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Today’s topic

» Latent Semantic Indexing
Term-document matrices are very large

But the number of topics that people talk
about is small (in some sense)
Clothes, movies, politics, ...

Can we represent the term-document
space by a lower dimensional latent space!



Vector Space Model: Pros

» Automatic selection of index terms

» Partial matching of queries and documents (dealing with
the case where no document contains all search terms)

» Ranking according to similarity score (dedling with
large result sets)

» Term weighting schemes (improves retrieval performance)

» Various extensions
Document clustering
Relevance feedback (modifying query vector)

» Geometric foundation



Problems with Lexical Semantics

» Ambiguity and association in natural language

Polysemy: Words often have amultitude of
meanings and different types of usage (more
severe in very heterogeneous colections).

bank, jaguar, hot
The vector space model is unable to discriminate
between different meanings of the same word.

sim,,.(d, q) < cos(Z(d, q))



Problems with Lexical Semantics

Synonymy: Different terms may have an
identical or a similar meaning
Large/big, Spicy/hot, Car/automobile

No associations between words are made
in the vector space representation.

—

Simtrue(d7 Q)> COS(L(CL @)



Latent Semantic Indexing (LSI)

» Perform a low=rank approximation of
document-term matrix (typical rank 100-300)

» General idea
Map documents (and terms) to a low-dimensional
representation.

Design a mapping such that the low-dimensional space reflects
semantic associations (latent semantic space,
identification of hidden (latent) concepts).

Compute document similarity based on the inner product
in this latent semantic space




Latent Semantic Analysis

» Latent semantic space: illustrating example

» Similar words and documents mapped to similar locations
in the lower dimensional latent space.
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Linear Algebra
Background



Eigenvalues & Eigenvectors

» Eigenvectors (for a square m Xm matrix S)

Example

R e 90-0-0

(right) eigenvector eigenvalue

veR™#£0 AeR

» How many eigenvalues are there at most!?

Sv=)\v <= (S—-A)v=0
only has a non-zero solution if |S — AI| =0

This is a mth order equation in A which can have at most m
distinct solutions (roots of the characteristic polynomial) - can be
complex even though S is real.




Eigenvectors and eigenvalues

» Example:

-1 3
2 0

b IS-MI| = (- 1-N)¥(-A)-3%2=0

» Then: A+A2-6=0; A =2; A,=-3

» For A\;=2:

S =

| oty

2 —

» Solutions: x,=X,



Matrix-vector multiplication

30 00 has eigenvalues 30, 20, 1 with
5=10 20 0 corresponding eigenvectors
0 0 1
1 0 0
vlz O V2: 1 V3: O
0 0 1
Any vector (say xzﬁ ) can be viewed as a combination of
the eigenvectors: ¢ X=2v,+4v,+06v,



Matrix vector multiplication

» Thus a matrix-vector multiplication such as $x (S, x as in
the previous slide) can be rewritten in terms of the
eigenvalues/vectors:

Sx=S(2v,+4v,+6v,)
Sx=28v,+45v,+6Sv;=2A v, +4\, v, +6L Vv,
Sx=00v,+380v,+6v,

» Even though x is an arbitrary vector, the action of$ on x
is determined by the eigenvalues/vectors.



Matrix vector multiplication

» Suggestion: the effect of “small” eigenvalues is small.
» If we ignored the smallest eigenvalue (1), then instead of

00 we would get 00
30 30
6 0

» These vectors are similar (in cosine similarity, etc.)



Eigenvalues & |

figenvectors

For symmetric matrices, eigenvectors for distinct
eigenvalues are orthogonal

SV{I,Z}:/I{I,Z}V{I,Z}’ and 4, #4,=v,-v,=0

All eigenvalues of a real symmetric matrix are real.

if [S—AI|=0 and S=S"= 1€R

All eigenvalues of a positive semidefinite matrix

are non-negative
e N

YV weR" w! Sw=0, then if Sv=Av= 10



Example

» Let

| Real, symmetric.

» Then [
2—/4 1
S—A =
L 2-al

S—AI|=(2—1)—1=0.

» The eigenvalues are | and 3 (nonnegative, real).

» The eigenvectors are orthogo}al (and real):

1 I

—1 | Plug in these values and
solve for eigenvectors.




Eigen/diagonal Decomposition

Let S € R™*™ be a square matrix with m linearly
independent eigenvectors

Theorem: There exists an eigen decomposition

(cf. matrix diagonalization theorem)
[ diagonal

S =UAU!

»Columns of U are eigenvectors of §

»Diagonal elements of /A are eigenvalues of S
A =diag(A1,..., Am), A = A1



Diagonal decomposition: why/how

Let U have the eigenvectors as columns: U=|v

Then, SU can be written

SU=S|v, ... v |=[4Vv, ... AV |=[v, ... V

n

Thus SU=UA, or U-'SU=A
And S=UAU-.




Diagonal decomposition - example

Recall S =

Inverting, we have

b
1

The eigenvectors(

U™'=

Then, S=UAU =

1

2.
1
-1

1/2

1 1

and

I
I

12 —1/2

12

N
10

.
3.

A =1,1,=3.

form

1/2

112

=

-1

<: Recall
UuU-' =1.

“1/2
12




Example continued

Let’s divide U (and multiply U-") by

Then, S=

N2 12

—1N2 12

Q

b
0

N

.
3 i

02

142

12

~12
N2

(@'= Q)



Symmetric Eigen Decomposition
» If S € R™*™ is a symmetric matrix:

» Theorem: There exists a (unique)eigen

S=040"
» where Q is orthogonal:
Q'=Q’

Columns of Q are normalized eigenvectors

decomposition

Columns are orthogonal.

(everything is real)



everything so far needs square matrices

» Recall M X N term-document matrices ...



Singular Value Decomposition

For an M X N matrix A of rank r there exists a
factorization (Singular Value Decomposition = SVD)
as follows:

A=Uxy?"
RN
MxM MXN Vis NXN

The columns of U are orthogonal eigenvectors of AA'.
The columns of V are orthogonal eigenvectors of ATA.
Eigenvalues A, ... A, of AATare the eigenvalues of ATA.

0',-:@

<:: Singular values.

ZZdiag(al...a,,

In Matlab, use [U,S,V] = svd (A)



SVD example

Let

I -1
A= 0 1
10

Thus M=3, N=2. Its SVD is

Y
12
12

W6 143

~1/J6 1/J3

1 0
0 3

N6 —1K3

1142

- O O -

12

N2
~1N2

Typically, the singular values arranged in decreasing order.



Low-rank Approximation

» SVD can be used to compute optimal low=rank
approximations.

» Approximation problem: Find A, of rank k such that

Ak: mln ||A—X||F<— Frobenius norm

X crank( X )=k ——
|Allg = JZZl%lE-

=1 =1

A, and X are both mxn matrices.
Typically, wantk <<r.



Low-rank Approximation

» Solution via SVD

4,=U diag(o,,...,0,,0,...,0) V"

%/—/
set smallest r-k
singular values to zero

=

= g -

= oE =
w®ow =
A A
= oE =
= oE =
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I
* w M
e = & o




Reduced SVD

» If we retain only k singular values, and set the rest to 0,
then we don’t need the matrix parts in brown

» Then 2 is kxk, U is Mxk, VT is kxN, and A, is MxN
» This is referred to as the reduced SVD

» It is the convenient (space-saving) and usual form for
computational applications
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Approximation error

» How good (bad) is this approximation!?

» It’s the best possible, measured by the Frobenius norm of
the error:

min ||4—xj,.=ll4a—4,l,.=0,_,

X :rank( X )=k
where the O, are ordered such that 0, = O ,,.

Suggests why Frobenius error drops as k increased.



SVD Low-rank approximation

» Whereas the term-doc matrix A may have M=50000,
N=10 million (and rank close to 50000)

» We can construct an approximation A, ,, with rank |00.

Of all rank 100 matrices, it would have the lowest Frobenius
error.

» Great ... but why would we??
» Answer: Latent Semantic Indexing

C. Eckart, G. Young, The approximation of a matrix by another of lower rank.
Psychometrika, 1, 211-218, 1936.



Latent Semantic
Indexing via the

SVD



What it is

» From term-doc matrix A, we compute the
approximation A,

» There is a row for each term and a column
for each doc in A,

» Thus docs live in a space of k<<r
dimensions

These dimensions are not the original axes



Example

> Query: gold silver truck

» Documents:
d|: Shipment of gold damaged in a fire.
d2: Delivery of silver arrived in a silver truck.
d3: Shipment of gold arrived in a truck.
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Compute the SVD of A

A = usvT

-0.4201
-0.28595
-0.1206
-0.1576
-0.1206
-0.2626
-0.4201
-0.4201
-0.2626
-0.3151
-0.2995

0.0748

-0.2001

0.2749

-0.3046

0.2749
0.3794
0.0748
0.0748
0.3794

-0.6093
-0.2001

-0.0460

0.4078

-0.4538
-0.2006
-0.4535

0.1547

-0.0460
-0.0460

0.1547

-0.4013

0.4078

_0.4945 0.6492 -0.5780
0.6458 -0.7194 -0.2556
0.5817 0.2469 0.7750

val

S

409589
0.0000
0.0000

-0.4545
0.6492
-0.5780

0.0000
2.3616
0.0000

-0.b455
-0.7194
-0.2556

0.0000
0.0000
1.2737

-0.5817
0.2469
0.7750



Rank 2 Approximation

Vk=

-0.4201
-0.2595
-0.1206
-0.1576
-0.1206
-0.2b26
-0.4201
-0.4201
-0.2626
-0.3151
-0.25995

-0.2001
-0.3046

-0.6093
-0.2001

0.0748 |
0.2749

0.2749
0.3734
0.0748
0.0748
0.3794

-0.4945 06492
-0.6458 -0.7194
-0.5817 0.2463

S =

T T
V= V
k

L-o.4945 06458 -0.581

0.6492

40939 0.0000
0.0000 23616

-

-0.7194 0.2463

i



Computing the query vector

AT = (usvT)T = vsuT
ATus-1 = yvsuTus-!

V=ATus
d=dTus-
q= qTUS-1
Thus, in the reduced k-dimensional space we can write

d=dTU;S,"!

q=qTU,SyT



Computing the query vector

N

'[ - —

I q Uksk k =2

q =[00000100011 ][ 04201 00748 1
-0.2995 -0.2001 40989 (00000
-0.1206 0.2749 1
-0.1576 -0.3046
01206 0.2749 _U'UDDU 2'3618_

02626 03794
0.4201 00748
0.4201 00748
02626 03794
0.3151 06093

| 02995 -0.2001 |

q = EU.?.MD -U.182I|



Computing the similarity

d1(-0.4945, 0.6492)
d2(-0.6458, -0.7194)
d3(-0.5817, 0.2469)

qed
falld]

sim{q, d} =

(0.2140) (-0.4945) + (0.1821) (0.6492)

sim(q, d4) = = -0.0541
v (0.2140)2 + (0.1821) J (049452  (0.6492)2
(0.2140) (-0.6458) + (0.1821) (-0.7194)
sim{q, d,) = = 0.9910
02140)%+ (018212 /(0 gase)2e (071942
(0.2140) (0.5817) + (:0.1821) ( 0.2469)
sim{q, d 3) = = [.4478

\/(-0.2140)2+ (0.1821) 2 \/(-0.5517)2+ (0.2469)°

Ranking documents in descending order

d2 > (I3 > (I,I



LSI Query Document Vectors

LSI Dim 2

____________________________________________________________________________________________________________________________________________________ aa
dy (04945 06492)

06 4
4y (-0.5817, 0.2469) 0.4 -

a7 08
(-0.214, -0.1821)-0.4
d 06 -
d2 (06458, 07194)

LS! Dim 1




Resources

» Introduction to Information Retrieval, chapter |8.

» Some slides were adapted from

Prof. Dragomir RadevVs lectures at the University of Michigan:

the book’s companion website:

SVD and LSI Tutorial:

http://www.miislita.com/information-retrieval-tutorial/svd-Isi-tutorial-
4-Isi-how-to-calculations.html


http://clair.si.umich.edu/~radev/teaching.html
http://clair.si.umich.edu/~radev/teaching.html
http://nlp.stanford.edu/IR-book/information-retrieval-book.html
http://nlp.stanford.edu/IR-book/information-retrieval-book.html

