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Today’s topic

 Latent Semantic Indexing
 Term-document matrices are very large
 But the number of topics that people talk 

about is small (in some sense)
 Clothes, movies, politics, …

 Can we represent the term-document 
space by a lower dimensional latent space?

Ch. 18



Vector Space Model: Pros
 Automatic selection of index terms
 Partial matching of queries and documents (dealing with 

the case where no document contains all search terms)
 Ranking according to similarity score (dealing with 

large result sets)
 Term weighting schemes (improves retrieval performance)
 Various extensions

 Document clustering
 Relevance feedback (modifying query vector)

 Geometric foundation



Problems with Lexical Semantics

 Ambiguity and association in natural language
 Polysemy: Words often have a multitude of 

meanings and different types of usage (more 
severe in very heterogeneous collections).
 bank, jaguar, hot

 The vector space model is unable to discriminate 
between different meanings of the same word.



Problems with Lexical Semantics

 Synonymy: Different terms may have an 
identical or a similar meaning
 Large/big, Spicy/hot, Car/automobile

 No associations between words are made 
in the vector space representation.



Latent Semantic Indexing (LSI)
 Perform a low-rank approximation of 

document-term matrix (typical rank 100-300)
 General idea

 Map documents (and terms) to a low-dimensional 
representation.

 Design a mapping such that the low-dimensional space reflects 
semantic associations (latent semantic space, 
identification of hidden (latent) concepts).

 Compute document similarity based on the inner product 
in this latent semantic space

Sec. 18.4



Latent Semantic Analysis
 Latent semantic space: illustrating example
 Similar words and documents mapped to similar locations 

in the lower dimensional latent space.

http://www.puffinwarellc.com/index.php/news-and-articles/articles/33-latent-semantic-analysis-tutorial.html?start=1

Sec. 18.4



Linear Algebra 
Background



Eigenvalues & Eigenvectors
 Eigenvectors (for a square mm matrix S)

 How many eigenvalues are there at most?

only has a non-zero solution if 
This is a mth order equation in λ which can have at most m 
distinct solutions (roots of the characteristic polynomial) – can be 
complex even though S is real.

eigenvalue(right) eigenvector

Example

Sec. 18.1



Eigenvectors and eigenvalues
 Example:

 |S-λI| = (-1-λ)*(-λ)-3*2=0
 Then: λ+λ2-6=0;   λ1=2;   λ2=-3

 For λ1 2

 Solutions: x1=x2

S=−1 3
2 0  S−λI=−1− λ 3

2 −λ 

−3 3
2 −2 x1

x2
=0



Matrix-vector multiplication

S=[30 0 0
0 20 0
0 0 1 ] has eigenvalues 30, 20, 1 with

corresponding eigenvectors

v1=100 v 2=010  v 3=001 
Any vector (say x=    ) can be viewed as a combination of
the eigenvectors:               x = 2v1 + 4v2 + 6v3

246 

Sec. 18.1



Matrix vector multiplication
 Thus a matrix-vector multiplication such as Sx (S, x as in 

the previous slide) can be rewritten in terms of the 
eigenvalues/vectors:

 Even though x is an arbitrary vector, the action of S on x 
is determined by the eigenvalues/vectors.

Sx=S 2v14v26v 3 
Sx=2 Sv14 Sv26 Sv 3=2λ1 v14λ2 v26λ 3 v 3

Sx=60 v180 v26v 3

Sec. 18.1



Matrix vector multiplication
 Suggestion: the effect of “small” eigenvalues is small.
 If we ignored the smallest eigenvalue (1), then instead of

we would get

 These vectors are similar (in cosine similarity, etc.)

60
80
6  60

80
0 

Sec. 18.1



Eigenvalues & Eigenvectors

Sv{1,2 }=λ{1,2 }v{1,2 },  and λ1≠λ2⇒ v1⋅v2=0

For symmetric matrices, eigenvectors for distinct
eigenvalues are orthogonal

 if ∣S− λI∣=0  and S=ST ⇒ λ∈ℜ

All eigenvalues of a real symmetric matrix are real.

∀ w∈ℜn ,wT Sw≥0, then if Sv= λv⇒ λ≥0

All eigenvalues of a positive semidefinite matrix
are non-negative

Sec. 18.1



Plug in these values and 
solve for eigenvectors.

Example
 Let

 Then

 The eigenvalues are 1 and 3 (nonnegative, real). 
 The eigenvectors are orthogonal (and real):

S=[2 1
1 2 ]

S− λI=[2−λ 1
1 2−λ ]⇒

∣S− λI∣=2−λ 2−1=0.

 1
−1 11 

Real, symmetric.

Sec. 18.1



Let                    be a square matrix with m linearly 
independent eigenvectors 
Theorem: There exists an eigen decomposition         

(cf. matrix diagonalization theorem)

Columns of U are eigenvectors of S

Diagonal elements of     are eigenvalues of 

Eigen/diagonal Decomposition

diagonal

Sec. 18.1



Diagonal decomposition: why/how

U=[ v1 . .. vn ]Let U have the eigenvectors as columns:

SU=S [ v1 .. . vn ]=[ λ1 v1 . .. λn vn ]=[v1 . .. vn ] [ λ1

. . .
λn

]
Then, SU can be written

And S=UΛU–1.

Thus SU=UΛ, or U–1SU=Λ

Sec. 18.1



Diagonal decomposition - example

Recall S=[2 1
1 2 ] ; λ1=1, λ2=3 .

The eigenvectors         and         form  1
−1 11  U=[ 1 1

−1 1 ]
Inverting, we have U−1=[1/2 −1/2

1/2 1/2 ]
Then, S=UΛU–1 = [ 1 1

−1 1 ] [1 0
0 3 ] [1/2 −1/2

1/2 1/2 ]

Recall
UU–1 =1.

Sec. 18.1



Example continued

Let’s divide U (and multiply U–1) by   2

[ 1 / 2 1 / 2
−1/ 2 1 / 2 ][1 0

0 3 ] [1/ 2 −1/ 2
1/ 2 1/ 2 ]Then, S=

Q (Q-1= QT )Λ

Sec. 18.1



 If                    is a symmetric matrix:

 Theorem: There exists a (unique) eigen 
decomposition

 where Q is orthogonal:
 Q-1= QT

 Columns of Q are normalized eigenvectors

 Columns are orthogonal.

 (everything is real)

Symmetric Eigen Decomposition

S=QΛQT

Sec. 18.1



everything so far needs square matrices
 Recall M  N term-document matrices … 



Singular Value Decomposition

A=UΣV T

MM MN V is NN

For an M  N matrix A of rank r there exists a
factorization (Singular Value Decomposition = SVD)
as follows:

The columns of U are orthogonal eigenvectors of AAT.
The columns of V are orthogonal eigenvectors of ATA.

σ i= λi

Σ=diag σ1 .. .σ r  Singular values.

Eigenvalues λ1 … λr of AAT are the eigenvalues of ATA.

Sec. 18.2

In Matlab, use [U,S,V] = svd (A)



SVD example

Let A=[1 −1
0 1
1 0 ]

Thus M=3, N=2. Its SVD is

[ 0 2/ 6 1 /3
1 / 2 −1/6 1 /3
1 / 2 1/ 6 −1 / 3 ][ 1 0

0  3
0 0 ] [1 / 2 1 / 2

1 / 2 −1 / 2 ]
Typically, the singular values arranged in decreasing order.

Sec. 18.2



 SVD can be used to compute optimal low-rank 
approximations.

 Approximation problem: Find Ak of rank k such that

Ak and X are both mn matrices.
Typically, want k << r.

Low-rank Approximation

Frobenius normAk= min
X : rank  X =k

∥A−X∥F

Sec. 18.3



 Solution via SVD

Low-rank Approximation

set smallest r-k
singular values to zero

Ak=U  diag σ1 ,. . . , σ k ,0, . .. , 0 V T

k

Sec. 18.3



 If we retain only k singular values, and set the rest to 0, 
then we don’t need the matrix parts in brown

 Then  is Σ k×k, U is M×k, VT is k×N, and Ak is M×N 

 This is referred to as the reduced SVD
 It is the convenient (space-saving) and usual form for 

computational applications

Reduced SVD

k

Sec. 18.3



Approximation error
 How good (bad) is this approximation?
 It’s the best possible, measured by the Frobenius norm of 

the error:

where the σi are ordered such that σi  σi+1.

Suggests why Frobenius error drops as k increased.

min
X : rank  X =k

∥A−X∥F=∥A−Ak∥F=σ k1

Sec. 18.3



SVD Low-rank approximation
 Whereas the term-doc matrix A may have M=50000, 

N=10 million (and rank close to 50000)
 We can construct an approximation A100 with rank 100.

 Of all rank 100 matrices, it would have the lowest Frobenius 
error.

 Great … but why would we??
 Answer: Latent Semantic Indexing

C. Eckart, G. Young, The approximation of a matrix by another of lower rank. 
Psychometrika, 1, 211-218, 1936.

Sec. 18.3



Latent Semantic 
Indexing via the 
SVD



What it is
 From term-doc matrix A, we compute the 

approximation Ak.

 There is a row for each term and a column 
for each doc in Ak

 Thus docs live in a space of k<<r 
dimensions
 These dimensions are not the original axes

Sec. 18.4



Example
 Query: gold silver truck
 Documents:

 d1: Shipment of gold damaged in a fire.
 d2: Delivery of silver arrived in a silver truck.
 d3: Shipment of gold arrived in a truck.



Compute the SVD of A



Rank 2 Approximation



Computing the query vector



Computing the query vector



Computing the similarity



LSI Query Document Vectors



Resources
 Introduction to Information Retrieval, chapter 18.
 Some slides were adapted from

 Prof. Dragomir Radev’s lectures at the University of Michigan:
 http://clair.si.umich.edu/~radev/teaching.html

 the book’s companion website:
 http://nlp.stanford.edu/IR-book/information-retrieval-book.html

 SVD and LSI Tutorial:
 http://www.miislita.com/information-retrieval-tutorial/svd-lsi-tutorial-

4-lsi-how-to-calculations.html

Sec. 3.5
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