer functions of some basic CCM converters

8.2.3.  Physical origins of the right half-plane zero in converters



8.2.1.  Example: transfer functions of the
buck-boost converter

Small-signal ac model of the buck-boost converter, derived in Chapter 7:

+
–

+–

L

RC

1 : D D' : 1

vg(s) I d (s) Id (s)

i(s)
(Vg – V)d (s)

+

v(s)

–



Definition of transfer functions

The converter contains two inputs,         and          and one output,

Hence, the ac output voltage variations can be expressed as the
superposition of terms arising from the two inputs:

v(s) = Gvd(s) d(s) + Gvg(s) vg(s)

d(s) vg(s) v(s)

The control-to-output and line-to-output transfer functions can be
defined as

Gvd(s) =
v(s)
d(s)

vg(s) = 0

and Gvg(s) =
v(s)
vg(s)

d(s) = 0



Derivation of
line-to-output transfer function Gvg(s)

+
–

L

RC

1 : D D' : 1

vg(s)

+

v(s)

–

Set d sources to
zero:

+
– RC

+

v(s)

–

L
D' 2

vg(s) – D
D'

Push elements through
transformers to output
side:



Derivation of transfer functions

+
– RC

+

v(s)

–

L
D' 2

vg(s) – D
D'

Use voltage divider formula
to solve for transfer function:

Gvg(s) =
v(s)
vg(s)

d(s) = 0

= – D
D'

R || 1
sC

sL
D'2

+ R || 1
sC

Expand parallel combination and express as a rational fraction:

Gvg(s) = – D
D'

R
1 + sRC

sL
D'2

+ R
1 + sRC

= – D
D'

R

R + sL
D'2

+ s2RLC
D'2

We aren’t done yet! Need to
write in normalized form, where
the coefficient of s0 is 1, and
then identify salient features



Derivation of transfer functions

Divide numerator and denominator by R. Result: the line-to-output
transfer function is

Gvg(s) =
v(s)
vg(s)

d(s) = 0

= – D
D'

1
1 + s L

D'2 R
+ s2 LC

D'2

which is of the following standard form:

Gvg(s) = Gg0
1

1 + s
Q 0

+ s
0

2



Salient features of the line-to-output transfer function

Gg0 = – D
D'

Equate standard form to derived transfer function, to determine
expressions for the salient features:

1
0
2 = LC

D'2
0 = D'

LC

1
Q 0

= L
D'2R Q = D'R C

L



Derivation of
control-to-output transfer function Gvd(s)

+–

L

RC

D' : 1

Id (s)

(Vg – V)d (s)
+

v(s)

–

In small-signal model,
set vg source to zero:

+
–

RCI d (s)

+

v(s)

–

L
D' 2

Vg – V
D'

d (s)
Push all elements to
output side of
transformer:

There are two d sources. One way to solve the model is to use superposition,

expressing the output v as a sum of terms arising from the two sources.



Superposition

+
–

RC

+

v(s)

–

L
D' 2

Vg – V
D'

d (s)

RCId (s)

+

v(s)

–

L
D' 2

v(s)
d (s)

= –
Vg – V

D'

R || 1
sC

sL
D'2

+ R || 1
sC

With the voltage
source only:

With the current
source alone: v(s)

d (s)
= I sL

D'2
|| R || 1

sC

Total: Gvd(s) = –
Vg – V

D'

R || 1
sC

sL
D'2

+ R || 1
sC

+ I sL
D'2

|| R || 1
sC



Control-to-output transfer function

Gvd(s) =
v(s)
d(s)

vg(s) = 0

= –
Vg – V

D'2

1 – s LI
Vg – V

1 + s L
D'2 R

+ s2 LC
D'2

This is of the following standard form:

Gvd(s) = Gd0

1 – s
z

1 + s
Q 0

+ s
0

2

Express in normalized form:



Salient features of control-to-output transfer function

z =
Vg – V

L I = D' R
D L (RHP)

0 = D'
LC

Q = D'R C
L

V = – D
D'

Vg

I = – V
D' R

— Simplified using the dc relations:

Gd0 = –
Vg – V

D' = –
Vg

D'2
= V

DD'



Plug in numerical values

Suppose we are given the
following numerical values:

D = 0.6
R = 10
Vg = 30V
L = 160µH
C = 160µF

Then the salient features
have the following numerical
values:

Gg0 = D
D' = 1.5 3.5 dB

Gd0 =
V

DD' = 187.5 V 45.5 dBV

f0 = 0

2
= D'

2 LC
= 400 Hz

Q = D'R C
L = 4 12 dB

fz = z

2
= D'2R

2 DL
= 2.65 kHz



Bode plot: control-to-output transfer function

f

0˚

–90˚

–180˚

–270˚

|| Gvd ||

Gd0 = 187 V
 45.5 dBV

|| Gvd || Gvd

0 dBV

–20 dBV

–40 dBV

20 dBV

40 dBV

60 dBV

80 dBV

Q = 4  12 dB

fz
2.6 kHz

RHP
Gvd

10-1/2Q f0

101/2Q f0

0˚ 300 Hz

533 Hz

–20 dB/decade

–40 dB/decade

–270˚

fz /10
260 Hz

10fz
26 kHz

1 MHz10 Hz 100 Hz 1 kHz 10 kHz 100 kHz

f0
400 Hz



Bode plot: line-to-output transfer function

f

|| Gvg ||

|| Gvg ||

Gvg

10–1/2Q0 f0

101/2Q0 f0

0˚ 300 Hz

533 Hz

–180˚

–60 dB

–80 dB

–40 dB

–20 dB

0 dB

20 dB
Gg0 = 1.5

 3.5 dB

f0

Q = 4  12 dB

400 Hz –40 dB/decade

0˚

–90˚

–180˚

–270˚

Gvg

10 Hz 100 Hz 1 kHz 10 kHz 100 kHz



8.2.2.  Transfer functions of
some basic CCM converters

Table 8.2. Salient features of the small-signal CCM transfer functions of some basic dc-dc converters

Converter Gg0 Gd0 ω 0 Q ω z

buck D
V
D

1
LC

R C
L ∞

boost
1
D'

V
D'

D'
LC

D'R C
L

D' 2R
L

buck-boost – D
D '

V
D D'2

D'
LC

D'R C
L

D' 2 R
D L

where the transfer functions are written in the standard forms

Gvd(s) = Gd0

1 – s
z

1 + s
Q 0

+ s
0

2

Gvg(s) = Gg0
1

1 + s
Q 0

+ s
0

2



8.2.3.  Physical origins of the right half-plane zero

G(s) = 1 – s
0

• phase reversal at
high frequency

• transient response:
output initially tends
in wrong direction

+
–

1

s
z

uout(s)uin(s)



Two converters whose CCM control-to-output
transfer functions exhibit RHP zeroes

Boost

Buck-boost

iD Ts
= d' iL Ts

+
–

L

C R

+

v

–

1

2

vg

iL(t)

iD(t)

+
– L

C R

+

v

–

1 2

vg

iL(t)

iD(t)



Waveforms, step increase in duty cycle

iD Ts
= d' iL Ts

• Increasing d(t)
causes the average
diode current to
initially decrease

• As inductor current
increases to its new
equilibrium value,
average diode
current eventually
increases

t

iD(t)

iD(t) Ts

t

| v(t) |

t

iL(t)

d = 0.6d = 0.4



Impedance graph paper

10

1

100m

100

1k

10k

10m

1m

100µH

1mH

10µH 100nH
10nH

1nH

10Hz 100Hz 1kHz 10kHz 100kHz 1MHz

1µH

10mH

100mH

1H

10H

10µF

100µF1mF
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100mF
1F

1µF

100nF

10nF

1nF

100pF

20dB

0dB

–20dB

40dB

60dB

80dB

–40dB

–60dB



Transfer functions predicted by canonical model

+
–

+– 1 : M(D)

Le

C Rvg(s)

e(s) d(s)

j(s) d(s)

+

–

v(s)

+

–

ve(s)

He(s)

Zout

Z2Z1

{ {

Zin



Output impedance Zout: set sources to zero

Le C R
Zout

Z2Z1

{ {
Zout = Z1 || Z2



Graphical construction of output impedance

1
C

R

|| Zout ||

f0

R0

|| Z1 || = Le

Q = R / R0



Graphical construction of
filter effective transfer function

f0

Q = R / R0
Le

Le
= 1

1 / C

Le

= 1
2LeC

H e =
Zout

Z1



Boost and buck-boost converters: Le = L / D’ 2

1
C

R

|| Zout ||

f0

R0

Q = R / R0

L

D' 2
increasing

D



8.4.  Measurement of ac transfer functions
and impedances

Network Analyzer

Injection source Measured inputs

vy

magnitude
vz

frequency
vz

output
vz

+ –

input

vx

input
+ – + –

vy

vx

vy

vx

Data

17.3 dB

– 134.7˚

Data bus
to computer



Swept sinusoidal measurements

• Injection source produces sinusoid      of controllable amplitude and
frequency

• Signal inputs      and      perform function of narrowband tracking
voltmeter:

Component of input at injection source frequency is measured

Narrowband function is essential: switching harmonics and other
noise components are removed

• Network analyzer measures

vz

vx vy

vy

vx

vy

vx

and



Measurement of an ac transfer function

Network Analyzer

Injection source Measured inputs

vy

magnitude
vz

frequency
vz

output
vz

+ –

input

vx

input
+ – + –

vy

vx

vy

vx

Data

–4.7 dB

– 162.8˚

Data bus
to computer

Device
under test

G(s)

in
pu

t output

VCC

DC
bias

adjust

DC
blocking

capacitor

• Potentiometer
establishes correct
quiescent operating
point

• Injection sinusoid
coupled to device
input via dc blocking
capacitor

• Actual device input
and output voltages
are measured as
and

• Dynamics of blocking
capacitor are irrelevant

vx

vy

vy(s)

vx(s)
= G(s)



Measurement of an output impedance

Z(s) =
v(s)
i(s)

VCC

DC
bias

adjust

Device
under test

G(s)

in
pu

t output

Zout +
– vz

iout

vy

+ –

voltage
probe

Zs{
Rsource

DC blocking
capacitor

current
probe

vx

+ –

Zout(s) =
vy(s)

iout(s) amplifier
ac input = 0



Measurement of output impedance

• Treat output impedance as transfer function from output current to
output voltage:

• Potentiometer at device input port establishes correct quiescent
operating point

• Current probe produces voltage proportional to current; this voltage
is connected to network analyzer channel

• Network analyzer result must be multiplied by appropriate factor, to
account for scale factors of current and voltage probes

vx

Z(s) =
v(s)
i(s)

Zout(s) =
vy(s)

iout(s) amplifier
ac input = 0



Measurement of small impedances

Impedance
under test

Z(s) +
– vz

iout

vy

+

–

voltage
probe

Rsource

vx
+

–

Network Analyzer

Injection source

Measured
inputs

voltage
probe
return
connection

injection
source
return
connection

iout

Zrz{
{ Zprobe

k iout

(1 – k) iout

+ –
(1 – k) iout Z probe

Grounding problems
cause measurement
to fail:

Injection current can
return to analyzer via
two paths. Injection
current which returns
via voltage probe ground
induces voltage drop in
voltage probe, corrupting the
measurement. Network
analyzer measures

Z + (1 – k) Z probe = Z + Z probe || Zrz

For an accurate measurement, require

Z >> Z probe || Zrz



Improved measurement: add isolation transformer

Impedance
under test

Z(s) +
– vz

iout

vy

+

–

voltage
probe

Rsource

vx
+

–

Network Analyzer

Injection source

Measured
inputs

voltage
probe
return
connection

injection
source
return
connection

Zrz{
{ Zprobe

+ –0V

0

iout

1 : n

Injection
current must
now return
entirely
through
transformer.
No additional
voltage is
induced in
voltage probe
ground
connection



8.5.  Summary of key points

1.  The magnitude Bode diagrams of functions which vary as (f / f0)n
have slopes equal to 20n dB per decade, and pass through 0dB at
f = f0.

2.  It is good practice to express transfer functions in normalized pole-
zero form; this form directly exposes expressions for the salient
features of the response, i.e., the corner frequencies, reference
gain, etc.

3.  The right half-plane zero exhibits the magnitude response of the
left half-plane zero, but the phase response of the pole.

4.  Poles and zeroes can be expressed in frequency-inverted form,
when it is desirable to refer the gain to a high-frequency asymptote.



Summary of key points

5.  A two-pole response can be written in the standard normalized
form of Eq. (8-53). When Q > 0.5, the poles are complex
conjugates. The magnitude response then exhibits peaking in the
vicinity of the corner frequency, with an exact value of Q at f = f0.
High Q also causes the phase to change sharply near the corner
frequency.

6.  When the Q is less than 0.5, the two pole response can be plotted
as two real poles. The low- Q approximation predicts that the two
poles occur at frequencies f0 / Q and Qf0. These frequencies are
within 10% of the exact values for Q ≤ 0.3.

7.  The low- Q approximation can be extended to find approximate
roots of an arbitrary degree polynomial. Approximate analytical
expressions for the salient features can be derived. Numerical
values are used to justify the approximations.



Summary of key points

8.  Salient features of the transfer functions of the buck, boost, and buck-
boost converters are tabulated in section 8.2.2. The line-to-output
transfer functions of these converters contain two poles. Their control-
to-output transfer functions contain two poles, and may additionally
contain a right half-pland zero.

9.  Approximate magnitude asymptotes of impedances and transfer
functions can be easily derived by graphical construction. This
approach is a useful supplement to conventional analysis, because it
yields physical insight into the circuit behavior, and because it
exposes suitable approximations. Several examples, including the
impedances of basic series and parallel resonant circuits and the
transfer function He(s) of the boost and buck-boost converters, are
worked in section 8.3.

10.  Measurement of transfer functions and impedances using a network
analyzer is discussed in section 8.4. Careful attention to ground
connections is important when measuring small impedances.


