
BLG 540E

TEXT RETRIEVAL SYSTEMS

Arzucan Özgür

Index Construction and
Compression

Faculty of Computer and Informatics, İstanbul Techical University

March 4, 2011

Index Construction

Index construction

 How do we construct an index?

 What strategies can we use with limited main

memory?

Ch. 4

Hardware basics

 Many design decisions in information retrieval are based

on the characteristics of hardware

 We begin by reviewing hardware basics

Sec. 4.1

Hardware basics

 Access to data in memory is much faster than access to

data on disk.

 Disk seeks: No data is transferred from disk while the

disk head is being positioned.

 Therefore: Transferring one large chunk of data from disk

to memory is faster than transferring many small chunks.

 Disk I/O is block-based: Reading and writing of entire

blocks (as opposed to smaller chunks).

 Block sizes: 8KB to 256 KB.

Sec. 4.1

Hardware basics

 Servers used in IR systems now typically have several GB

of main memory, sometimes tens of GB.

 Available disk space is several orders of magnitude larger.

 Fault tolerance is very expensive: It’s much cheaper to use

many regular machines rather than one fault tolerant

machine.

Sec. 4.1

RCV1: Our collection for this lecture

 Shakespeare’s collected works definitely aren’t large

enough for demonstrating many of the points in this

course.

 The collection we’ll use isn’t really large enough either,

but it’s publicly available and is at least a more plausible

example.

 As an example for applying scalable index construction

algorithms, we will use the Reuters RCV1 collection.

 This is one year of Reuters newswire (part of 1995 and

1996)

Sec. 4.2

A Reuters RCV1 document

Sec. 4.2

Reuters RCV1 statistics

symbol statistic value

N documents 800,000

L avg. # tokens per doc 200

M terms (= word types) 400,000

 avg. # bytes per token 6

 (incl. spaces/punct.)

 avg. # bytes per token 4.5

 (without spaces/punct.)

 non-positional postings 100,000,000

Sec. 4.2

 Documents are parsed to extract words and these
are saved with the Document ID.

I did enact Julius

Caesar I was killed

i' the Capitol;

Brutus killed me.

Doc 1

So let it be with

Caesar. The noble

Brutus hath told you

Caesar was ambitious

Doc 2

Recall sort-based index construction (Lec1) Term Doc #

I 1

did 1

enact 1

julius 1

caesar 1

I 1

was 1

killed 1

i' 1

the 1

capitol 1

brutus 1

killed 1

me 1

so 2

let 2

it 2

be 2

with 2

caesar 2

the 2

noble 2

brutus 2

hath 2

told 2

you 2

caesar 2

was 2

ambitious 2

Sec. 4.2

Term Doc #

I 1

did 1

enact 1

julius 1

caesar 1

I 1

was 1

killed 1

i' 1

the 1

capitol 1

brutus 1

killed 1

me 1

so 2

let 2

it 2

be 2

with 2

caesar 2

the 2

noble 2

brutus 2

hath 2

told 2

you 2

caesar 2

was 2

ambitious 2

Term Doc #

ambitious 2

be 2

brutus 1

brutus 2

capitol 1

caesar 1

caesar 2

caesar 2

did 1

enact 1

hath 1

I 1

I 1

i' 1

it 2

julius 1

killed 1

killed 1

let 2

me 1

noble 2

so 2

the 1

the 2

told 2

you 2

was 1

was 2

with 2

 Key step

 After all documents have been

parsed, the inverted file is sorted

by terms.

We focus on this sort step.

We have 100M items to sort.

Sec. 4.2

Scaling index construction

 In-memory index construction does not scale.

 How can we construct an index for very large

collections?

 Taking into account the hardware constraints we just

learned about . . .

 Memory, disk, speed, etc.

Sec. 4.2

Sort-based index construction

 As we build the index, we parse docs one at a time.

 While building the index, we cannot easily exploit compression

tricks (you can, but much more complex)

 The final postings for any term are incomplete until the end.

 At 12 bytes per non-positional postings entry (term, doc, freq),

demands a lot of space for large collections.

 T = 100,000,000 in the case of RCV1

 So … we can do this in memory, but typical collections are

much larger. E.g. the New York Times provides an index of >150

years of newswire

 Thus: We need to store intermediate results on disk. (Need to

use an external sorting algorithm).

Sec. 4.2

BSBI: Blocked sort-based Indexing (Sorting

with fewer disk seeks)

 12-byte (4+4+4) records (term, doc, freq).

 These are generated as we parse docs.

 Must now sort 100M such 12-byte records by term.

 Define a Block ~ 10M such records

 Can easily fit a couple into memory.

 Will have 10 such blocks to start with.

 Basic idea of algorithm:

 Accumulate postings for each block, sort, write to disk.

 Then merge the blocks into one long sorted order.

Sec. 4.2

Sec. 4.2

Sec. 4.2

Blocked sort-based Indexing

Problem with sort-based algorithm

 Our assumption was: we can keep the dictionary in

memory.

 We need the dictionary (which grows dynamically) in

order to implement a term to termID mapping.

 Actually, we could work with term,docID postings instead

of termID,docID postings . . .

 . . . but then intermediate files become very large. (We

would end up with a scalable, but very slow index

construction method.)

Sec. 4.3

SPIMI:

Single-pass in-memory indexing

 Key idea 1: Generate separate dictionaries for each block

– no need to maintain term-termID mapping across

blocks.

 Key idea 2: Don’t sort. Accumulate postings in postings

lists as they occur.

 With these two ideas we can generate a complete

inverted index for each block.

 These separate indexes can then be merged into one big

index.

Sec. 4.3

SPIMI-Invert

 Merging of blocks is analogous to BSBI.

Sec. 4.3

SPIMI: Compression

 Compression makes SPIMI even more efficient.

 Compression of terms

 Compression of postings

Sec. 4.3

Distributed indexing

 For web-scale indexing:

must use a distributed computing cluster

 Individual machines are fault-prone

 Can unpredictably slow down or fail

 How do we exploit such a pool of machines?

Sec. 4.4

Google data centers

 Google data centers mainly contain commodity machines.

 Data centers are distributed around the world.

 Estimate: a total of 1 million servers, 3 million

processors/cores (Gartner 2007)

 Estimate: Google installs 100,000 servers each quarter.

 Based on expenditures of 200–250 million dollars per year

 This would be 10% of the computing capacity of the

world!?!

Sec. 4.4

Distributed indexing

 Maintain a master machine directing the indexing job –

considered “safe”.

 Break up indexing into sets of (parallel) tasks.

 Master machine assigns each task to an idle machine from

a pool.

Sec. 4.4

Parallel tasks

 We will use two sets of parallel tasks

 Parsers

 Inverters

 Break the input document collection into splits

 Each split is a subset of documents (corresponding to

blocks in BSBI/SPIMI)

Sec. 4.4

Parsers

 Master assigns a split to an idle parser machine

 Parser reads a document at a time and emits (term, doc)

pairs

 Parser writes pairs into j partitions

 Each partition is for a range of terms’ first letters

 (e.g., a-f, g-p, q-z) – here j = 3.

 Now to complete the index inversion

Sec. 4.4

Inverters

 An inverter collects all (term,doc) pairs (= postings) for

one term-partition.

 Sorts and writes to postings lists

Sec. 4.4

Data flow

splits

Parser

Parser

Parser

Master

a-f g-p q-z

a-f g-p q-z

a-f g-p q-z

Inverter

Inverter

Inverter

Postings

a-f

g-p

q-z

assign assign

Map

phase Segment files

Reduce

phase

Sec. 4.4

MapReduce

 The index construction algorithm we just described is an
instance of MapReduce.

 MapReduce (Dean and Ghemawat 2004) is a robust and
conceptually simple framework for distributed computing.

 The Google indexing system (ca. 2002) as consisted of a
number of phases, each implemented in MapReduce.

 Index construction was just one phase.

 Another phase: transforming a term-partitioned index into a
document-partitioned index.

 Term-partitioned: one machine handles a subrange of terms

 Document-partitioned: one machine handles a subrange of documents

 Most search engines use a document-partitioned index …
better load balancing, etc.

Sec. 4.4

Sec. 4.4

Dynamic indexing

 Up to now, we have assumed that collections are static.

 They rarely are:

 Documents come in over time and need to be inserted.

 Documents are deleted and modified.

 This means that the dictionary and postings lists have to

be modified:

 Postings updates for terms already in dictionary

 New terms added to dictionary

Sec. 4.5

Simplest approach

 Maintain “big” main index

 New docs go into “small” auxiliary index

 Search across both, merge results

 Deletions

 Invalidation bit-vector for deleted docs

 Filter docs output on a search result by this invalidation bit-

vector

 Periodically, re-index into one main index

Sec. 4.5

Issues with main and auxiliary indexes

 Problem of frequent merges

 Poor performance during merge

 Actually:

 Merging of the auxiliary index into the main index is efficient if we keep

a separate file for each postings list.

 Merge is the same as a simple append.

 But then we would need a lot of files – inefficient for O/S.

 Assumption for the rest of the lecture: The index is one big

file.

 In reality: Use a scheme somewhere in between (e.g., split very

large postings lists, collect postings lists of length 1 in one file

etc.)

Sec. 4.5

Further issues with multiple indexes

 Collection-wide statistics are hard to maintain

 E.g., when we spoke of spell-correction: which of several

corrected alternatives do we present to the user?

 We said, pick the one with the most hits

 How do we maintain the top ones with multiple indexes

and invalidation bit vectors?

 One possibility: ignore everything but the main index for such

ordering

Sec. 4.5

Dynamic indexing at search engines

 All the large search engines now do dynamic indexing

 Their indices have frequent incremental changes

 News items, blogs, new topical web pages

 Sarah Palin, …

 But (sometimes/typically) they also periodically

reconstruct the index from scratch

 Query processing is then switched to the new index, and the

old index is then deleted

Sec. 4.5

Building Positional Indexes

 Basically the same problem except that the intermediate

data structures are large.

Sec. 4.5

Index Compression

Why compression (in general)?

 Use less disk space

 Saves a little money

 Keep more stuff in memory

 Increases speed

 Increase speed of data transfer from disk to memory

 [read compressed data | decompress] is faster than

 [read uncompressed data]

 Premise: Decompression algorithms are fast

 True of the decompression algorithms we use

Ch. 5

Why compression for inverted indexes?

 Dictionary

 Make it small enough to keep in main memory

 Make it so small that you can keep some postings lists in main

memory too

 Postings file(s)

 Reduce disk space needed

 Decrease time needed to read postings lists from disk

 Large search engines keep a significant part of the postings in

memory.

 Compression lets you keep more in memory

 We will devise various IR-specific compression schemes

Ch. 5

Effect of preprocessing

size of word types (terms) non-positional

postings

positional postings

dictionary non-positional index positional index

Size

(K)

∆% cumul

%

Size (K) ∆

%

cumul

%

Size (K) ∆

%

cumul

%

Unfiltered 484 109,971 197,879

No numbers 474 -2 -2 100,680 -8 -8 179,158 -9 -9

Case folding 392 -17 -19 96,969 -3 -12 179,158 0 -9

30 stopwords 391 -0 -19 83,390 -14 -24 121,858 -31 -38

150 stopwords 391 -0 -19 67,002 -30 -39 94,517 -47 -52

stemming 322 -17 -33 63,812 -4 -42 94,517 0 -52

Sec. 5.1

Lossless vs. lossy compression

 Lossless compression: All information is preserved.

 What we mostly do in IR.

 Lossy compression: Discard some information

 Several of the preprocessing steps can be viewed as lossy

compression: case folding, stop words, stemming, number

elimination.

Sec. 5.1

Vocabulary vs. collection size

 How big is the term vocabulary?

 That is, how many distinct words are there?

 Can we assume an upper bound?

 Not really.

 In practice, the vocabulary will keep growing with the

collection size

Sec. 5.1

Vocabulary vs. collection size

 Heaps’ law: M = kTb

 M is the size of the vocabulary, T is the number of tokens

in the collection

 Typical values: 30 ≤ k ≤ 100 and b ≈ 0.5

 In a log-log plot of vocabulary size M vs. T, Heaps’ law

predicts a line with slope about ½

 It is the simplest possible relationship between the two in log-

log space

 An empirical finding (“empirical law”)

Sec. 5.1

For RCV1, the dashed line

Good empirical fit for
Reuters RCV1 !

For first 1,000,020 tokens,

law predicts 38,323 terms;

actually, 38,365 terms

Sec. 5.1

Heaps’ Law

Zipf’s law

 Heaps’ law gives the vocabulary size in collections.

 We also study the relative frequencies of terms.

 In natural language, there are a few very frequent terms

and very many very rare terms.

 Zipf’s law: The ith most frequent term has frequency

proportional to 1/i .

 cfi ∝ 1/i = K/i where K is a normalizing constant

 cfi is collection frequency: the number of occurrences of

the term ti in the collection.

Sec. 5.1

Word distributions

 Words are not distributed evenly!

 Same goes for letters of the alphabet (ETAOIN SHRDLU),
city sizes, wealth, etc.

 Usually, the 80/20 rule applies (80% of the wealth goes to
20% of the people or it takes 80% of the effort to build
the easier 20% of the system)…

Shakespeare

 Romeo and Juliet:
 And, 667; The, 661; I, 570; To, 515; A, 447; Of, 382; My, 356; Is, 343; That, 343; In, 314; You, 289; Thou, 277; Me, 262; Not, 257; With,

234; It, 224; For, 223; This, 215; Be, 207; But, 181; Thy, 167; What, 163; O, 160; As, 156; Her, 150; Will, 147; So, 145; Thee, 139;

Love, 135; His, 128; Have, 127; He, 120; Romeo, 115; By, 114; She, 114; Shall, 107; Your, 103; No, 102; Come, 96; Him, 96; All, 92;

Do, 89; From, 86; Then, 83; Good, 82; Now, 82; Here, 80; If, 80; An, 78; Go, 76; On, 76; I'll, 71; Death, 69; Night, 68; Are, 67; More,

67; We, 66; At, 65; Man, 65; Or, 65; There, 64; Hath, 63; Which, 60;

 …

 A-bed, 1; A-bleeding, 1; A-weary, 1; Abate, 1; Abbey, 1; Abhorred, 1; Abhors, 1; Aboard, 1; Abound'st, 1; Abroach, 1; Absolved, 1;

Abuse, 1; Abused, 1; Abuses, 1; Accents, 1; Access, 1; Accident, 1; Accidents, 1; According, 1; Accursed, 1; Accustom'd, 1; Ache, 1;

Aches, 1; Aching, 1; Acknowledge, 1; Acquaint, 1; Acquaintance, 1; Acted, 1; Acting, 1; Action, 1; Acts, 1; Adam, 1; Add, 1; Added, 1;

Adding, 1; Addle, 1; Adjacent, 1; Admired, 1; Ado, 1; Advance, 1; Adversary, 1; Adversity's, 1; Advise, 1; Afeard, 1; Affecting, 1;

Afflicted, 1; Affliction, 1; Affords, 1; Affray, 1; Affright, 1; Afire, 1; Agate-stone, 1; Agile, 1; Agree, 1; Agrees, 1; Aim'd, 1; Alderman, 1;

All-cheering, 1; All-seeing, 1; Alla, 1; Alliance, 1; Alligator, 1; Allow, 1; Ally, 1; Although, 1;

http://www.mta75.org/curriculum/english/Shakes/index.html

(visited in Dec. 2006)

http://www.mta75.org/curriculum/english/Shakes/index.html
http://www.mta75.org/curriculum/english/Shakes/index.html

The BNC (Adam Kilgarriff)
 1 6187267 the det

 2 4239632 be v

 3 3093444 of prep

 4 2687863 and conj

 5 2186369 a det

 6 1924315 in prep

 7 1620850 to infinitive-marker

 8 1375636 have v

 9 1090186 it pron

 10 1039323 to prep

 11 887877 for prep

 12 884599 i pron

 13 760399 that conj

 14 695498 you pron

 15 681255 he pron

 16 680739 on prep

 17 675027 with prep

 18 559596 do v

 19 534162 at prep

 20 517171 by prep

Kilgarriff, A. Putting Frequencies in the Dictionary.

International Journal of Lexicography

10 (2) 1997. Pp 135--155

Stop words

 250-300 most common words in English account

for 50% or more of a given text.

 Example: “the” and “of” represent 10% of tokens.

“and”, “to”, “a”, and “in” - another 10%. Next 12

words - another 10%.

 Moby Dick Ch.1: 859 unique words (types), 2256

word occurrences (tokens). Top 65 types cover

1132 tokens (> 50%).

Zipf consequences

 If the most frequent term (the) occurs cf1 times

 then the second most frequent term (of) occurs cf1/2 times

 the third most frequent term (and) occurs cf1/3 times …

 Equivalent: cfi = K/i where K is a normalizing factor, so

 log cfi = log K - log i

 Linear relationship between log cfi and log i

 Another power law relationship

Sec. 5.1

Zipf’s law for Reuters RCV1

50

Sec. 5.1

Compression

 Now, we will consider compressing the space

for the dictionary and postings

 Basic Boolean index only

 No study of positional indexes, etc.

 We will consider compression schemes

Ch. 5

DICTIONARY COMPRESSION

Sec. 5.3

Why compress the dictionary?

 Search begins with the dictionary

 We want to keep it in memory

 Memory footprint competition with other applications

 Embedded/mobile devices may have very little memory

 Even if the dictionary isn’t in memory, we want it to be

small for a fast search startup time

 So, compressing the dictionary is important

Sec. 5.2

Dictionary storage - first cut

 Array of fixed-width entries

 ~400,000 terms; 28 bytes/term = 11.2 MB.

Terms Freq. Postings ptr.

a 656,265

aachen 65

…. ….

zulu 221

Dictionary search

structure
20 bytes 4 bytes each

Sec. 5.2

Fixed-width terms are wasteful

 Most of the bytes in the Term column are wasted – we

allot 20 bytes for 1 letter terms.

 And we still can’t handle supercalifragilisticexpialidocious or

hydrochlorofluorocarbons.

 Ave. dictionary word in English: ~8 characters

Sec. 5.2

Compressing the term list:

Dictionary-as-a-String

….systilesyzygeticsyzygialsyzygyszaibelyiteszczecinszomo….

Freq. Postings ptr. Term ptr.

33

29

44

126

Total string length =

400K x 8B = 3.2MB

Pointers resolve 3.2M

positions: log23.2M =

22bits = 3bytes

Store dictionary as a (long) string of characters:
Pointer to next word shows end of current word

Hope to save up to 60% of dictionary space.

Sec. 5.2

Space for dictionary as a string

 4 bytes per term for Freq.

 4 bytes per term for pointer to Postings.

 3 bytes per term pointer

 Avg. 8 bytes per term in term string

 400K terms x 19 7.6 MB (against 11.2MB for fixed

width)

Sec. 5.2

Blocking

 Store pointers to every kth term string.

 Example below: k=4.

 Need to store term lengths (1 extra byte)

….7systile9syzygetic8syzygial6syzygy11szaibelyite8szczecin9szomo….

Freq. Postings ptr. Term ptr.

33

29

44

126

7

 Save 9 bytes

 on 3

 pointers.

Lose 4 bytes on

term lengths.

Sec. 5.2

Net

 Example for block size k = 4

 Save 5 bytes per four-term block.

 Total: 400,000/4 * 5 = 0.5 MB

Saved another ~0.5MB. This reduces the size of the
dictionary from 7.6 MB to 7.1 MB.
We can save more with larger k.

Why not go with larger k?

Sec. 5.2

Dictionary search without blocking

 Assuming each dictionary

term equally likely in query

(not really so in practice!),

average number of

comparisons =

(1+2∙2+4∙3+4)/8 ~2.6

Sec. 5.2

Dictionary search with blocking

 Binary search down to 4-term block;

 Then linear search through terms in block.

 Blocks of 4 (binary tree), avg. = (1+2∙2+2∙3+2∙4+5)/8

= 3 compares

Sec. 5.2

Front coding

 Front-coding:

 Sorted words commonly have long common prefix – store

differences only

8automata8automate9automatic10automation

8automat*a1e2ic3ion

Encodes automat
Extra length

beyond automat.

Begins to resemble general string compression.

Sec. 5.2

RCV1 dictionary compression

summary

Technique Size in MB

Fixed width 11.2

Dictionary-as-String with pointers to every term 7.6

Also, blocking k = 4 7.1

Also, Blocking + front coding 5.9

Sec. 5.2

Fixed length codes

• Binary representations

– ASCII

– Representational power (2k symbols where k

is the number of bits)

64

Variable length codes

• Alphabet:

 A .- N -. 0 -----

 B -... O --- 1 .----

 C -.-. P .--. 2 ..---

 D -.. Q --.- 3 ...—

 E . R .-. 4-

 F ..-. S ... 5

 G --. T - 6 -....

 H U ..- 7 --...

 I .. V ...- 8 ---..

 J .--- W .-- 9 ----.

 K -.- X -..-

 L .-.. Y -.—

 M -- Z --..

• Demo:
– http://www.scphillips.com/morse/

65

Most frequent letters in English

• Some are more frequently used than others…

• Most frequent letters:
– E T A O I N S H R D L U

• Demo:
– http://www.amstat.org/publications/jse/secure/v7n2/co

unt-char.cfm

• Also: bigrams:
– TH HE IN ER AN RE ND AT ON NT

66

Huffman coding

• Developed by David Huffman (1952)

• Average of 5 bits per character (37.5%
compression)

• Based on frequency distributions of
symbols

• Algorithm: iteratively build a tree of
symbols starting with the two least
frequent symbols

67

Sym bol Frequency

A 7

B 4

C 10

D 5

E 2

F 11

G 15

H 3

I 7

J 8

68

0

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

1

c

b d

f

g

i j

h e

a

The Huffman tree

69

S y m b o l C o d e

A 0 1 1 0

B 0 0 1 0

C 0 0 0

D 0 0 1 1

E 0 1 1 1 0

F 0 1 0

G 1 0

H 0 1 1 1 1

I 1 1 0

J 1 1 1

70

POSTINGS COMPRESSION

Sec. 5.3

Postings compression

 The postings file is much larger than the dictionary, factor

of at least 10.

 Key: store each posting compactly.

 A posting for our purposes is a docID.

 For Reuters (800,000 documents), we would use 32 bits

per docID when using 4-byte integers.

 Alternatively, we can use log2 800,000 ≈ 20 bits per

docID.

 Our goal: use a lot less than 20 bits per docID.

Sec. 5.3

Postings: two conflicting forces

 A term like arachnocentric occurs in maybe one doc

out of a million – we would like to store this posting

using log2 1M ~ 20 bits.

 A term like the occurs in virtually every doc, so 20

bits/posting is too expensive.

 Prefer 0/1 bitmap vector in this case

Sec. 5.3

Postings file entry

 We store the list of docs containing a term in increasing

order of docID.

 computer: 33,47,154,159,202 …

 Consequence: it suffices to store gaps.

 33,14,107,5,43 …

 Hope: most gaps can be encoded/stored with far fewer

than 20 bits.

Sec. 5.3

Three postings entries

Sec. 5.3

Variable length encoding

 Aim:

 For arachnocentric, we will use ~20 bits/gap entry.

 For the, we will use ~1 bit/gap entry.

 If the average gap for a term is G, we want to use ~log2G

bits/gap entry.

 Key challenge: encode every integer (gap) with about as

few bits as needed for that integer.

 This requires a variable length encoding

 Variable length codes achieve this by using short codes

for small numbers

Sec. 5.3

Variable Byte (VB) codes

 For a gap value G, we want to use close to the fewest

bytes needed to hold log2 G bits

 Begin with one byte to store G and dedicate 1 bit in it to

be a continuation bit c

 If G ≤127, binary-encode it in the 7 available bits and set c

=1

 Else encode G’s lower-order 7 bits and then use

additional bytes to encode the higher order bits using the

same algorithm

 At the end set the continuation bit of the last byte to 1 (c

=1) – and for the other bytes c = 0.

Sec. 5.3

Example

docIDs 824 829 215406

gaps 5 214577

VB code 00000110

10111000

10000101 00001101

00001100

10110001

Postings stored as the byte concatenation

000001101011100010000101000011010000110010110001

Key property: VB-encoded postings are

uniquely prefix-decodable.

For a small gap (5), VB

uses a whole byte.

Sec. 5.3

Other variable unit codes

 Instead of bytes, we can also use a different “unit of

alignment”: 32 bits (words), 16 bits, 4 bits (nibbles).

 Variable byte alignment wastes space if you have many

small gaps – nibbles do better in such cases.

 Variable byte codes: Used by many commercial/research

systems

Sec. 5.3

Unary code

 Represent n as n 1s with a final 0.

 Unary code for 3 is 1110.

 Unary code for 40 is

110 .

 Unary code for 80 is:

11

111111111111111111111111111111110

 This doesn’t look promising, but….

80

Gamma codes

 We can compress better with bit-level codes

 The Gamma code is the best known of these.

 Represent a gap G as a pair length and offset

 offset is G in binary, with the leading bit cut off

 For example 13 → 1101 → 101

 length is the length of offset

 For 13 (offset 101), this is 3.

 We encode length with unary code: 1110.

 Gamma code of 13 is the concatenation of length and

offset: 1110101

Sec. 5.3

Gamma code examples

number length offset g-code

0 none

1 0 0

2 10 0 10,0

3 10 1 10,1

4 110 00 110,00

9 1110 001 1110,001

13 1110 101 1110,101

24 11110 1000 11110,1000

511 111111110 11111111 111111110,11111111

1025 11111111110 0000000001 11111111110,0000000001

Sec. 5.3

Gamma code properties

 G is encoded using 2 log G + 1 bits

 Length of offset is log G bits

 Length of length is log G + 1 bits

 All gamma codes have an odd number of bits

 Almost within a factor of 2 of best possible, log2 G

 Gamma code is uniquely prefix-decodable, like VB

 Gamma code can be used for any distribution

 Gamma code is parameter-free

Sec. 5.3

Gamma seldom used in practice

 Machines have word boundaries – 8, 16, 32, 64 bits

 Operations that cross word boundaries are slower

 Compressing and manipulating at the granularity of bits

can be slow

 Variable byte encoding is aligned and thus potentially

more efficient

 Regardless of efficiency, variable byte is conceptually

simpler at little additional space cost

Sec. 5.3

RCV1 compression

Data structure Size in MB

dictionary, fixed-width 11.2

dictionary, term pointers into string 7.6

with blocking, k = 4 7.1

with blocking & front coding 5.9

collection (text, xml markup etc) 3,600.0

collection (text) 960.0

Term-doc incidence matrix 40,000.0

postings, uncompressed (32-bit words) 400.0

postings, uncompressed (20 bits) 250.0

postings, variable byte encoded 116.0

postings, g-encoded 101.0

Sec. 5.3

Index compression summary

 We can now create an index for highly efficient Boolean

retrieval that is very space efficient

 Only 4% of the total size of the collection

 Only 10-15% of the total size of the text in the collection

 However, we’ve ignored positional information

 Hence, space savings are less for indexes used in practice

 But techniques substantially the same.

Sec. 5.3

References

 Introduction to Information Retrieval, chapters 4 & 5.

 Some slides were adapted from

 the book’s companion website:

 http://nlp.stanford.edu/IR-book/information-retrieval-book.html

 Prof. Dragomir Radev’s lectures at the University of Michigan:

 http://clair.si.umich.edu/~radev/teaching.html

Sec. 3.5

http://nlp.stanford.edu/IR-book/information-retrieval-book.html
http://nlp.stanford.edu/IR-book/information-retrieval-book.html
http://nlp.stanford.edu/IR-book/information-retrieval-book.html
http://nlp.stanford.edu/IR-book/information-retrieval-book.html
http://nlp.stanford.edu/IR-book/information-retrieval-book.html
http://nlp.stanford.edu/IR-book/information-retrieval-book.html
http://nlp.stanford.edu/IR-book/information-retrieval-book.html
http://nlp.stanford.edu/IR-book/information-retrieval-book.html

