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Announcements 



Paper Presentations 

 Please email me (ozgura@itu.edu.tr) your top 3 paper 

choices for presentation. Email me in advance to check if 

the papers are appropriate. 

 Due date: 03/03/2011 (Thursday) – 17:00. 

 You can choose from the suggested papers. But at least 

one of your three preferred papers should be proposed 

by you. 

 I will try to assign you one of your three choices. 

 You will have 20 minutes for presentation + 5 minutes for 

questions/discussion. 

 



Some paper suggestions 
 The XML Retrieval chapter in the book. 

 

 Dafna Shahaf and Carlos Guestrin. Connecting the dots between news articles.  In 
KDD ’10: Proceedings of the 16th ACM SIGKDD international conference on 
Knowledge discovery and data mining, pages 623–632, New York, NY, USA, 2010. 
ACM. 

 

 Turning Down the Noise in the Blogosphere, KDD2009. 

 http://www.cs.cmu.edu/~dshahaf/kdd2009-elarini-veda-shahaf-guestrin.pdf 

 

 Michele Banko and Oren Etzioni.  The tradeoffs between open and traditional 
relation extraction. In Proceedings of ACL-08: HLT, pages 28–36, Columbus, Ohio, 
June 2008. Association for Computational Linguistics. 

 

 - Science Maps: Chen, C. (2006). CiteSpace II: Detecting and visualizing emerging 
trends and transient patterns in scientific literature. Journal of the American Society 
for Information Science and Technology, 57(3), 359-377. doi: 10.1002/asi.20317 

 http://cluster.cis.drexel.edu/~cchen/citespace/doc/jasist2006.pdf 



Some paper suggestions 
 Monika Rauch Henzinger, Finding near-duplicate web pages: a large-scale evaluation of 

algorithms, SIGIR, 2006, pp. 284–291.  

 

 Andrei Z. Broder, Identifying and filtering near-duplicate documents, CPM, 2000, pp. 1–10. 

 

 Gunes Erkan and Dragomir R. Radev. Lexrank: Graph-based centrality as salience in text 
summarization. Journal of Artificial Intelligence Research (JAIR), 2004.  

 

 Qiaozhu Mei, Dengyong Zhou, Kenneth Church. Query Suggestion Using Hitting Time, 
Proceedings of the 16th ACM International Conference on Information and Knowledge 
Management (CIKM'08), pages 469-478, 2008.  

 

 Patterns of Cascading Behavior in Large Blog Graphs by J. Leskovec, M. McGlohon, C. 
Faloutsos, N. Glance, M. Hurst. SIAM SDM 2007. 

 

 R. W. White and S. M. Drucker. Investigating behavioral variability in web search. In WWW’07. 

 

 E. Agichtein, E. Brill, and S. Dumais. Improving web search ranking by incorporating user 
behavior information. In Proceedings of ACM SIGIR 2006. 



Some paper suggestions 

 G. Cong, L. Wang, C.-Y. Lin, Y.-I. Song, and Y. Sun. Finding question-answer 

pairs from online forums. In Proc. 31st SIGIR. 

 http://research.microsoft.com/en-us/um/people/cyl/download/papers/SIGIR2008-

Gao-MSRA.pdf 

 

 Chirita, P.-A., Firan, C. S., and Nejdl, W.  Personalized query expansion for 

the web.  In SIGIR (2007), pp. 7-14. 

 

 Collins-Thompson, K., and Callan, J. Query expansion using random walk 

models. In CIKM (2005), pp. 704-711. 

 

 Pavel Calodo et al. Combining link-based and text-based methods for web 

document classification. CIKM 2003.  



Some paper suggestions 
 Search advertising using Web relevance feedback.  Broder, P. Ciccolo, 

M. Fontoura, E. Gabrilovich, V. Josifovski, and L. Riedel. (CIKM, 2008)  

 

 Automatic Generation of Bid Phrases for Online Advertising.  Ravi, 
S.; Broder, A.; Gabrilovich, E.; Josifovski, V.; Pandey, S.; Pang, B. WSDM 
(2010)  

 

 Using Landing Pages for Sponsored Search Ad Selection. Choi, Y.; 
Fontoura, M.; Gabrilovich, E.; Josifovski, V.; Mediano, M.; Pang, B. 
(WWW 2010)  

 

 Ganesh Ramakrishnan, Soumen Chakrabarti, Deepa Paranjpe, and    
Pushpak Bhattacharya. Is question answering an acquired skill? In 
Proceedings of the 13th international conference on World Wide 
Web,  2004. 

 



Project 

 Please submit a one-page project proposal by e-mail. 

 Due date: 09/03/2011 Wednesday 17:00. 

 You can choose from the list of project ideas or propose 

your own. 

 You can work in teams of two, or individually. 

 The last two weeks (06/05/2011 and 13/05/2011) will be 

allocated for your project presentations (15 min. 

presentation + 5 min. questions/discussion). 

 



Some Project Ideas 

 Build a question answering system. 

 Build a language identification system. 

 Social network analysis from text  

 Query log analysis. 

 information extraction 

 information extraction for biology (e.g. extracting protein 

interactions) 

 blog analysis 

 Sentiment/polarity extraction 

 document duplicate and near-duplicate recognition 

 clustering scientific papers by topic using citation information 

 



Some Project Ideas 

 automatic query correction/expansion 

 query completion/recommendation 

 extract names of people and their descriptions from the web 

 finding similar documents 

 named entity recognition 

 named entity disambiguation 

 movie recommendations 

 adversarial IR (spam) 

 language modeling for IR 

 Text classification/clustering 

 summarization 



Recap 
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Type/token distinction 

Token – an instance of a word or term occurring in a document 

Type – an equivalence class of tokens 

In June, the dog likes to chase the cat in the barn. 

12 word tokens, 9 word types 
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Problems in tokenization 

What are the delimiters? Space? Apostrophe? Hyphen? 

For each of these: sometimes they delimit, sometimes they don‟t. 

No whitespace in many languages! (e.g., Chinese) 

No whitespace in Dutch, German, Swedish compounds 

(Lebensversicherungsgesellschaftsangestellter) 
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Problems with equivalence classing 

A term is an equivalence class of tokens. 

How do we define equivalence classes? 

Numbers (3/20/91 vs. 20/3/91) 

Case folding 

Stemming, Porter stemmer 

Morphological analysis 

Equivalence classing problems in other languages 

More complex morphology than in English 

Finnish: a single verb may have 12,000 different 

forms 

Accents, umlauts 



Skip pointers 

128 2 4 8 41 48 64 

31 1 2 3 8 11 17 21 

31 11 

41 128 

Sec. 2.3 

Brutus 

Caesar 
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Positional indexes 

Postings lists in a nonpositional index: each posting is just a docID 

Postings lists in a positional index: each posting is a docID and a list of 

positions 

Example query: “to1 be2 or3 not4 to5 be6”  

TO, 993427: 

‹ 1: ‹7, 18, 33, 72, 86, 231›; 
  2: ‹1, 17, 74, 222, 255›; 
  4: ‹8, 16, 190, 429, 433›; 
  5: ‹363, 367›; 
  7: ‹13, 23, 191›; . . . › 

BE, 178239: 

‹ 1: ‹17, 25›; 
  4: ‹17, 191, 291, 430, 434›; 
  5: ‹14, 19, 101›; . . . › Document 4 is a match! 
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Positional indexes 

With a positional index, we can answer phrase queries. 

With a positional index, we can answer proximity queries. 



Today’s Lecture 

Tolerant retrieval: What to do if there is no exact match between 

query term and document term 

Wildcard queries 

Spelling correction 



Dictionaries 
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Inverted index 
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Dictionaries 

The dictionary is the data structure for storing the term vocabulary. 

Term vocabulary: the data 

Dictionary: the data structure for storing the term vocabulary 



A naïve dictionary 
 An array of struct: 

 
 

 

 

 

 

         

 

 

 

   char[20]    int                   Postings * 

          20 bytes    4/8 bytes         4/8 bytes   

 How do we store a dictionary in memory efficiently? 

 How do we quickly look up elements at query time? 

Sec. 3.1 
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Data structures for looking up term 

Two main classes of data structures: hashes and trees 

Some IR systems use hashes, some use trees. 

Criteria for when to use hashes vs. trees: 

Is there a fixed number of terms or will it keep 

growing? 

What are the relative frequencies with which various 

keys will be accessed? 

How many terms are we likely to have? 
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Hashes 

Each vocabulary term is hashed into an integer. 

Try to avoid collisions 

At query time, do the following: hash query term, resolve collisions, 

locate entry in fixed-width array 

Pros: Lookup in a hash is faster than lookup in a tree. 

Lookup time is constant. 

Cons 

no way to find minor variants (resume vs. résumé) 

no prefix search (all terms starting with automat) 

need to rehash everything periodically if vocabulary 

keeps growing 



Root 
a-m n-z 

a-hu hy-m n-sh si-z 

Tree: binary tree 

Sec. 3.1 



Tree: B-tree 

 Definition: Every internal nodel has a number of children in 

the interval [a,b] where a, b are appropriate natural numbers, 

e.g., [2,4]. 

a-hu 

hy-m 

n-z 

Sec. 3.1 



Trees 

 Simplest: binary tree 

 More usual: B-trees 

 Trees require a standard ordering of characters and hence 

strings … but we standardly have one 

 Pros: 

 Solves the prefix problem (terms starting with hyp) 

 Cons: 

 Slower: O(log M)  [and this requires balanced tree] 

 Rebalancing binary trees is expensive 

 But B-trees mitigate the rebalancing problem 

Sec. 3.1 



Wild-card queries 
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Wildcard queries 

mon*: find all docs containing any term beginning with mon 

Easy with B-tree dictionary: retrieve all terms t in the range: mon ≤ t 

< moo 

*mon: find all docs containing any term ending with mon 

Maintain an additional tree for terms backwards 

Then retrieve all terms t in the range: nom ≤ t < non 

Result: A set of terms that are matches for wildcard query 

Then retrieve documents that contain any of these terms 
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How to handle * in the middle of a term 

Example: c*sar 

 We could look up c* and *sar in the B-tree and intersect the two 

term sets. 

Expensive 

Alternative: permuterm index 

Basic idea: Rotate every wildcard query, so that the * occurs at the 

end. 

Store each of these rotations in the dictionary, say, in a B-tree 
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Permuterm → term mapping 
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Permuterm index 

For HELLO, we‟ve stored: hello$, ello$h, llo$he, lo$hel, and o$hell 

Queries 

For X, look up X$ (hello -> hello$) 

For X*, look up X*$ (hel* -> hel*$) 

For *X, look up X$* (*lo -> lo$*) 

For *X*, look up X* (*ll* -> ll*) 

For X*Y, look up Y$X* (hel*o -> o$hel*) 
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Processing a lookup in the permuterm index 

Rotate query wildcard to the right 

Use B-tree lookup as before 

Problem: Permuterm more than quadruples the size of the dictionary 

compared to a regular B-tree. (empirical number) 
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k-gram indexes 

More space-efficient than permuterm index 

Enumerate all character k-grams (sequence of k characters) 

occurring in a term 

2-grams are called bigrams. 

Example: from „April is the cruelest month’ we get the bigrams: $a ap 

pr ri il l$ $i is s$ $t th he e$ $c cr ru ue el le es st t$ $m mo on nt h$ 

$ is a special word boundary symbol, as before. 

Maintain an inverted index from bigrams to the terms that contain 

the bigram 
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Postings list in a 3-gram inverted index 
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k-gram (bigram, trigram, . . . ) indexes 

Note that we now have two different types of inverted indexes 

The term-document inverted index for finding documents based on a 

query consisting of terms 

The k-gram index for finding terms based on a query consisting of k-

grams 
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Processing wildcarded terms in a bigram index 

Query mon* can now be run as: $m AND mo AND on 

Gets us all terms with the prefix mon . . . 

. . . but also many “false positives” like MOON. 

We must postfilter these terms against query. 

Surviving terms are then looked up in the term-document inverted 

index. 

k-gram index vs. permuterm index 

k-gram index is more space efficient. 

Permuterm index doesn‟t require postfiltering. 



Intention: you are looking for the University of Geneva, but don’t know 

which accents to use for the French words for university and Geneva. 

Google has very limited support for wildcard queries. 



According to Google search basics, 2010-04-29: “Note that the * operator works only on 

whole words, not parts of words.” 



But this is not entirely true. Try [pythag*] and [m*nchen] 

Why doesn’t Google fully support wildcard queries? 
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Processing wildcard queries in the term-

document index 

Problem 1: we must potentially execute a large number of Boolean 

queries. 

Most straightforward semantics: Conjunction of disjunctions 

For [gen* universit*]: geneva university OR geneva université OR 

genève university OR genève université OR general universities OR 

. . . 

Very expensive 

Problem 2: Users hate to type. If you encourage “laziness” people will 

respond! 

If abbreviated queries like [pyth* theo*] for [pythagoras‟ theorem] are 

allowed, users will use them a lot. 

This would significantly increase the cost of answering queries. 

 

 

 

 

 

Search 

Type your search terms, use ‘*’ if you need to. 

E.g., Alex* will match Alexander. 



Spelling correction 
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Spelling correction 

Two principal uses 

Correcting documents being indexed 

Correcting user queries 

Two different methods for spelling correction 

Isolated word spelling correction 

Check each word on its own for misspelling 

Will not catch typos resulting in correctly spelled 

words, e.g., I flew form Heathrow to Narita.  

Context-sensitive spelling correction 

Look at surrounding words 

Can correct form/from error above 



Document correction 

 Especially needed for OCR’ed documents 

 Correction algorithms are tuned for this: rn/m 

 Can use domain-specific knowledge 

 E.g., OCR can confuse O and D more often than it would confuse O 

and I (adjacent on the QWERTY keyboard, so more likely 

interchanged in typing). 

 But also: web pages and even printed material has typos 

 But often we don’t change the documents but aim to fix 

the query-document mapping 

Sec. 3.3 



Query mis-spellings 

 Our principal focus here 

 E.g., the query Albert Einstain 

 We can either 

 Retrieve documents indexed by the correct spelling, OR 

 Return several suggested alternative queries with the correct 

spelling 

 Did you mean … ? 

Sec. 3.3 





Isolated word correction 

 Fundamental premise – there is a lexicon from which the 

correct spellings come 

 Two basic choices for this 

 A standard lexicon such as 

 Webster’s English Dictionary 

 An “industry-specific” lexicon – hand-maintained 

 The lexicon of the indexed corpus 

 E.g., all words on the web 

 All names, acronyms etc. 

 (Including the mis-spellings) 

Sec. 3.3.2 



Isolated word correction 

 Given a lexicon and a character sequence Q, return the 

words in the lexicon closest to Q 

 What’s “closest”? 

 We’ll study several alternatives 

 Edit distance (Levenshtein distance) 

 Weighted edit distance 

 n-gram overlap 

Sec. 3.3.2 
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Edit distance 

The edit distance between string s1 and string s2 is the minimum 

number of basic operations that convert s1 to s2. 

Levenshtein distance: The admissible basic operations are insert, 

delete, and replace (Edit distance usually refers to Levenshtein 

distance)  

Levenshtein distance dog-do: 1 (delete g) 

Levenshtein distance cat-cart: 1 (insert r) 

Levenshtein distance cat-cut: 1 (replace a with u) 

Levenshtein distance cat-act: 2 (replace c with a, replace a with c) 

Damerau-Levenshtein distance cat-act: 1 (transpose c with a) 

Damerau-Levenshtein includes transposition as a fourth possible 

operation. 

Hamming distance: only allows substitution (only applies to strings of 

the same length). 
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Levenshtein distance: Computation 
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Levenshtein distance: Algorithm 
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Levenshtein distance: Algorithm 
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Levenshtein distance: Algorithm 
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Levenshtein distance: Algorithm 
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Levenshtein distance: Algorithm 
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Levenshtein distance: Example 
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Each cell of Levenshtein matrix 

 

cost of getting here from 

my upper left neighbor 

(copy or replace) 

cost of getting here 

from my upper neighbor 

(delete) 

cost of getting here from 

my left neighbor (insert) 

the minimum of the three 

possible “movements”; 

the cheapest way of getting 

here 
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Levenshtein distance: Example 

 



59 

Dynamic programming 

Optimal substructure: The optimal solution to the problem contains 

within it subsolutions, i.e., optimal solutions to subproblems. 

Overlapping subsolutions: The subsolutions overlap. These 

subsolutions are computed over and over again when computing the 

global optimal solution in a brute-force algorithm. 

Subproblem in the case of edit distance: what is the edit distance of 

two prefixes 

Overlapping subsolutions: We need most distances of prefixes 3 times 

– this corresponds to moving right, diagonally, down. 
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Weighted edit distance 

As above, but weight of an operation depends on the characters 

involved. 

Meant to capture keyboard errors, e.g., m more likely to be mistyped 

as n than as q. 

Therefore, replacing m by n is a smaller edit distance than by q. 

We now require a weight matrix as input. 

Modify dynamic programming to handle weights 
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Using edit distance for spelling correction 

Given query, first enumerate all character sequences within a preset 

(possibly weighted) edit distance 

Intersect this set with our list of “correct” words 

Then suggest terms in the intersection to the user. 

→ exercise in a few slides 
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Exercise 

❶Compute Levenshtein distance matrix for OSLO – SNOW 

❷What are the Levenshtein editing operations that transform cat into 

catcat? 
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How do I read out the editing operations that transform OSLO into SNOW? 
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Spelling correction 

Now that we can compute edit distance: how to use it for isolated 

word spelling correction. 

k-gram indexes for isolated word spelling correction. 

Context-sensitive spelling correction 

General issues 



Edit distance to all dictionary terms? 

 Given a (mis-spelled) query – do we compute its edit 

distance to every dictionary term? 

 Expensive and slow 

 Alternative? 

 How do we cut the set of candidate dictionary terms? 

 One possibility is to use n-gram overlap for this 

 This can also be used by itself for spelling correction. 

Sec. 3.3.4 



n-gram overlap 

 Enumerate all the n-grams in the query string as well as in 

the lexicon 

 Use the n-gram index (recall wild-card search) to retrieve 

all lexicon terms matching any of the query n-grams 

 Threshold by number of matching n-grams 

 Variants – weight by keyboard layout, etc. 

Sec. 3.3.4 



Example with trigrams 

 Suppose the text is november 

 Trigrams are nov, ove, vem, emb, mbe, ber. 

 The query is december 

 Trigrams are dec, ece, cem, emb, mbe, ber. 

 So 3 trigrams overlap (of 6 in each term) 

 How can we turn this into a normalized measure of 

overlap? 

Sec. 3.3.4 



One option – Jaccard coefficient 

 A commonly-used measure of overlap 

 Let X and Y be two sets; then the J.C. is 

 

 

 Equals 1 when X and Y have the same elements and zero 

when they are disjoint 

 X and Y don’t have to be of the same size 

 Always assigns a number between 0 and 1 

 Now threshold to decide if you have a match 

 E.g., if J.C. > 0.8, declare a match  

YXYX  /

Sec. 3.3.4 



Matching trigrams 

 Consider the query lord – we wish to identify words 

matching 2 of its 3 bigrams (lo, or, rd) 

lo 

or 

rd 

alone lord sloth 

lord morbid 

border card 

border 

ardent 

Standard postings “merge” will enumerate …  

Sec. 3.3.4 



Context-sensitive spell correction 

Sec. 3.3.5 



Context-sensitive correction 

 Need surrounding context to catch this. 

 First idea: retrieve dictionary terms close (in weighted 
edit distance) to each query term 

 Now try all possible resulting phrases with one word 
“fixed” at a time 

 flew from Istanbul Ataturk Airport  

 fled form Istanbul Ataturk Airport  

 flea form Istanbul Ataturk Airport  

 Hit-based spelling correction: Suggest the alternative 
that has lots of hits. 

 

Sec. 3.3.5 



Exercise 

 Suppose that for “flew form Istanbul Ataturk Airport”  

we have 7 alternatives for flew, 20 for form, 3 for Istanbul, 

2 for Ataturk, and 3 for airport. 

How many “corrected” phrases will we enumerate in this 

scheme? 

Sec. 3.3.5 



Another approach 

 Break phrase query into a conjunction of biwords 

(Lecture 2). 

 Look for biwords that need only one term corrected. 

 Enumerate phrase matches and … rank them! 

Sec. 3.3.5 



General issues in spell correction 

 We enumerate multiple alternatives for “Did you mean?” 

 Need to figure out which to present to the user 

 Use heuristics 

 The alternative hitting most docs 

 Query log analysis + tweaking 

 For especially popular, topical queries 

 Spell-correction is computationally expensive 

 Avoid running routinely on every query? 

 Run only on queries that matched few docs 

 

Sec. 3.3.5 



Soundex 



Soundex 

 Class of heuristics to expand a query into phonetic 

equivalents 

 Language specific – mainly for names 

 E.g., chebyshev  tchebycheff 

 

Sec. 3.4 



Soundex – typical algorithm 

 Turn every token to be indexed into a 4-character 

reduced form 

 Do the same with query terms 

 Build and search an index on the reduced forms 

 (when the query calls for a soundex match) 

 
 

Sec. 3.4 



Soundex – typical algorithm 
1. Retain the first letter of the word.  
2. Change all occurrences of the following letters to '0' (zero): 

  'A', E', 'I', 'O', 'U', 'H', 'W', 'Y'.  
3. Change letters to digits as follows:  

 B, F, P, V  1 
 C, G, J, K, Q, S, X, Z  2 
 D,T  3 
 L  4 
 M, N  5 
 R  6 

4. Remove all pairs of consecutive digits. 

5. Remove all zeros from the resulting string. 

6. Pad the resulting string with trailing zeros and return the 
first four positions, which will be of the form <uppercase 
letter> <digit> <digit> <digit>. 

Sec. 3.4 
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Example: Soundex of HERMAN 

Retain H 

ERMAN → 0RM0N 

0RM0N → 06505 

06505 → 06505 

06505 → 655 

Return H655 

Note: HERMANN will generate the same code 



Soundex 

 Soundex is the classic algorithm, provided by most 

databases (Oracle, Microsoft, …) 

 How useful is soundex? 

 Not very – for information retrieval 

 Okay for “high recall” tasks, though biased to names of 

certain nationalities 

 

Sec. 3.4 



What queries can we process? 

 We have 

 Positional inverted index with skip pointers 

 Wild-card index 

 Spell-correction 

 Soundex 

 Queries such as 

(SPELL(moriset) /3 toron*to) OR SOUNDEX(chaikofski) 



References 

 Introduction to Information Retrieval, chapter 3 

 The slides were adapted from the book’s companion website: 

 http://nlp.stanford.edu/IR-book/information-retrieval-book.html 

 

 A nice example and an applet for edit distance. 

 http://www.merriampark.com/ld.htm 

 

 Nice reading on spell correction: 

 Peter Norvig: How to write a spelling corrector  

http://norvig.com/spell-correct.html 

 

 Soundex Algorith demo: 

 http://www.creativyst.com/Doc/Articles/SoundEx1/SoundEx1.htm#Top 

Sec. 3.5 
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