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Index Construction 



Index construction 

 How do we construct an index? 

 What strategies can we use with limited main 

memory? 

Ch. 4 



Hardware basics 

 Many design decisions in information retrieval are based 

on the characteristics of hardware 

 We begin by reviewing hardware basics 

Sec. 4.1 



Hardware basics 

 Access to data in memory is much faster than access to 

data on disk. 

 Disk seeks: No data is transferred from disk while the 

disk head is being positioned. 

 Therefore: Transferring one large chunk of data from disk 

to memory is faster than transferring many small chunks. 

 Disk I/O is block-based: Reading and writing of entire 

blocks (as opposed to smaller chunks). 

 Block sizes: 8KB to 256 KB. 
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Hardware basics 

 Servers used in IR systems now typically have several GB 

of main memory, sometimes tens of GB.  

 Available disk space is several orders of magnitude larger. 

 Fault tolerance is very expensive: It’s much cheaper to use 

many regular machines rather than one fault tolerant 

machine. 
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RCV1: Our collection for this lecture 

 Shakespeare’s collected works definitely aren’t large 

enough for demonstrating many of the points in this 

course. 

 The collection we’ll use isn’t really large enough either, 

but it’s publicly available and is at least a more plausible 

example. 

 As an example for applying scalable index construction 

algorithms, we will use the Reuters RCV1 collection. 

 This is one year of Reuters newswire (part of 1995 and 

1996) 
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A Reuters RCV1 document 
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Reuters RCV1 statistics 

symbol   statistic                       value 

N              documents     800,000 

L              avg. # tokens per doc   200 

M    terms (= word types)   400,000 

                   avg. # bytes per token            6 

                       (incl. spaces/punct.) 

                    avg. # bytes per token  4.5 

                (without spaces/punct.) 

                    non-positional postings          100,000,000 
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 Documents are parsed to extract words and these 
are saved with the Document ID. 

I did enact Julius 

Caesar I was killed  

i' the Capitol;  

Brutus killed me. 

Doc 1 

So let it be with 

Caesar. The noble 

Brutus hath told you 

Caesar was ambitious 

Doc 2 

Recall sort-based index construction (Lec1) Term Doc #

I 1

did 1

enact 1

julius 1

caesar 1

I 1

was 1

killed 1

i' 1

the 1

capitol 1

brutus 1

killed 1

me 1

so 2

let 2

it 2

be 2

with 2

caesar 2

the 2

noble 2

brutus 2

hath 2

told 2

you 2

caesar 2

was 2

ambitious 2
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Term Doc #

I 1

did 1

enact 1

julius 1

caesar 1

I 1

was 1

killed 1

i' 1

the 1

capitol 1

brutus 1

killed 1

me 1

so 2

let 2

it 2

be 2

with 2

caesar 2

the 2

noble 2

brutus 2

hath 2

told 2

you 2

caesar 2

was 2

ambitious 2

Term Doc #

ambitious 2

be 2

brutus 1

brutus 2

capitol 1

caesar 1

caesar 2

caesar 2

did 1

enact 1

hath 1

I 1

I 1

i' 1

it 2

julius 1

killed 1

killed 1

let 2

me 1

noble 2

so 2

the 1

the 2

told 2

you 2

was 1

was 2

with 2

 Key step 

 After all documents have been 

parsed, the inverted file is sorted 

by terms.  

We focus on this sort step. 

We have 100M items to sort. 
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Scaling index construction 

 In-memory index construction does not scale. 

 How can we construct an index for very large 

collections? 

 Taking into account the hardware constraints we just 

learned about . . . 

 Memory, disk, speed, etc. 
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Sort-based index construction 

 As we build the index, we parse docs one at a time. 

 While building the index, we cannot easily exploit compression 

tricks   (you can, but much more complex) 

 The final postings for any term are incomplete until the end. 

 At 12 bytes per non-positional postings entry (term, doc, freq), 

demands a lot of space for large collections. 

 T = 100,000,000 in the case of RCV1 

 So … we can do this in memory, but typical collections are 

much larger.  E.g. the New York Times provides an index of >150 

years of newswire 

 Thus:  We need to store intermediate results on disk. (Need to 

use an external sorting algorithm). 
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BSBI: Blocked sort-based Indexing (Sorting 

with fewer disk seeks) 

 12-byte (4+4+4) records (term, doc, freq). 

 These are generated as we parse docs. 

 Must now sort 100M such 12-byte records by term. 

 Define a Block ~ 10M such records 

 Can easily fit a couple into memory. 

 Will have 10 such blocks to start with. 

 Basic idea of algorithm: 

 Accumulate postings for each block, sort, write to disk. 

 Then merge the blocks into one long sorted order. 
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Sec. 4.2 

Blocked sort-based Indexing  



Problem with sort-based algorithm 

 Our assumption was: we can keep the dictionary in 

memory. 

 We need the dictionary (which grows dynamically) in 

order to implement a term to termID mapping. 

 Actually, we could work with term,docID postings instead 

of termID,docID postings . . . 

 . . . but then intermediate files become very large. (We 

would end up with a scalable, but very slow index 

construction method.) 
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SPIMI:  

Single-pass in-memory indexing 

 Key idea 1: Generate separate dictionaries for each block 

– no need to maintain term-termID mapping across 

blocks. 

 Key idea 2: Don’t sort. Accumulate postings in postings 

lists as they occur. 

 With these two ideas we can generate a complete 

inverted index for each block. 

 These separate indexes can then be merged into one big 

index. 
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SPIMI-Invert 

 Merging of blocks is analogous to BSBI. 

Sec. 4.3 



SPIMI: Compression 

 Compression makes SPIMI even more efficient. 

 Compression of terms 

 Compression of postings 
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Distributed indexing 

 For web-scale indexing: 

must use a distributed computing cluster 

 Individual machines are fault-prone 

 Can unpredictably slow down or fail 

 How do we exploit such a pool of machines? 
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Google data centers 

 Google data centers mainly contain commodity machines. 

 Data centers are distributed around the world. 

 Estimate: a total of 1 million servers, 3 million 

processors/cores (Gartner 2007) 

 Estimate: Google installs 100,000 servers each quarter. 

 Based on expenditures of 200–250 million dollars per year 

 This would be 10% of the computing capacity of the 

world!?! 
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Distributed indexing 

 Maintain a master machine directing the indexing job – 

considered “safe”. 

 Break up indexing into sets of (parallel) tasks. 

 Master machine assigns each task to an idle machine from 

a pool. 

Sec. 4.4 



Parallel tasks 

 We will use two sets of parallel tasks 

 Parsers 

 Inverters 

 Break the input document collection into splits 

 Each split is a subset of documents (corresponding to 

blocks in BSBI/SPIMI) 
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Parsers 

 Master assigns a split to an idle parser machine 

 Parser reads a document at a time and emits (term, doc) 

pairs 

 Parser writes pairs into j partitions 

 Each partition is for a range of terms’ first letters 

 (e.g., a-f, g-p, q-z) – here j = 3. 

 Now to complete the index inversion 
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Inverters 

 An inverter collects all (term,doc) pairs (= postings) for 

one term-partition. 

 Sorts and writes to postings lists 
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Data flow 

splits 

Parser 

Parser 

Parser 

Master 

a-f g-p q-z 

a-f g-p q-z 

a-f g-p q-z 

Inverter 

Inverter 

Inverter 

Postings 

a-f 

g-p 

q-z 

assign assign 

Map 

phase Segment files 

Reduce 

phase 
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MapReduce 

 The index construction algorithm we just described is an 
instance of MapReduce. 

 MapReduce (Dean and Ghemawat 2004) is a robust and 
conceptually simple framework for distributed computing. 

 The Google indexing system (ca. 2002) as consisted of a 
number of phases, each implemented in MapReduce. 

 Index construction was just one phase. 

 Another phase: transforming a term-partitioned index into a 
document-partitioned index. 

 Term-partitioned: one machine handles a subrange of terms 

 Document-partitioned: one machine handles a subrange of documents 

 Most search engines use a document-partitioned index … 
better load balancing, etc. 
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Dynamic indexing 

 Up to now, we have assumed that collections are static. 

 They rarely are:  

 Documents come in over time and need to be inserted. 

 Documents are deleted and modified. 

 This means that the dictionary and postings lists have to 

be modified: 

 Postings updates for terms already in dictionary 

 New terms added to dictionary 
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Simplest approach 

 Maintain “big” main index 

 New docs go into “small” auxiliary index 

 Search across both, merge results 

 Deletions 

 Invalidation bit-vector for deleted docs 

 Filter docs output on a search result by this invalidation bit-

vector 

 Periodically, re-index into one main index 
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Issues with main and auxiliary indexes 

 Problem of frequent merges  

 Poor performance during merge 

 Actually: 

 Merging of the auxiliary index into the main index is efficient if we keep 

a separate file for each postings list. 

 Merge is the same as a simple append. 

 But then we would need a lot of files – inefficient for O/S. 

 Assumption for the rest of the lecture: The index is one big 

file. 

 In reality: Use a scheme somewhere in between (e.g., split very 

large postings lists, collect postings lists of length 1 in one file 

etc.) 
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Further issues with multiple indexes 

 Collection-wide statistics are hard to maintain 

 E.g., when we spoke of spell-correction: which of several 

corrected alternatives do we present to the user? 

 We said, pick the one with the most hits 

 How do we maintain the top ones with multiple indexes 

and invalidation bit vectors? 

 One possibility: ignore everything but the main index for such 

ordering 
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Dynamic indexing at search engines 

 All the large search engines now do dynamic indexing 

 Their indices have frequent incremental changes 

 News items, blogs, new topical web pages 

 Sarah Palin, … 

 But (sometimes/typically) they also periodically 

reconstruct the index from scratch 

 Query processing is then switched to the new index, and the 

old index is then deleted 
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Building Positional Indexes 

 

 

 

 

 Basically the same problem except that the intermediate 

data structures are large. 
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Index Compression 



Why compression (in general)? 

 Use less disk space 

 Saves a little money 

 Keep more stuff in memory 

 Increases speed 

 Increase speed of data transfer from disk to memory 

 [read compressed data | decompress] is faster than  

   [read uncompressed data] 

 Premise: Decompression algorithms are fast 

 True of the decompression algorithms we use 

Ch. 5 



Why compression for inverted indexes? 

 Dictionary 

 Make it small enough to keep in main memory 

 Make it so small that you can keep some postings lists in main 

memory too 

 Postings file(s) 

 Reduce disk space needed 

 Decrease time needed to read postings lists from disk 

 Large search engines keep a significant part of the postings in 

memory. 

 Compression lets you keep more in memory 

 We will devise various IR-specific compression schemes 
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Effect of preprocessing 

size of word types (terms) non-positional 

postings 

positional postings 

dictionary non-positional index  positional index 

Size 

(K) 

∆% cumul 

% 

Size (K) ∆ 

% 

cumul 

% 

Size (K) ∆ 

% 

cumul 

% 

Unfiltered 484 109,971 197,879 

No numbers 474 -2 -2 100,680 -8 -8 179,158 -9 -9 

Case folding 392 -17 -19 96,969 -3 -12 179,158 0 -9 

30 stopwords 391 -0 -19 83,390 -14 -24 121,858 -31 -38 

150 stopwords 391 -0 -19 67,002 -30 -39 94,517 -47 -52 

stemming 322 -17 -33 63,812 -4 -42 94,517 0 -52 
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Lossless vs. lossy compression 

 Lossless compression:  All information is preserved. 

 What we mostly do in IR. 

 Lossy compression: Discard some information 

 Several of the preprocessing steps can be viewed as lossy 

compression: case folding, stop words, stemming, number 

elimination. 
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Vocabulary vs. collection size 

 How big is the term vocabulary? 

 That is, how many distinct words are there? 

 Can we assume an upper bound? 

 Not really. 

 In practice, the vocabulary will keep growing with the 

collection size 
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Vocabulary vs. collection size 

 Heaps’ law: M = kTb 

 M is the size of the vocabulary, T is the number of tokens 

in the collection 

 Typical values: 30 ≤ k ≤ 100 and b ≈ 0.5 

 In a log-log plot of vocabulary size M vs. T, Heaps’ law 

predicts a line with slope about ½ 

 It is the simplest possible relationship between the two in log-

log space 

 An empirical finding (“empirical law”) 
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For RCV1, the dashed line 

 

Good empirical fit for 
Reuters RCV1 ! 

 

For first 1,000,020 tokens, 

law predicts 38,323 terms; 

actually, 38,365 terms 
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Zipf’s law 

 Heaps’ law gives the vocabulary size in collections. 

 We also study the relative frequencies of terms. 

 In natural language, there are a few very frequent terms 

and very many very rare terms. 

 Zipf’s law: The ith most frequent term has frequency 

proportional to 1/i . 

 cfi ∝ 1/i = K/i where K is a normalizing constant 

 cfi is collection frequency: the number of occurrences of 

the term ti in the collection. 

Sec. 5.1 



Word distributions 

 Words are not distributed evenly! 

 Same goes for letters of the alphabet (ETAOIN SHRDLU), 
city sizes, wealth, etc. 

 Usually, the 80/20 rule applies (80% of the wealth goes to 
20% of the people or it takes 80% of the effort to build 
the easier 20% of the system)… 



Shakespeare 

 Romeo and Juliet: 
 And, 667; The, 661; I, 570; To, 515; A, 447; Of, 382; My, 356; Is, 343; That, 343; In, 314; You, 289; Thou, 277; Me, 262; Not, 257; With, 

234; It, 224; For, 223; This, 215; Be, 207; But, 181; Thy, 167; What, 163; O, 160; As, 156; Her, 150; Will, 147; So, 145; Thee, 139; 

Love, 135; His, 128; Have, 127; He, 120; Romeo, 115; By, 114; She, 114; Shall, 107; Your, 103; No, 102; Come, 96; Him, 96; All, 92; 

Do, 89; From, 86; Then, 83; Good, 82; Now, 82; Here, 80; If, 80; An, 78; Go, 76; On, 76; I'll, 71; Death, 69; Night, 68; Are, 67; More, 

67; We, 66; At, 65; Man, 65; Or, 65; There, 64; Hath, 63; Which, 60;  

 … 

 A-bed, 1; A-bleeding, 1; A-weary, 1; Abate, 1; Abbey, 1; Abhorred, 1; Abhors, 1; Aboard, 1; Abound'st, 1; Abroach, 1; Absolved, 1; 

Abuse, 1; Abused, 1; Abuses, 1; Accents, 1; Access, 1; Accident, 1; Accidents, 1; According, 1; Accursed, 1; Accustom'd, 1; Ache, 1; 

Aches, 1; Aching, 1; Acknowledge, 1; Acquaint, 1; Acquaintance, 1; Acted, 1; Acting, 1; Action, 1; Acts, 1; Adam, 1; Add, 1; Added, 1; 

Adding, 1; Addle, 1; Adjacent, 1; Admired, 1; Ado, 1; Advance, 1; Adversary, 1; Adversity's, 1; Advise, 1; Afeard, 1; Affecting, 1; 

Afflicted, 1; Affliction, 1; Affords, 1; Affray, 1; Affright, 1; Afire, 1; Agate-stone, 1; Agile, 1; Agree, 1; Agrees, 1; Aim'd, 1; Alderman, 1; 

All-cheering, 1; All-seeing, 1; Alla, 1; Alliance, 1; Alligator, 1; Allow, 1; Ally, 1; Although, 1;  

http://www.mta75.org/curriculum/english/Shakes/index.html 

(visited in Dec. 2006) 

http://www.mta75.org/curriculum/english/Shakes/index.html
http://www.mta75.org/curriculum/english/Shakes/index.html


The BNC (Adam Kilgarriff) 
 1 6187267 the det 

 2 4239632 be v 

 3 3093444 of prep 

 4 2687863 and conj 

 5 2186369 a det 

 6 1924315 in prep 

 7 1620850 to infinitive-marker 

 8 1375636 have v 

 9 1090186 it pron 

 10 1039323 to prep 

 11 887877 for prep 

 12 884599 i pron 

 13 760399 that conj 

 14 695498 you pron 

 15 681255 he pron 

 16 680739 on prep 

 17 675027 with prep 

 18 559596 do v 

 19 534162 at prep 

 20 517171 by prep 

Kilgarriff, A. Putting Frequencies in the Dictionary. 

International Journal of Lexicography 

10 (2) 1997. Pp 135--155  



Stop words 

 250-300 most common words in English account 

for 50% or more of a given text. 

 Example: “the” and “of” represent 10% of tokens. 

“and”, “to”, “a”, and “in” - another 10%. Next 12 

words - another 10%.  

 Moby Dick Ch.1:  859 unique words (types), 2256 

word occurrences (tokens).  Top 65 types cover 

1132 tokens (> 50%). 

 



Zipf consequences 

 If the most frequent term (the) occurs cf1 times  

 then the second most frequent term (of) occurs cf1/2 times 

 the third most frequent term (and) occurs cf1/3 times …  

 Equivalent: cfi = K/i where K is a normalizing factor, so 

 log cfi = log K - log i 

 Linear relationship between log cfi and log i 

 

 Another power law relationship 
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Zipf’s law for Reuters RCV1 

50 
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Compression 

 Now, we will consider compressing the space 

for the dictionary and postings 

 Basic Boolean index only 

 No study of positional indexes, etc. 

 We will consider compression schemes 
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DICTIONARY COMPRESSION 

Sec. 5.3 



Why compress the dictionary? 

 Search begins with the dictionary 

 We want to keep it in memory 

 Memory footprint competition with other applications 

 Embedded/mobile devices may have very little memory 

 Even if the dictionary isn’t in memory, we want it to be 

small for a fast search startup time 

 So, compressing the dictionary is important 
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Dictionary storage - first cut 

 Array of fixed-width entries 

 ~400,000 terms; 28 bytes/term = 11.2 MB. 

Terms Freq. Postings ptr. 

a 656,265  

aachen 65  

…. ….  

zulu 221  
 

 

Dictionary search 

structure 
20 bytes 4 bytes each 
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Fixed-width terms are wasteful 

 Most of the bytes in the Term column are wasted – we 

allot 20 bytes for 1 letter terms. 

 And we still can’t handle supercalifragilisticexpialidocious or 

hydrochlorofluorocarbons. 

 Ave. dictionary word in English: ~8 characters 
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Compressing the term list:  

Dictionary-as-a-String 

….systilesyzygeticsyzygialsyzygyszaibelyiteszczecinszomo…. 

Freq. Postings ptr. Term ptr. 

33   

29   

44   

126   
 

 

Total string length = 

400K x 8B = 3.2MB 

Pointers resolve 3.2M 

positions: log23.2M = 

22bits = 3bytes 

Store dictionary as a (long) string of characters: 
Pointer to next word shows end of current word 

Hope to save up to 60% of dictionary space. 
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Space for dictionary as a string 

 4 bytes per term for Freq. 

 4 bytes per term for pointer to Postings. 

 3 bytes per term pointer 

 Avg. 8 bytes per term in term string 

 400K terms x 19  7.6 MB (against 11.2MB for fixed 

width) 
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Blocking 

 Store pointers to every kth term string. 

 Example below: k=4. 

 Need to store term lengths (1 extra byte) 

….7systile9syzygetic8syzygial6syzygy11szaibelyite8szczecin9szomo…. 

Freq. Postings ptr. Term ptr. 

33   

29   

44   

126   

7   
 

 

 Save 9 bytes 

 on 3 

 pointers. 

Lose 4 bytes on 

term lengths. 
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Net 

 Example for block size k = 4 

 Save 5 bytes per four-term block. 

 Total: 400,000/4 * 5 = 0.5 MB 

Saved another ~0.5MB. This reduces the size of the 
dictionary from 7.6 MB to 7.1 MB. 
We can save more with larger k. 

Why not go with larger k? 
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Dictionary search without blocking 

 Assuming each dictionary 

term equally likely in query 

(not really so in practice!), 

average number of 

comparisons = 

(1+2∙2+4∙3+4)/8 ~2.6 
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Dictionary search with blocking 

 Binary search down to 4-term block; 

 Then linear search through terms in block. 

 Blocks of 4 (binary tree), avg. = (1+2∙2+2∙3+2∙4+5)/8 

= 3 compares 
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Front coding 

 Front-coding: 

 Sorted words commonly have long common prefix – store 

differences only 

 

8automata8automate9automatic10automation 

8automat*a1e2ic3ion 

Encodes automat 
Extra length 

beyond automat. 

Begins to resemble general string compression. 
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RCV1 dictionary compression 

summary 

Technique Size in MB 

Fixed width 11.2 

Dictionary-as-String with pointers to every term 7.6 

Also, blocking k = 4 7.1 

Also, Blocking + front coding 5.9 
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Fixed length codes 

• Binary representations 

– ASCII 

– Representational power (2k symbols where k 

is the number of bits) 

 

64 



Variable length codes 

• Alphabet: 

 A .-   N -.   0 ----- 

 B -...   O ---   1 .---- 

 C -.-.   P .--.   2 ..--- 

 D -..   Q --.-   3 ...— 

 E .   R .-.  4 ....-  

 F ..-.  S ...  5 .....  

 G --.  T -   6 -.... 

 H ....  U ..-   7 --... 

 I ..   V ...-   8 ---.. 

 J .---   W .--   9 ----. 

 K -.-   X -..- 

 L .-..   Y -.— 

 M --   Z --.. 

 

• Demo: 
– http://www.scphillips.com/morse/ 
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Most frequent letters in English 

• Some are more frequently used than others… 

• Most frequent letters: 
– E T A O I N S H R D L U  

• Demo: 
– http://www.amstat.org/publications/jse/secure/v7n2/co

unt-char.cfm  

• Also: bigrams: 
– TH HE IN ER AN RE ND AT ON NT  
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Huffman coding 

• Developed by David Huffman (1952) 

• Average of 5 bits per character (37.5% 
compression) 

• Based on frequency distributions of 
symbols 

• Algorithm: iteratively build a tree of 
symbols starting with the two least 
frequent symbols 
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Sym bol Frequency

A 7

B 4

C 10

D 5

E 2

F 11

G 15

H 3

I 7

J 8
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0 

0 

0 

0 

0 

0 

0 

0 

0 

1 

1 

1 

1 

1 

1 

1 

1 

1 

c 

b d 

f 

g 

i j 

h e 

a 

The Huffman tree 
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S y m b o l C o d e

A 0 1 1 0

B 0 0 1 0

C 0 0 0

D 0 0 1 1

E 0 1 1 1 0

F 0 1 0

G 1 0

H 0 1 1 1 1

I 1 1 0

J 1 1 1
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POSTINGS COMPRESSION 

Sec. 5.3 



Postings compression 

 The postings file is much larger than the dictionary, factor 

of at least 10. 

 Key: store each posting compactly. 

 A posting for our purposes is a docID. 

 For Reuters (800,000 documents), we would use 32 bits 

per docID when using 4-byte integers. 

 Alternatively, we can use log2 800,000 ≈ 20 bits per 

docID. 

 Our goal: use a lot less than 20 bits per docID. 
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Postings: two conflicting forces 

 A term like arachnocentric occurs in maybe one doc 

out of a million – we would like to store this posting 

using log2 1M ~ 20 bits. 

 A term like the occurs in virtually every doc, so 20 

bits/posting is too expensive. 

 Prefer 0/1 bitmap vector in this case  
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Postings file entry 

 We store the list of docs containing a term in increasing 

order of docID. 

 computer: 33,47,154,159,202 … 

 Consequence: it suffices to store gaps. 

 33,14,107,5,43 … 

 Hope: most gaps can be encoded/stored with far fewer 

than 20 bits. 

Sec. 5.3 



Three postings entries 
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Variable length encoding 

 Aim: 

 For arachnocentric, we will use ~20 bits/gap entry. 

 For the, we will use ~1 bit/gap entry. 

 If the average gap for a term is G, we want to use ~log2G 

bits/gap entry. 

 Key challenge: encode every integer (gap) with about as 

few bits as needed for that integer. 

 This requires a variable length encoding 

 Variable length codes achieve this by using short codes 

for small numbers 
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Variable Byte (VB) codes 

 For a gap value G, we want to use close to the fewest 

bytes needed to hold log2 G bits 

 Begin with one byte to store G and dedicate 1 bit in it to 

be a continuation bit c 

 If G ≤127, binary-encode it in the 7 available bits and set c 

=1 

 Else encode G’s lower-order 7 bits and then use 

additional bytes to encode the higher order bits using the 

same algorithm 

 At the end set the continuation bit of the last byte to 1 (c 

=1) – and for the other bytes c = 0. 
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Example 

docIDs 824  829  215406 

gaps 5 214577 

VB code 00000110 

10111000  

10000101  00001101 

00001100 

10110001 

Postings stored as the byte concatenation 

000001101011100010000101000011010000110010110001 

Key property:  VB-encoded postings are 

uniquely prefix-decodable. 

For a small gap (5), VB 

uses a whole byte. 
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Other variable unit codes 

 Instead of bytes, we can also use a different “unit of 

alignment”: 32 bits (words), 16 bits, 4 bits (nibbles). 

 Variable byte alignment wastes space if you have many 

small gaps – nibbles do better in such cases. 

 Variable byte codes: Used by many commercial/research 

systems 
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Unary code 

 Represent n as n 1s with a final 0. 

 Unary code for 3 is 1110. 

 Unary code for 40 is 

11111111111111111111111111111111111111110 . 

 Unary code for 80 is: 

111111111111111111111111111111111111111111111111

111111111111111111111111111111110 

 

 This doesn’t look promising, but…. 
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Gamma codes 

 We can compress better with bit-level codes 

 The Gamma code is the best known of these. 

 Represent a gap G as a pair length and offset 

 offset is G in binary, with the leading bit cut off 

 For example 13 → 1101 → 101 

 length is the length of offset 

 For 13 (offset 101), this is 3. 

 We encode length with unary code: 1110. 

 Gamma code of 13 is the concatenation of length and 

offset: 1110101 
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Gamma code examples 

number length  offset  g-code 

0 none 

1 0 0 

2 10 0 10,0 

3 10 1 10,1 

4 110  00 110,00 

9 1110 001 1110,001 

13 1110 101 1110,101 

24 11110 1000 11110,1000 

511 111111110 11111111 111111110,11111111 

1025 11111111110 0000000001 11111111110,0000000001 
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Gamma code properties 

 G is encoded using 2 log G + 1 bits 

 Length of offset is log G bits 

 Length of length is log G + 1 bits 

 All gamma codes have an odd number of bits 

 Almost within a factor of 2 of best possible, log2 G 

 

 Gamma code is uniquely prefix-decodable, like VB 

 Gamma code can be used for any distribution 

 Gamma code is parameter-free 
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Gamma seldom used in practice 

 Machines have word boundaries – 8, 16, 32, 64 bits 

 Operations that cross word boundaries are slower 

 Compressing and manipulating at the granularity of bits 

can be slow 

 Variable byte encoding is aligned and thus potentially 

more efficient 

 Regardless of efficiency, variable byte is conceptually 

simpler at little additional space cost 
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RCV1 compression 

Data structure  Size in MB 

dictionary, fixed-width 11.2 

dictionary, term pointers into string 7.6 

with blocking, k = 4 7.1 

with blocking & front coding 5.9 

collection (text, xml markup etc) 3,600.0 

collection (text) 960.0 

Term-doc incidence matrix 40,000.0 

postings, uncompressed (32-bit words) 400.0 

postings, uncompressed (20 bits) 250.0 

postings, variable byte encoded 116.0 

postings, g-encoded 101.0 
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Index compression summary 

 We can now create an index for highly efficient Boolean 

retrieval that is very space efficient 

 Only 4% of the total size of the collection 

 Only 10-15% of the total size of the text in the collection 

 However, we’ve ignored positional information 

 Hence, space savings are less for indexes used in practice 

 But techniques substantially the same. 

Sec. 5.3 



References 

 Introduction to Information Retrieval, chapters 4 & 5. 

 Some slides were adapted from 

 the book’s companion website: 

 http://nlp.stanford.edu/IR-book/information-retrieval-book.html 

 Prof. Dragomir Radev’s lectures at the University of Michigan: 

 http://clair.si.umich.edu/~radev/teaching.html 

 

 

Sec. 3.5 

http://nlp.stanford.edu/IR-book/information-retrieval-book.html
http://nlp.stanford.edu/IR-book/information-retrieval-book.html
http://nlp.stanford.edu/IR-book/information-retrieval-book.html
http://nlp.stanford.edu/IR-book/information-retrieval-book.html
http://nlp.stanford.edu/IR-book/information-retrieval-book.html
http://nlp.stanford.edu/IR-book/information-retrieval-book.html
http://nlp.stanford.edu/IR-book/information-retrieval-book.html
http://nlp.stanford.edu/IR-book/information-retrieval-book.html

