

Lecture Slides for

INTRODUCTION TO

Machine Learning 2nd Edition

© The MIT Press, 2010

alpaydin@boun.edu.tr http://www.cmpe.boun.edu.tr/~ethem/i2ml2e

CHAPTER 17:

Combining Multiple Learners

Rationale

- No Free Lunch Theorem: There is no algorithm that is always the most accurate
- Generate a group of base-learners which when combined has higher accuracy
- Different learners use different
 - Algorithms
 - Hyperparameters
 - Representations / Modalities / Views
 - Training sets
 - Subproblems
- Diversity vs accuracy: two competing criteria

Voting

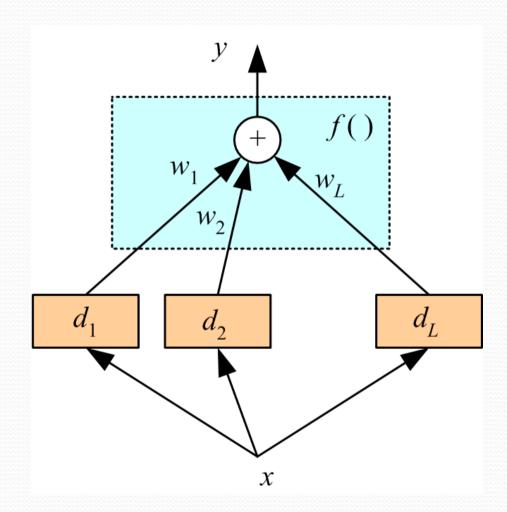
Linear combination

$$y = \sum_{j=1}^{L} w_j d_j$$

$$w_j \ge 0$$
 and $\sum_{j=1}^{L} w_j = 1$

Classification

$$y_i = \sum_{j=1}^L w_j d_{ji}$$



Bayesian perspective: (Mj: models)

$$P(C_i \mid x) = \sum_{\text{all models } \mathcal{M}_i} P(C_i \mid x, \mathcal{M}_j) P(\mathcal{M}_j)$$

If
$$d_j$$
 are iid
$$E[y] = E\left[\sum_j \frac{1}{L} d_j\right] = \frac{1}{L} L \cdot E[d_j] = E[d_j]$$

$$Var(y) = Var\left(\sum_j \frac{1}{L} d_j\right) = \frac{1}{L^2} Var\left(\sum_j d_j\right) = \frac{1}{L^2} L \cdot Var(d_j) = \frac{1}{L} Var(d_j)$$

Bias does not change, variance decreases by L

If dependent, error increase with positive correlation

$$Var(y) = \frac{1}{L^2} Var\left(\sum_j d_j\right) = \frac{1}{L^2} \left[\sum_j Var(d_j) + 2\sum_j \sum_{i < j} Cov(d_i, d_j)\right]$$

Fixed Combination Rules

Rule	Fusion function $f(\cdot)$	
Sum	$y_i = \frac{1}{L} \sum_{j=1}^{L} d_{ji}$	
Weighted sum	$y_i = \sum_j w_j d_{ji}, w_j \ge 0, \sum_j w_j d_{ji}$	$\sum_{j} w_{j} = 1$
Median	$y_i = \text{median}_j d_{ji}$	
Minimum	$y_i = \min_j d_{ji}$	
Maximum	$y_i = \max_j d_{ji}$	
Product	$y_i = \prod_j d_{ji}$	d_1

	C_1	C_2	C_3
d_1	0.2	0.5	0.3
d_2	0.0	0.6	0.4
d_3	0.4	0.4	0.2
Sum	0.2	0.5	0.3
Median	0.2	0.5	0.4
Minimum	0.0	0.4	0.2
Maximum	0.4	0.6	0.4
Product	0.0	0.12	0.032

Error-Correcting Output Codes

- K classes; L problems (Dietterich and Bakiri, 1995)
- Code matrix **W** (KXL matrix) codes classes in terms of learners
- Allows every classifier to have a different weight for each class:wij
- One per classL=K

$$\mathbf{W} = \begin{bmatrix} +1 & -1 & -1 & -1 \\ -1 & +1 & -1 & -1 \\ -1 & -1 & +1 & -1 \\ -1 & -1 & -1 & +1 \end{bmatrix}$$

Pairwise
 L=K(K-1)/2

$$\mathbf{W} = \begin{bmatrix} +1 & +1 & +1 & 0 & 0 & 0 \\ -1 & 0 & 0 & +1 & +1 & 0 \\ 0 & -1 & 0 & -1 & 0 & +1 \\ 0 & 0 & -1 & 0 & -1 & -1 \end{bmatrix}$$

• Full code $L=2^{(K-1)}-1$

- With reasonable *L*, find **W** such that the Hamming distance btw rows and columns are maximized.
- Voting scheme

$$y_i = \sum_{j=1}^L w_j d_{ji}$$

Subproblems may be more difficult than one-per-K

Bagging

- Use bootstrapping to generate *L* training sets and train one base-learner with each (Breiman, 1996)
- Use voting (Average or median with regression)
- Unstable algorithms profit from bagging

AdaBoost

Generate a sequence of base-learners each focusing on previous one's errors (Freund and Schapire, 1996)

Training:

For all $\{x^t, r^t\}_{t=1}^N \in \mathcal{X}$, initialize $p_1^t = 1/N$

For all base-learners $j = 1, \ldots, L$

Randomly draw \mathcal{X}_j from \mathcal{X} with probabilities p_j^t

Train d_j using \mathcal{X}_j

For each (x^t, r^t) , calculate $y_i^t \leftarrow d_j(x^t)$

Calculate error rate: $\epsilon_j \leftarrow \sum_t^t p_j^t \cdot 1(y_j^t \neq r^t)$

If $\epsilon_i > 1/2$, then $L \leftarrow j-1$; stop

$$\beta_j \leftarrow \epsilon_j/(1-\epsilon_j)$$

For each (x^t, r^t) , decrease probabilities if correct:

If
$$y_j^t = r^t \ p_{j+1}^t \leftarrow \beta_j p_j^t$$
 Else $p_{j+1}^t \leftarrow p_j^t$

Normalize probabilities:

$$Z_j \leftarrow \sum_t p_{j+1}^t; \quad p_{j+1}^t \leftarrow p_{j+1}^t/Z_j$$

Testing:

Given x, calculate $d_j(x), j = 1, \ldots, L$

Calculate class outputs, i = 1, ..., K:

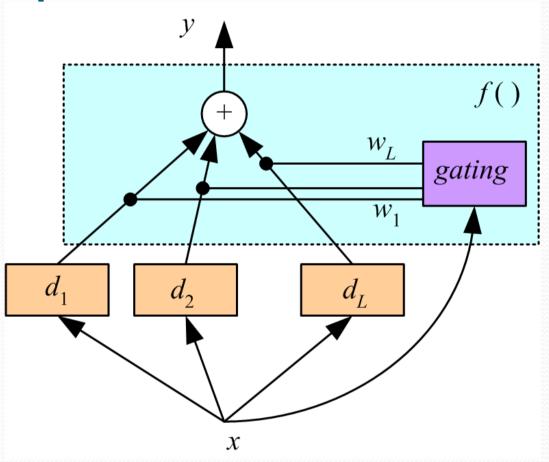
$$y_i = \sum_{j=1}^{L} \left(\log \frac{1}{\beta_j} \right) d_{ji}(x)$$

Mixture of Experts

Voting where weights

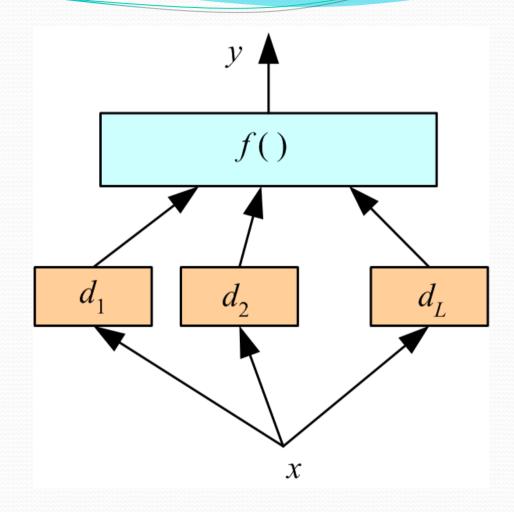
$$y = \sum_{j=1}^{L} w_j d_j$$

(Jacobs et al., 1991) Experts or gating can be nonlinear



Stacking

 Combiner f () is another learner (Wolpert, 1992)



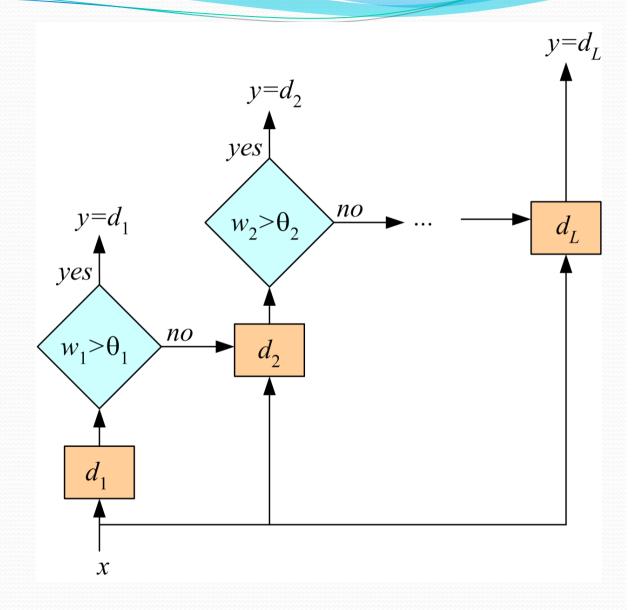
Fine-Tuning an Ensemble

- Given an ensemble of dependent classifiers, do not use it as is, try to get independence
- Subset selection: Forward (growing)/Backward (pruning) approaches to improve accuracy/diversity/ independence
- 2. Train metaclassifiers: From the output of correlated classifiers, extract new combinations that are uncorrelated. Using PCA, we get "eigenlearners."
- Similar to feature selection vs feature extraction

Cascading

Use d_j only if preceding ones are not confident

Cascade learners in order of complexity



Combining Multiple Sources

- Early integration: Concat all features and train a single learner
- Late integration: With each feature set, train one learner, then either use a fixed rule or stacking to combine decisions
- Intermediate integration: With each feature set, calculate a kernel, then use a single SVM with multiple kernels
- Combining features vs decisions vs kernels