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Learning	a	Class	from	Examples	
�  Class	C	of	a	“family	car”	

�  PredicIon:	Is	car	x	a	family	car?	
�  Knowledge	extracIon:	What	do	people	expect	from	a	
family	car?	

� Output:		
	 	PosiIve	(+)	and	negaIve	(–)	examples	

�  Input	representaIon:		
	 	x1:	price,	x2	:	engine	power	
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Hypothesis	class	H 
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h:	a	hypothesis	from	H 
X : training	set	
Error	of	h	on	X	

Lecture	Notes	for	E	Alpaydın	2010	IntroducIon	to	Machine	Learning	2e	©	The	MIT	Press	(V1.0)	



S,	G,	and	the	Version	Space	

7	

most	specific	hypothesis,	S	

most	general	hypothesis,	G	

h	∈ H,	between	S	and	G	is	
Consistent	(error	free)	
and	make	up	the		
version	space	
(Mitchell,	1997)	

Lecture	Notes	for	E	Alpaydın	2010	IntroducIon	to	Machine	Learning	2e	©	The	MIT	Press	(V1.0)	



Margin	
�  Choose	h	with	largest	margin	
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VC	Dimension	and	PAC	Learning	
Tools	to	analyze	expected	(test/generalizaIon)	error	of	
hypothesis	classes	(i.e.	classifiers)	
�  VC	(Vapnik	Chervonenkis)	Dimension:	

�  Given	a	hypothesis	class	(rectangles,	circles,	lines,	neural	
networks)	how	many	instances	can	it	classify	without	any	
error.		

�  Does	not	consider	the	input	distribuIon	

�  PAC	(Probably	Approximately	Correct)	Learning	
�  How	many	instances	are	needed	to	achieve	a	certain	error	
with	a	certain	probability?	
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VC	Dimension	
� N	points	can	be	labeled	in	2N	ways	as	+/–	

H	sha`ers	N	if		
there	exists	h	∈	H	consistent		
	for	any	of	these:		
	VC(H )	=	N	

	
	

10	

An	axis-aligned	rectangle	sha2ers	4	points	only	!	
Choose	points	in	such	a	way	that	they	can	be	sha2ered.		
e.g.	Do	not	put	all	of	them	at	the	same	spot.		
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R1	 R2	 R3	 R4	 R5	 R6	 R7	 R8	

x1	 0	 0	 0	 1	 0	 1	 1	 1	

x2	 0	 0	 1	 0	 1	 0	 1	 1	

x3	 0	 1	 0	 0	 1	 1	 0	 1	

N=3	for	this	table	



VC Dimension Examples 
Question: Can the following g (line passing 
through origin) shatter the following points? 

g(x,θ) = sign(x. θ)=sign(x1θ1+x2θ2) 

θ=(0,1) θ =(0,-1) θ =(2,-3) θ =(-2,3) 

Answer: No problem. There are four training 
sets to consider            +	

by Andrew Moore	

We use g to denote hypothesis (like h)	



VC dim of line machine 

Yes, of course. 

All -ve or all +ve is trivial 

One +ve can be picked off by a line 

One -ve can be picked off too.  

Given machine g, the VC-dimension v is	
The maximum number of points that can 
be arranged so that g  shaGer them. 	

Example: For 2-d inputs, what’s VC-dim of g(x,θ,b) = sign(θ.x+b)?	
Well, can g shaGer these three points?	

by Andrew Moore	



VC dim of line machine 
Given machine g, the VC-dimension v is 

The maximum number of points that can be arranged so 
that g shatter them.  

Example: For 2-d inputs, what’s VC-dim of g(x,θ,b) = sign(θ.x+b)? 
Well, can we find four points that g can shatter? 

by Andrew Moore	



VC dim of line machine 

Can always draw six lines between pairs of four 
points. 

Given machine g, the VC-dimension v is 
The maximum number of points that can be arranged so that g  
shatter them.  

Example: For 2-d inputs, what’s VC-dim of g(x,θ,b) = sign(θ.x+b)? 
Well, can g shatter these four points? 

by Andrew Moore	



VC dim of line machine 

Can always draw six lines between pairs of four 
points. 

Two of those lines will cross. 

Given machine g, the VC-dimension v is 
The maximum number of points that can be arranged so that g  
shatter them.  

Example: For 2-d inputs, what’s VC-dim of g(x,θ,b) = sign(θ.x+b)? 
Well, can g shatter these four points? 

by Andrew Moore	



VC dim of line machine 
Given machine g, the VC-dimension v is 

The maximum number of points that can be arranged so 
that g  shatter them.  

Example: For 2-d inputs, what’s VC-dim of g(x, θ,b) = sign(θ.x+b)? 
Well, can we find four points that g can shatter? 

Can always draw six lines between pairs of four points. 

Two of those lines will cross. 

If we put points linked by the crossing lines in the same 
class they can’t be linearly separated 

So a line can shatter 3 points but not 4 

So VC-dim of Line Machine is 3 

If inputs are m dimensional, v=m+1(see A. Moore notes). 

by Andrew Moore	



Why VC Dimension 

R(θ ) = TESTERR(θ ) = Probability of
Misclassification

Remp(θ ) = TRAINERR(θ ) = Fraction Training
Set misclassified

TESTERR(θ ) ≤ TRAINERR(θ )+ v(log(2N / v)+1)− log(η / 4)
N

• Given some machine g, let v be its VC dimension. 
• v is a measure of g’s power (v does not depend on the choice of training set) 

• Vapnik showed that with probability 1-η	

This bound is usually too big, so it may not be useful. 

by Andrew Moore	



i fi TRAINERR VC-Conf Probable upper bound on 
TESTERR 

Choice 

1 f1 

2 f2 

3 f3 � 
4 f4 

5 f5 

6 f6 

€ 

TESTERR(θ) ≤ TRAINERR(θ) +
h(log(2N /h) +1) − log(η /4)

N



Probably	Approximately	Correct	
(PAC)	Learning	
�  How	many	training	examples	N	should	we	have,	such	that	with	probability	

at	least	1	‒	δ,	h	has	error	at	most	ε	?	
	(Blumer	et	al.,	1989)	

	
�  Each	strip	is	at	most	ε/4	
�  Pr	that	we	miss	a	strip	1‒	ε/4	
�  Pr	that	N	instances	miss	a	strip	(1	‒	ε/4)N	

�  Pr	that	N	instances	miss	4	strips	4(1	‒	ε/4)N	

�  4(1	‒	ε/4)N	≤	δ	and	(1	‒	x)≤exp(	‒	x)	

�  4exp(‒	εN/4)	≤	δ		and	N	≥	(4/ε)log(4/δ)	
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Noise	and	Model	Complexity	
Use	the	simpler	one	because	
�  Simpler	to	use		
	(lower	computaIonal		
	complexity)	

�  Easier	to	train	(lower		
	space	complexity)	

�  Easier	to	explain		
	(more	interpretable)	

�  Generalizes	be`er	(lower		
	variance	-	Occam’s	razor)	
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MulIple	Classes,	Ci	i=1,...,K	
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Train	hypotheses		
hi(x),	i	=1,...,K:	
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Regression	
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Model	SelecIon	&	GeneralizaIon	
�  Learning	is	an	ill-posed	problem,	i.e.	data	is	not	sufficient	
to	find	a	unique	soluIon	

�  The	need	for	inducIve	bias,	assumpIons	about	H 
� GeneralizaIon:	How	well	a	model	performs	on	new	data	
� Overfitng:	H	more	complex	than	C	or	f		
� Underfitng:	H	less	complex	than	C	or	f	
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Model	SelecIon	&	GeneralizaIon	
�  Learning	is	an	ill-posed	problem,	i.e.	data	is	not	sufficient	
to	find	a	unique	soluIon	

�  The	need	for	inducIve	bias,	assumpIons	about	H 
� GeneralizaIon:	How	well	a	model	performs	on	new	data	
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Set	of	assumpIons	we	make	to	
make	learning	possible.	

Data	not	sufficient	to	
find	a	unique	soluIon	



Triple	Trade-Off	
�  There	is	a	trade-off	between	three	factors	(Die`erich,	

2003):	
1.  Complexity	of	H,	c	(H),	
2.  Training	set	size,	N,		
3.  GeneralizaIon	error,	E,	on	new	data	

¨  As	N↑, E↓	
¨  As	c	(H)↑, first	E↓ and	then	E↑	
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Cross-ValidaIon	
�  To	esImate	generalizaIon	error,	we	need	data	unseen	
during	training.	We	split	the	data	as	
�  Training	set	(50%)	
�  ValidaIon	set	(25%)	
�  Test	(publicaIon)	set	(25%)	

�  Resampling	(e.g.	bootstrapping)	when	there	is	few	data	
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Dimensions	of	a	Supervised	
Learner	
1.  Model:		

	 		
2.  Loss	funcIon:	

	 		
3.  OpImizaIon	procedure:	
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