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1. Classical cryptography: introduction: some simple cryptosystems

2. Cryptanalysis of simple cryptosystems

3. Shannon’s theory: probability theory, entropy, properties of entropy

4. Product cryptosystems

5. Block ciphers: substiturion-permutation network

6. Linear cryptanalysis
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8. The data encryption standard (DES)

9. Advanced encryption standard (AES), modes of operation
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12. Public-key cryptosystems based on discrete logarithm problem: the
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13. Finite field and elliptic curve systems

14. Signature schemes: introduction, the ElGamal signature scheme

15. The digital signature algorithm (DSA), the elliptic curve digital
signature algorithm (ECDSA)



Grading

1st Homework 3rd week 15 %
2nd Homework 7th week 15 %
Midterm 8th week 15 %
3rd Homework 11th week 15 %
Final 40 %



History of Cryptography

hieroglyphs ideogram Clay tablets
around 2000 B.C. ancient Chinese from Mesopotamia

ABCDEFGHIJKLMNOPQRSTUVWXYZ
ZYXWVUTSRQPONMLKJIHGFEDCBA
Atbash cipher - around 500 to 600 BC

Scytale - Spartan

1 2 3 4 5

1 A B C D E
2 F G H I J
3 K L M N O
4 P Q R S T
5 U V W X Y/Z

Polybius Square - Greek
method
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Steganography

Secret communication achieved by hiding the existence of a message
is known as steganography, derived from the Greek words steganos,
meaning “covered” and graphein, meaning “to write”.

▶ physically concealed beneath wax on wooden tablets

▶ a tattoo on a slave’s head concealed by regrown hair



Cryptography
▶ Cryptography was derived from the Greek word kryptos,

meaning “hidden”.

▶ The aim of cryptography is not to hide the existence of a
message, but rather to hide its meaning, a process known as
encryption.

▶ To render a message unintelligible, it is scrambled according to
a particular protocol which is agreed beforehand between the
sender and the intended recipient.

▶ The advantage of cryptography is that if the enemy intercepts
an encrypted message, then the message is unreadable.

▶ Without knowing the scrambling protocol, the enemy should
find it difficult, if not impossible, to recreate the original
message from the encrypted text.

Singh, Simon. Code Book : The Science of Secrecy from Ancient Egypt to Quan-

tum Cryptography. Westminster, MD, USA: Anchor, 2000. p 6. http://site.

ebrary.com/lib/istanbulteknik/Doc?id=10235313&ppg=28 Copyright ©2000.

Anchor. All rights reserved.

http://site.ebrary.com/lib/istanbulteknik/Doc?id=10235313&ppg=28
http://site.ebrary.com/lib/istanbulteknik/Doc?id=10235313&ppg=28


Usage of Cryptography (1/2)

▶ Past
▶ Military, Diplomatic Service, Government
▶ was used as a tool to protect national secrets and strategies

▶ Now
▶ Private sector
▶ is used to protect information in digital form and to provide

security services



Usage of Cryptography (2/2)
Although cryptography is now having a major impact on civilian
activities, it should be noted that military cryptography remains an
important subject.
It has been said that
▶ the First World War was the chemists’ war, because mustard

gas and chlorine were employed for the first time
▶ the Second World War was the physicists’ war, because the

atom bomb was detonated
▶ the Third World War would be the mathematicians’ war,

because mathematicians will have control over the next great
weapon of war - information. Mathematicians have been
responsible for developing the codes that are currently used to
protect military information. Not surprisingly, mathematicians
are also at the forefront of the battle to break these codes.

Singh, Simon. Code Book : The Science of Secrecy from Ancient Egypt to

Quantum Cryptography. Westminster, MD, USA: Anchor, 2000. p xv.

http://site.ebrary.com/lib/istanbulteknik/Doc?id=10235313&ppg=19

Copyright ©2000. Anchor. All rights reserved.

http://site.ebrary.com/lib/istanbulteknik/Doc?id=10235313&ppg=19


CRYPTOGRAPHY

▶ is the study of mathematical techniques related to aspects of
information security such as
▶ confidentiality,
▶ data integrity,
▶ entity authentication,
▶ data origin authentication.

▶ is about the prevention and detection of cheating and other
malicious activities.



Basic Terminology: Domains

The cryptosystem is a five- tuple P,C,K,E,D

▶ P: a set called the plaintext space.

▶ C: a set called the ciphertext space.

▶ K: a set called the key space.

▶ For each K ∈ K, there is an encryption rule eK ∈ E and a
corresponding decryption rule dK ∈ D. Each eK : P→ C and
dK : C→ P are functions such that dK (eK (x)) = x for every element
x ∈ P.

If a cryptosystem is to be of practical use:

1. Each eK and dK should be efficiently computable.

2. An opponent, upon seeing a ciphertext string y should be unable to
determine the key K or the plaintext string x .



Shift Cipher

▶ Let P = C = K = Z26.

▶ For 0 ≤ K ≤ 25, define eK (x) = (x + K ) mod 26 and
dK (y) = (y − K ) mod 26

▶ Since there are only 26 possible keys, it is easy to try every
possible K until a meaningful plaintext is obtained.

▶ K = 3 =⇒ is called Ceaser cipher (˜55 BC)



Caesar Cipher

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
D E F G H I J K L M N O P Q R S T U V W X Y Z A B C
Example 1 :
x = T H I SC I PHER I SCE R T A I N L YNO T S ECURE
y = eK (x) =WKLVFLSKHULVFHUWDLQOBQRWVHFXUH



Cryptanalysis
The practice of changing ciphertext into plaintext without complete
knowledge of the cipher.

▶ First method : Frequency analysis

▶ Although it is not known who first realized that the variation in
the frequencies of letters could be exploited in order to break
ciphers, the earliest known description of the technique is by
the ninth-century scientist Abu Yusuf Ya’qub ibn Is-haq ibn
as-Sabbah ibn’omran ibn Ismail al-Kindi. Known as “the
philosopher of the Arabs” al-Kindi was the author of 290 books
on medicine, astronomy, mathematics, linguistics and music.

▶ His greatest treatise, which was rediscovered only in 1987 in
the Sulaimaniyyah Ottoman Archive in Istanbul, is entitled “A
Manuscript on Deciphering Cryptographic Messages”.

Singh, Simon. Code Book : The Science of Secrecy from Ancient Egypt to

Quantum Cryptography. Westminster, MD, USA: Anchor, 2000. p 17.

http://site.ebrary.com/lib/istanbulteknik/Doc?id=10235313&ppg=39

Copyright ©2000. Anchor. All rights reserved.

http://site.ebrary.com/lib/istanbulteknik/Doc?id=10235313&ppg=39
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Attacks

Kerckhoffs’ Principle: The security of a cryptosystem must not
depend on keeping secret the crypto-algorithm. The security
depends only on keeping secret the key.1

The aim of the attacker is to read the encrypted messages, which in
many cases is achieved by finding the secret key of the system.

The efficiency of the attack is measured by

▶ the amount of plaintext- ciphertext pairs required,

▶ time spent for their analysis

▶ the success probability of the attack

1It was definitively stated in 1883 by the Dutch linguist Auguste Kerckhoffs
von Nieuwenhof in his book La Cryptographie militaire
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Types of Attacks

▶ Ciphertext- Only

▶ Known Plaintext

▶ Chosen Plaintext

▶ Chosen Ciphertext

▶ Adaptive Chosen Plaintext or Ciphertext

▶ Related Key

▶ Partial Knowledge of the Key



The Goals of Cryptanalytic Attacks

▶ Distinguishing Attacks

▶ Partial Knowledge of the Plaintext

▶ Decryption

▶ Encryption (Forgery)

▶ Partial Key Recovery

▶ Total Key Recovery



Cryptology

▶ Cryptanalysis: the study of mathematical techniques to break
the system

▶ Cryptology: cryptography + cryptanalysis

▶ Cryptosystem: a set of cryptographic primitives, symmetric key
and public key



Cryptanalysis of Example 1

WK L V F L S KHU L V F HUWD L Q O BQ RWVH F X UH

V J KU E KQ J G TKU E G T V C K P N A P Q V U G E WTG
U I J TD J P I F S J TD F S U B J OM ZO P U T F D V S F
T H I S C I P H E R I S C E R T A I N L YNO T S E C U R E
K = 3



Mono- alphabetic Substitution Cipher

▶ Let P = C = Z26. K consists of all possible permutations of
the 26 symbols. For each permutation π ∈ K, define
eπ(x) = π (x) and dπ(y) = π−1 (y) where π−1 is the inverse
permutation to π.

▶ If the alphabet is the English alphabet, then the size of the key
space is 26! ≈ 400, 000, 000, 000, 000, 000, 000, 000, 000

▶ The distribution of letter frequencies is preserved in the
ciphertext.



Example

π =
A B CDE F G H I J K L MNOPQ R S T U VW X Y Z
BD F H J L N P RTVX Z C E G I KMOQ S U WAY

x = TH I S C I PHER I S CERTA I N LYNOT S ECURE
y = eπ(x) =OPRMFRGP JKRMF JKOBRCXAC EOMJ FQKJ



Example
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Cryptanalysis of Mono- alphabetic Substitution Cipher (1/8)
Ciphertext:
VGQ BQ HWHUXYQVULRZUGVWBUYVHKYZTHXQB N OZY
BVY V U R V EQBOYQHYVTMXTZ RQHULVU L YQBZOWBOZ
GYQ B K B Y YBOTZGYQBHKEQHMBYYQHYUZYHNZ OWRZ
DKWMB P HWBZDYVGHUXZUBN VTQBTYZWBRVEQ B OYQ
BTB H UWL BYHYYQBVOPBHUV U LQBTQZDKWTDMT YVY
DYB YQ B G ZDOYQKBYYBOZGYQBHKEQHMBYUHP B KXG
ZOH UWT Z YQBZYQBOT

Letter Frequency in the English Language
E T A O I N S R H L D C U M F P G W Y B V K X J Q Z

Letter Frequency in the ciphertext
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
0 33 0 6 4 0 8 19 0 0 8 5 5 3 12 2 24 5 0 12 15 15 10 5 33 19

eπ(E) = B or Y and eπ(T) = B or Y
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Cryptanalysis of Mono- alphabetic Substitution Cipher (2/8)
Digraphs in the ciphertext with B
- - QBQ - - - - - - - - - - - - - - -WBU - - - -- - - - - QBN - - Y
BV - - - - - - QBO- - - - - - - - - - - - - - - -- - - QBZ -WBO -
- - QBKBYYBO - - - - QBH - - - - MBY - - -- - - - - - - - - - -
- - - MBP -WBZ - - - - - - - - UBN - - QBT--WBR - - QBO - Q
BTBH - - L BY - - -QBV - PBH - - - - QBT-- - - - - - - - - - -
- YBYQBG - - - - -KBYYBO - - - QBH - - --MBY - - P BK - -
- - - - - - - - QBZ-QBO -

The Digraph Frequencies in the English Language
th he an in er on re ed nd ha at en es of nt ea ti to io le is ou ar as de rt ve

Digraph Frequency in the ciphertext with B
QBBQWBBUBNYBBVBOBZBKKBBYBHMBBPUBBTBRTBLBPBBG

15 1 4 1 2 4 2 6 3 2 2 6 4 3 1 1 3 1 1 1 2 1

eπ(HE) = QB⇒ eπ(H) = Q
eπ(ER) = BO or BY⇒ eπ(R) = O or Y
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Cryptanalysis of Mono- alphabetic Substitution Cipher (3/8)

Trigraphs in the ciphertext such as -QB, QB-, -BO, BO-, -BY, BY-
- GQBQH - - - - - - - - - - - - - - - - - - - - -- - - - XQBN - - -
- - - - - - - EQBOY - - - - - - - - - - - - - - -- - YQBZ -WBOZ
-YQBKBYYBOT - - YQBH - - - -MBYY - -- - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - EQBOYQ
BT - - - - LBYH - YQBV - - - - - - - LQBT-- - - - - - - - - - -
- YBYQBG - - - - - KBYYBOZ-YQBH - - --MBYU - - - - - -
- - - - - - - YQBZYQBOT

The Trigraph Frequencies in the English Language
the and tha ent ion tio for nde has nce tis oft men
The Trigraph Frequencies in the ciphertext
GQBQBQBQHXQBQBNEQBQBOBOYYQBQBZWBOBOZQBKKBYBYYYBOBOT
1 1 1 1 1 2 3 2 9 2 1 2 1 2 3 2 2

QBHMBYQBTYBYBYQQBGBYU
2 2 2 1 1 1 1

eπ(THE) = YQB⇒ eπ(T) = Y and eπ(H) = Q⇒ eπ(R) = O



Cryptanalysis of Mono- alphabetic Substitution Cipher (3/8)

Trigraphs in the ciphertext such as -QB, QB-, -BO, BO-, -BY, BY-
- GQBQH - - - - - - - - - - - - - - - - - - - - -- - - - XQBN - - -
- - - - - - - EQBOY - - - - - - - - - - - - - - -- - YQBZ -WBOZ
-YQBKBYYBOT - - YQBH - - - -MBYY - -- - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - EQBOYQ
BT - - - - LBYH - YQBV - - - - - - - LQBT-- - - - - - - - - - -
- YBYQBG - - - - - KBYYBOZ-YQBH - - --MBYU - - - - - -
- - - - - - - YQBZYQBOT
The Trigraph Frequencies in the English Language
the and tha ent ion tio for nde has nce tis oft men
The Trigraph Frequencies in the ciphertext
GQBQBQBQHXQBQBNEQBQBOBOYYQBQBZWBOBOZQBKKBYBYYYBOBOT
1 1 1 1 1 2 3 2 9 2 1 2 1 2 3 2 2

QBHMBYQBTYBYBYQQBGBYU
2 2 2 1 1 1 1

eπ(THE) = YQB⇒ eπ(T) = Y and eπ(H) = Q⇒ eπ(R) = O



Cryptanalysis of Mono- alphabetic Substitution Cipher (3/8)

Trigraphs in the ciphertext such as -QB, QB-, -BO, BO-, -BY, BY-
- GQBQH - - - - - - - - - - - - - - - - - - - - -- - - - XQBN - - -
- - - - - - - EQBOY - - - - - - - - - - - - - - -- - YQBZ -WBOZ
-YQBKBYYBOT - - YQBH - - - -MBYY - -- - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - EQBOYQ
BT - - - - LBYH - YQBV - - - - - - - LQBT-- - - - - - - - - - -
- YBYQBG - - - - - KBYYBOZ-YQBH - - --MBYU - - - - - -
- - - - - - - YQBZYQBOT
The Trigraph Frequencies in the English Language
the and tha ent ion tio for nde has nce tis oft men
The Trigraph Frequencies in the ciphertext
GQBQBQBQHXQBQBNEQBQBOBOYYQBQBZWBOBOZQBKKBYBYYYBOBOT
1 1 1 1 1 2 3 2 9 2 1 2 1 2 3 2 2

QBHMBYQBTYBYBYQQBGBYU
2 2 2 1 1 1 1

eπ(THE) = YQB⇒ eπ(T) = Y and eπ(H) = Q⇒ eπ(R) = O



Cryptanalysis of Mono- alphabetic Substitution Cipher (4/8)

Digraphs in the ciphertext with Y
- - - - - - - - - XYQ - - - - - -- - - - UYV - KYZ - - - -- - - ZY
BVYV - - - - - - OYQHYV - -- - - - - - - - - - LYQ - -- - - - -
GYQ - - BYYB - - - GYQ - - -- - - - BYYQHYUZYH-- - - - -
- - - - - - - - - - DYV - - - - -- - - - - - - TYZ - - - - -- - OYQ
- - - - - - - BYHYYQ - - - - -- - - - - - - - - - - - - - --TYVY
DYBYQ - - - - OYQ - BYYB--GYQ - - - - - - - BYU-- - - - -
- - - - - - ZYQ - ZYQ - - -

The Digraph Frequencies in the English Language
th he an in er on re ed nd ha at en es of nt ea ti to io le is ou ar as de rt ve

Digraph Frequency in the ciphertext with Y
XYYQUYYVKYYZZYYBVYOYHYLYGYBYYUYHDYTY
1 13 1 5 1 2 4 4 2 3 3 1 3 6 2 1 2 2

eπ(TH) = YQ, eπ(TI or TO) = YV



Cryptanalysis of Mono- alphabetic Substitution Cipher (4/8)

Digraphs in the ciphertext with Y
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- - - - - - - BYHYYQ - - - - -- - - - - - - - - - - - - - --TYVY
DYBYQ - - - - OYQ - BYYB--GYQ - - - - - - - BYU-- - - - -
- - - - - - ZYQ - ZYQ - - -
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Cryptanalysis of Mono- alphabetic Substitution Cipher (5/8)

Trigraphs in the ciphertext such as -YQ, YQ-, -YV, YV-
- - - - - - - - - XYQV - - - - -- - - - UYVH - -- - - - -- - - - -
- VYVU - - - - - OYQHYVT-- - - - - - - - - -LYQB-- - - - -
GYQB - - - - - - - - GYQB - -- - - - - YYQH-- - - - -- - - - -
- - - - - - - - - - DYVG - - - -- - - - - - - - - - - - - - -- - OYQ
B - - - - - - - - - YYQB - - - -- - - - - - - - - - - - - - --TYVY
- - BYQB- - - OYQK - - - - --GYQB - - - - - - - - - -- - - - -
- - - - - - ZYQBZYQB - -

The Trigraph Frequencies in the English Language
the and tha ent ion tio for nde has nce tis oft men
The Trigraph Frequencies in the ciphertext
XYQYQVUYVYVHVYVYVUOYQYQHDYVYVGYQBYYQTYVYVY
1 1 1 1 1 1 3 2 1 1 6 1 1 1

BYQYQKGYQZYQ
1 1 1 1

eπ(THE) = YQB, eπ(THA) = YQH, ⇒ eπ(A) = H
eπ(TIO or TIS) = YVH or YVU or YVG⇒ eπ(I) = V
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Cryptanalysis of Mono- alphabetic Substitution Cipher (7/8)

B → E, Y → T, Q → H, O → R, H → A, V → I

VGQ BQ HWHUXYQVULRZUGVWBUYVHKYZTHXQB N OZY
I - H E H A - A - - TH I - - - - - - I - E - T I A - T - - A - HE - R - T

BVY V U R V EQBOYQHYVTMXTZ RQHULVU L YQBZOWBOZ
E I T I - - I - HERTHAT I - - - - - - HA - - I - - THE - R - E R -

GYQ B K B Y YBOTZGYQBHKEQHMBYYQHYUZYHNZ OWRZ
- TH E - E T T ER - - - THEA - - HA - ETTHAT - - TA - - R - - -

DKWMB P HWBZDYVGHUXZUBN VTQBTYZWBRVEQ B OYQ
- - - - E - A - E - - T I - A - - - - E - I - HE - T - - E - I - H E RTH

BTB H UWL BYHYYQBVOPBHUV U LQBTQZDKWTDMT YVY
E - E A - - - E TATTHE I R - EA - I - - HE - H - - - - - - - - T I T

DYB YQ B G ZDOYQKBYYBOZGYQBHKEQHMBYUHP B KXG
- T E T H E - - - RTH - ETTER - - T HEA - - HA - ET - A - E - - -

ZOH UWT Z YQBZYQBOT
- RA - - - - THE - THER -



Cryptanalysis of Mono- alphabetic Substitution Cipher (8/8)

B → E, Y → T, Q → H, O → R, H → A, V → I, G → F, K → L,
W → D

VGQ BQ HWHUXYQVULRZUGVWBUYVHKYZTHXQB N OZY
I F H E H A D A - - TH I - - - - - F I D E - T I ALT - - A - HE - R - T

BVY V U R V EQBOYQHYVTMXTZ RQHULVU L YQBZOWBOZ
E I T I - - I - HERTHAT I - - - - - - HA - - I - - THE - R D E R -

GYQ B K B Y YBOTZGYQBHKEQHMBYYQHYUZYHNZ OWRZ
FTH E L E T T ER - - FTHEA L - HA - ETTHAT - - TA - - R D - -

DKWMB P HWBZDYVGHUXZUBN VTQBTYZWBRVEQ B OYQ
- L D - E - A DE - - T I FA - - - - E - I - HE - T - DE - I - H E RTH

BTB H UWL BYHYYQBVOPBHUV U LQBTQZDKWTDMT YVY
E - E A - D - E TATTHE I R - EA - I - - HE - H - - L D - - - - T I T

DYB YQ B G ZDOYQKBYYBOZGYQBHKEQHMBYUHP B KXG
- T E T H E F - - RTHLETTER - F T HEAL - HA - ET - A - E L - F

ZOH UWT Z YQBZYQBOT
- RA - D - - THE - THER -



Cryptanalysis of Mono- alphabetic Substitution Cipher (8/8)

B → E, Y → T, Q → H, O → R, H → A, V → I, G → F, K → L,
W → D, U → N, X → Y, L → G

VGQ BQ HWHUXYQVULRZUGVWBUYVHKYZTHXQB N OZY
I F H E H A D ANYTH I NG - - NF I D ENT I ALT - - AYHE - R - T

BVY V U R V EQBOYQHYVTMXTZ RQHULVU L YQBZOWBOZ
E I T I N - I - HERTHAT I - - Y - - - HANG I NGTHE - R D E R -

GYQ B K B Y YBOTZGYQBHKEQHMBYYQHYUZYHNZ OWRZ
FTH E L E T T ER - - FTHEA L - HA - ETTHATN - TA - - R D - -

DKWMB P HWBZDYVGHUXZUBN VTQBTYZWBRVEQ B OYQ
- L D - E - A DE - - T I FANY - NE - I - HE - T - DE - I - H E RTH

BTB H UWL BYHYYQBVOPBHUV U LQBTQZDKWTDMT YVY
E - E A N D G E TATTHE I R - EAN I NGHE - H - - L D - - - - T I T

DYB YQ B G ZDOYQKBYYBOZGYQBHKEQHMBYUHP B KXG
- T E T H E F - - RTHLETTER - F T HEAL - HA - ETNA - E L YF

ZOH UWT Z YQBZYQBOT
- RA ND - - THE - THER -



Cryptanalysis of Mono- alphabetic Substitution Cipher (8/8)

B → E, Y → T, Q → H, O → R, H → A, V → I, G → F, K → L,
W → D, U → N, X → Y, L → G, R → C, Z → O, T → S

VGQ BQ HWHUXYQVULRZUGVWBUYVHKY ZTHXQB N OZY
I F H E H A D ANYTH I NGCONF I D ENT I ALTO S AYHE - ROT

BVY V U R V EQBOYQHYVTMXTZ RQHULVU L YQBZOWBOZ
E I T I N C I - HERTHAT I S - YS O CHANG I NGTHEOR D E RO

GYQ B K B Y YBOTZGYQBHKEQHMBYYQHYUZ YHNZ OWRZ
FTH E L E T T ERSOFTHEA L - HA - ETTHATNOTA - O R DCO

DKWMB P HWBZDYVGHUXZUBN VTQBTYZWBRVEQ B OYQ
- L D - E - A DEO - T I FANYONE - I SHESTODE C I - H E RTH

BTB H UWL BYHYYQBVOPBHUV U LQBTQZDKWTDMT YVY
ES E A N D G E TATTHE I R - EAN I NGHESHO - L D S - - S T I T

DYB YQ B G ZDOYQKBYYBOZGYQBHKEQHMBYUHP B KXG
- T E T H E F O - RTHLETTEROF T HEAL - HA - E TNA - E L YF

ZOH UWT Z YQBZYQBOT
ORA ND S O THEOTHERS



Affine Cipher (1/2)
▶ P = C = Z26

▶ K = {(a, b) ∈ Z26 × Z26 : gcd(a, 26) = 1} .
▶ For K = (a, b) ∈ K, eK (x) = y ≡ (ax + b) mod 26 and

dK (y) = x ≡ a−1 (y − b) mod 26 .

a ∈ Zn, multiplicative inverse of a mod n, denoted by a−1 mod n.
aa−1 ≡ 1 mod n .

For example, a = 2 ⇒ 2× 2 mod 26 = 4, 2× 3 mod 26 = 6,
2× 4 mod 26 = 8, 2× 5 mod 26 = 10, 2× 6 mod 26 = 12,
2× 7 mod 26 = 14, 2× 8 mod 26 = 16, 2× 9 mod 26 = 18,
2× 10 mod 26 = 20, 2× 11 mod 26 = 22, 2× 12 mod 26 = 24,
2× 13 mod 26 = 0, 2× 14 mod 26 = 2, 2× 15 mod 26 = 4,
2× 16 mod 26 = 6, ...

Hence there is no x as 2× x mod 26 = 1, then 2 does not have a
multiplicative inverse mod26.
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Affine Cipher (2/2)

In order that decryption is possible, for any y ∈ Z26

⇐⇒ gcd(a, 26) = 1.

▶ If gcd(a, 26) = d > 1, then 0 ≡ ax mod 26 has to distinct
solutions in Z26, namely x = 0 and x = 26

d .

▶ In this case e(x) = ax + b mod 26 is not an injective function
and hence not a valid encryption function.

▶ Since 26 = 2× 13, a = 1, 3, 5, 7, 9, 11, 15, 17, 19, 21, 23, 25, b
can be any element in Z26.

▶ Hence affine cipher has 12× 26 = 312 possible keys.
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Cryptanalysis of the Affine Cipher (1/3)

Ciphertext:
KADHLFMLNMFKVERSLDYAREHFSOORLDYAREHKRWKNHDS
XFSFUUDSRLDYAREDSTADLAMRKKREHFERRSLVORONHDS
XKARUVEPNMFTARERFSOFERTAVMRSNPIREHIRKTRRSFS
OFSODHERMFKDQRMZYEDPR
Letter Frequency in the English Language
E T A O I N S R H L D C U M F P G W Y B V K X J Q Z
Letter Frequency in the ciphertext
ABCDE FGH I J K LMNOPQ R STUVWXYZ
6 0 0 8 8 8 0 5 1 0 6 4 4 3 4 2 0 16 8 2 2 2 0 1 2 0



Cryptanalysis of the Affine Cipher (2/3)

Ee(E) = R→ 17 ≡ a4 + b mod 26
Ee(T) = D→ 3 ≡ a19 + b mod 26 then a = 6, gcd(6, 26) = 2 > 1.
Ee(T) = E→ 4 ≡ a19 + b mod 26 then a = 13,
gcd(13, 26) = 13 > 1.
Ee(T) = F→ 5 ≡ a19 + b mod 26 then a = 20,
gcd(20, 26) = 2 > 1.
Ee(T) = S→ 18 ≡ a19 + b mod 26 then a = 7, gcd(7, 26) = 1 and
b = 9.
Decrypted message
PVOWESTEITSPYDQFEORVQDWSFXXQEORVQDWPQNPIWO
FCSFSJJOFQEORVQDOFUVOEVTQPPQDWSDQQFEYXQXIW
OFCPVQJYDMITSUVQDQSFXSDQUVYTQFIMLQDWLQPUQQ
FSFXSFXOWDQTSPOBQTGRDOMQ



Cryptanalysis of the Affine Cipher (3/3)

Ee(T) = K→ 10 ≡ a19 + b mod 26 then a = 3, gcd(3, 26) = 1 and
b = 5.
Decrypted message
THISCALCULATORENCIPHERSANDDECIPHERSTEXTUSI
NGANAFFINECIPHERINWHICHLETTERSAREENCODEDUS
INGTHEFORMULAWHEREANDAREWHOLENUMBERSBETWEE
NANDANDISRELATIVELYPRIME
THIS CALCULATOR ENCIPHERS AND DECIPHERS TEXT
USING AN AFFINE CIPHER IN WHICH LETTERS ARE
ENCODED USING THE FORMULA WHERE AND ARE WHOLE
NUMBERS BETWEEN AND AND IS RELATIVELY PRIME



Alberti Cipher

All of the Western European governments used cryptography
Venice created an elaborate organization in 1452.
Leon Battista Alberti was known as “The Father of Western
Cryptology” in part because of his development of polyalphabetic
substitution.

Formula
The larger one is called Stabilis [stationary or fixed], the smaller one
is called Mobilis [movable]
Polyalphabetic substitution is any technique which allows different
ciphertext symbols to represent the same plaintext symbol.



Vigenère Cipher

m ≥ 0 and m ∈ Z.
Let P = C = K = (Z26)

m.

For a key K = (k1, k2, . . . , km), we define
eK (x1, x2, . . . , xm) = (x1 + k1, x2 + k2, . . . , xm + km)
dK (y1, y2, . . . , ym) = (y1 − k1, y2 − k2, . . . , ym − km)
Example: m = 6. The keyword is CIPHER. K = (2, 8, 15, 7, 4, 17).
plaintext: namedafterblaisedevigenere
13 0 12 4 3 0 5 19 4 17 1 11 0 8 18 4 3 4 21 8 6 4 13 4 17 4
2 8 15 7 4 17 2 8 15 7 4 17 2 8 15 7 4 17 2 8 15 7 4 17 2 8

15 8 1 11 7 17 7 1 19 24 5 2 2 16 7 11 7 21 23 16 21 11 17 21 19 12
ciphertext: piblhrhbtyfccqhlhvxqvlrvtm

The number of possible keywords of length m is 26m.
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Cryptanalysis of Vigenère Cipher

The first step is to determine the keyword length, m.

▶ Kasiski test : 1854 - Charles Babbage and 1863 - Friedrich
Kasiski

▶ Index of coincidence



Kasiski Test

Two identical segments of plaintext will be encrypted to the same
ciphertext whenever their occurrence in the plaintext is ∆ positions
apart, where ∆ ≡ 0 mod m.

▶ Search the ciphertext for pairs of identical segments of length
at least three.

▶ Record the distance between the starting positions of the two
segments.

▶ If we obtain several such distances, say ∆1,∆2, . . . we would
conjecture that m divides all of the ∆i ’s, m | gcd (∆1,∆2, . . . )

The reason this test works is that if a repeated string occurs in the
plaintext, and the distance between them is a multiple of the
keyword length, m, the keyword letters will line up in the same way
with both occurrences of the string.



Example for Kasiski Test (1/2)

ciphertext:
1 2 3 4 5 6 7 8 9 101112131415161718192021222324252627282930

1K NWL L RF I C F X Y K V V J S E H Q S L R K K I A A S J
2C GWLA I QBT P X Z P K XW L V T BWH X Z U J N Z S T
3 J I CNME I BW L S I F M G V J K J M A L X K G Z H V J K
4 J MP STYCJ T A X Y C B C V X R YWG K G F WT S I I D
5C L TVYKKNP U C F P M L PWY G A I V H V E Q E O I I
6V P TZ I RPL V L X R V BW L M I OM P UM E I P T Z L F
7WT S ZYSUBX A Y K G BW L J F W Z I O P V V B T Y S W
8V P THPGJ I Q L X E C U T S CWQ Z P U H J Q BW L S K
9 J MGZ



Example for Kasiski Test (2/2)
ciphertext occurs at spacing factors
string (index)
MEI 64 172 108 2 3 4 6 9 12 18 27 36 54 108
BWL 67 163 96 2 3 4 6 8 12 16 24 32 48 96
BWL 67 193 126 2 3 6 7 9 14 18 21 42 63 126
BWLS 67 235 168 2 3 4 6 7 8 12 14 21 24 28 42 56 84 168
WLS 68 236 168 2 3 4 6 7 8 12 14 21 24 28 42 56 84 168
VJKJM 75 87 12 2 3 4 6 12
JKJM 76 88 12 2 3 4 6 12
KJM 77 89 12 2 3 4 6 12
KJM 77 239 162 2 3 6 9 18 27 54 81 162
KJM 89 239 150 2 3 5 6 10 15 25 30 50 75 150
FWTS 113 179 66 2 3 6 11 22 33 66
WTS 114 180 66 2 3 6 11 22 33 66
VPT 150 210 60 2 3 4 5 6 10 12 15 20 30 60
PTZ 151 175 24 2 3 4 6 8 12 24
BWL 163 193 30 2 3 5 6 10 15 30
BWL 163 235 72 2 3 4 6 8 9 12 18 24 36 72
BWL 193 235 42 2 3 6 7 14 21 42

Keyword length m = 6.
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VJKJM 75 87 12 2 3 4 6 12
JKJM 76 88 12 2 3 4 6 12
KJM 77 89 12 2 3 4 6 12
KJM 77 239 162 2 3 6 9 18 27 54 81 162
KJM 89 239 150 2 3 5 6 10 15 25 30 50 75 150
FWTS 113 179 66 2 3 6 11 22 33 66
WTS 114 180 66 2 3 6 11 22 33 66
VPT 150 210 60 2 3 4 5 6 10 12 15 20 30 60
PTZ 151 175 24 2 3 4 6 8 12 24
BWL 163 193 30 2 3 5 6 10 15 30
BWL 163 235 72 2 3 4 6 8 9 12 18 24 36 72
BWL 193 235 42 2 3 6 7 14 21 42
Keyword length m = 6.



Index of Coincidence (1/3)

1920 - Friedman
Definition: Suppose x = x1x2 . . . xn is a string of n alphabetic
characters. The index of coincidence of x , denoted by Ic(x), is
defined to be the probability that two random elements of x are
identical.

▶ Suppose the frequencies (number of occurrences) of A, B, C,
..., Z in x are f0, f1, . . . , f25.

▶ Ic(x) =
f0
n
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n−1 + f1
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Index of Coincidence (2/3)

letter probability letter probability letter probability
A 0.0856 B 0.0139 C 0.0279
D 0.0378 E 0.1304 F 0.0289
G 0.0199 H 0.0528 I 0.0627
J 0.0013 K 0.0042 L 0.0339
M 0.0249 N 0.0707 O 0.0797
P 0.0199 Q 0.0012 R 0.0677
S 0.0607 T 0.1045 U 0.0249
V 0.0092 W 0.0149 X 0.0017
Y 0.0199 Z 0.0008

n→∞⇒ Ic(x) ≈
∑25

i=0 p
2
i = 0.065

The same reasoning applies if x is a ciphertext string obtained using
any monoalphabetic cipher.
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Index of Coincidence (3/3)

y = y1y2 . . . yn constructed by Vigenère Cipher.
m substrings of y , ȳ1, ȳ2, ..., ȳm by writing out the ciphertext in
columns in a rectangular array of dimensions m × (n/m).
Example: n = 15 and m = 3
y1 y4 y7 y10 y13
y2 y5 y8 y11 y14
y3 y6 y9 y12 y15

⇒
ȳ1 = y1y4y7y10y13
ȳ2 = y2y5y8y11y14
ȳ3 = y3y6y9y12y15

If Ic (ȳi ) ≈ 0.065 then m is the keyword length.
If m is not the keyword length then ȳi s are random∑25

i=0 fi = n, in random text f0 = f1 = · · · = f25, 26fi = n, fi =
n
26 ,

Ic(x) =
26f 2i
n2

= 1
26 = 0.038. The two values 0.065 and 0.038 are

sufficiently far apart that we will often be able to determine the
correct keyword length.



Permutation Cipher

Alter the plaintext characters positions by rearranging them using a
permutation.

▶ m: positive integer

▶ P = C = (Z26)
m

▶ K consist of all permutations of 1, . . . ,m

▶ For a key π, eπ (x1, . . . , xm) =
(
xπ(1), . . . , xπ(m)

)
▶ dπ (y1, . . . , ym) =

(
yπ−1(1), . . . , yπ−1(m)

)
where π−1 is the inverse permutation to π.



Example for Permutation Cipher

m = 6

Encryption: π =

(
1 2 3 4 5 6
4 3 1 6 2 5

)

plaintext:
HE WALKED UP AND DOWN THE PASSAGE TWO OR THREE
TIMES

plaintext is divided into groups of 6:
HEWALK EDUPAN DDOWNT HEPASS AGETWO ORTHRE
ETIMES

ciphertext:
WLEHKAUADENPONDDTWPSEHSAEWGAOTTRROEHIETESM

Decryption: π−1 =

(
1 2 3 4 5 6
3 5 2 1 6 4

)
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Remarks for Permutation Cipher

▶ Will frequency analysis work for breaking permutation cipher?

▶ The Permutation Cipher is not monoalphabetic.

▶ In the example the first E is encrypted as L, the second E is
encrypted as U and the third E is encrypted as S.

▶ This encryption does not change the frequency of alphabetic
characters but the positions of the letters.

▶ The different number of keys are m!.
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Product Cryptosystems 1/2

Introduced by Shannon in 1949

▶ For simplicity; C = P : endomorphic cryptosystem

▶ Suppose S1 = (P,P,K1, ε1,D1) and S2 = (P,P,K2, ε2,D2)
are two endomorphic cryptosystems.

▶ Product cryptosystem of S1 and S2:
S1 × S2 = (P,P,K1 ×K2, ε,D) .

▶ A key of the product cryptosystem: K = (K1,K2), where
K1 ∈ K1 and K2 ∈ K2 .

▶ e(K1,K2) (x) = eK2 (eK1 (x)) and d(K1,K2) (y) = dK1 (dK2 (y)) .



Product Cryptosystems 2/2

d(K1,K2)

(
e(K1,K2) (x)

)
= d(K1,K2) (eK2 (eK1 (x)))
= dK1 (dK2 (eK2 (eK1 (x))))
= dK1 (eK1 (x))
= x

.

▶ Cryptosystems have the probability distributions associated
with their keyspaces.
Pr [(K1,K2)] = Pr [K1]× Pr [K2] .

▶ We choose K1 and K2 independently, using the probability
distributions defined on K1 and K2 .

▶ The product of a substitution cipher with another substitution
cipher is another substitution cipher, so for practical purposes,
we want to alternate.



Multiplicative Cipher

▶ P = C = Z26 and let K = {a ∈ Z26 : gcd (a, 26) = 1} .
▶ For a ∈ K, define ea (x) = ax mod 26 and

da (y) = a−1y mod 26 (x , y ∈ Z26) .

Suppose M is the Multiplicative Cipher and S is the Shift Cipher,
then M × S=S × M=Affine Cipher.
Proof:
S: eK (x) = (x + K ) mod 26, K ∈ Z26 .
M: eK (x) = (ax) mod 26, a ∈ Z26 and gcd (a, 26) = 1 .
M × S: e(a,K) (x) = (ax + K ) mod 26 .

The probability of a key in Affine Cipher is 1
312 = 1

12 ×
1
26 .
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Product Cipher

S× S× · · · × S︸ ︷︷ ︸
n

= Sn

If S2 = S, then S is idempotent cryptosystem.

▶ If a cryptosystem is not idempotent, then there is a potential
increase in security by iterating it several times.

▶ Taking the product of substitution- type ciphers with
permutation- type ciphers is a commonly used technique.
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Introduction to Block Cipher 1/2
Iterated cipher: The cipher requires the specification of a round
function and a key schedule and the encryption of a plaintext will
proceed through Nr similar rounds.

▶ K : a random binary key.

▶ K 1, · · · ,KNr : Nr round keys (subkeys):

▶ Key schedule: Public algorithm for construction of the round
keys from K

▶ ωr = g
(
ωr−1,K r

)
ωr : next state, ωr−1: current state, K r : round key, g : round
function

▶ ω0: plaintext, ωNr : ciphertext

▶ In order for decryption to be possible, the function g must be
injective (one- to- one)

▶ If g ’s second argument is fixed, then g−1 (g (ω, a) , a) = ω for
all ω and a.

▶ ωr−1 = g−1 (ωr ,K r )



Feistel Cipher

▶ Named after the
German-born physicist
and cryptographer Horst
Feistel who did pioneering
research while working for
IBM (USA)

▶ advantage: encryption
and decryption operations
are very similar, even
identical in some cases

▶ requires only a reversal of
the key schedule

▶ the size of the code or
circuitry required to
implement such a cipher
is nearly halved.



Feistel Cipher - Construction details
Let F be the round function and let K0,K1, . . . ,Kn be the sub-keys
for the rounds respectively.

Encryption:

1. Split the plaintext block
into two equal pieces,
(L0,R0)

2. For i = 0, 1, . . . , n,
compute
Li+1 = Ri ,
Ri+1 = Li ⊕ F (Ri ,Ki ).

3. The ciphertext is
(Rn+1, Ln+1).

Decryption:

1. Split the ciphertext block
into two equal pieces
(Rn+1, Ln+1)

2. For i = n, n − 1, . . . , 0,
compute
Ri = Li+1,
Li = Ri+1 ⊕ F (Li+1,Ki ).

3. The plaintext is (L0,R0).

One advantage of the Feistel model compared to a
substitution-permutation network is that the round function does
not have to be invertible.
Note the reversal of the subkey order for decryption; this is the only
difference between encryption and decryption.



Data Encryption Standard
▶ Selected by the NBS as an official

FIPS for the US in 1976.

▶ Was initially controversial because
of classified design elements, a
relatively short key length, and
suspicions about a NSA backdoor.

▶ Insecure due to the 56-bit key size
being too small

▶ In January, 1999, distributed.net
and the Electronic Frontier
Foundation collaborated to publicly
break a DES key in 22 hours and
15 minutes.

▶ The algorithm is believed to be
practically secure in the form of
Triple DES, although there are
theoretical attacks.



Triple Data Encryption Standard

▶ TDES uses a “key bundle” which comprises three DES keys,
K1, K2 and K3, each of 56 bits.

▶ The encryption: ciphertext = EK3 (DK2 (EK1 (plaintext)))

▶ Decryption: plaintext = DK1 (EK2 (DK3 (ciphertext)))

Keying options:

1. Keying option 1: All three keys are independent.
strongest, with 3 × 56 = 168 independent key bits.

2. Keying option 2: K1 and K2 are independent, and K3 = K1.
provides less security, with 2× 56 = 112 key bits.

3. Keying option 3: All three keys are identical, i.e.
K1 = K2 = K3.
equivalent to DES, with only 56 key bits
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Substitution- Permutation Networks (SPNs)

▶ ℓ and m are positive integers

▶ plaintext: x = (x1x2 · · · xℓm)2 and ciphertext:
y = (y1y2 · · · yℓm)2

▶ ℓm:block length

▶ S-box, πS : {0, 1}ℓ −→ {0, 1}ℓ is substitution.
It is used to replace ℓ bits with a different set of ℓ bits.

▶ Permutation, πP : {1, . . . , ℓm} −→ {1, . . . , ℓm}
It is used to permute ℓm bits.

▶ x = (x1x2 · · · xℓm) = x(1)∥ · · · ∥x(m) for 1 ≤ i ≤ m
x(i) = (xi ,ℓ−1, . . . , xi ,0) .

▶ The first and last operations in a round are XORs with subkeys:
whitenning.



An Example SPN (1/2)

ℓ = m = Nr = 4.

z 0 1 2 3 4 5 6 7 8 9 A B C D E F

πS (z) E 4 D 1 2 F B 8 3 A 6 C 5 9 0 7

z 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

πP (z) 1 5 9 13 2 6 10 14 3 7 11 15 4 8 12 16

Key schedule: K = (k1, . . . , k32) ∈ {0, 1}32 .
For 1 ⩽ r ⩽ 5, K r = (k4r−3, . . . , k4r+12) .



An Example SPN (2/2)



Substitution- Permutation Networks (SPNs)

▶ The design is simple and very efficient, in both hardware and
software.
▶ In software, S- box −→ look- up table. Memory= ℓ2ℓ .
▶ In hardware, needs smaller implementation.

In Example: Memory for S- box= ℓ2ℓ = 4× 24 = 26 .
If the S- box would be 16 bits to 16 bits, then Memory=
ℓ2ℓ = 16× 216 = 220 .

A practical secure SPN would
have

▶ a larger key size

▶ a larger block length

▶ larger S- Box

▶ more rounds

=⇒ Advanced Encryption
Standard (AES)
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Linear Cryptanalysis

Take advantage of high probability occurrences of linear expressions
involving

▶ plaintext bits

▶ ciphertext bits

▶ subkey bits

a known plaintext attack: that is, it is premised on the attacker
having information on a set of plaintexts and the corresponding
ciphertexts.



Linear Cryptanalysis

The basic idea is to approximate the operation of a portion of the
cipher with an expression that is linear where the linearity refers to a
mod 2 bit wise addition.

Pr [Xi1 ⊕ Xi2 ⊕ · · · ⊕ Xiu ⊕ Yj1 ⊕ Yj2 ⊕ · · · ⊕ Yjv = 0] = pL (1)

The approach in linear cryptanalysis is to determine expressions of
the form above which have a high or low probability of occurrence.

If a cipher displays a tendency for equation (1) to hold with high
probability or not hold with high probability, this is evidence of the
cipher’s poor randomization abilities.

Linear probability bias: the amount by which the probability of a
linear expression holding deviates from 1

2 .



The Pilling- up Lemma

X1,X2, . . . : independent binary variables, hence Xi = 0 or 1 .

Pr [Xi = 0] = pi and Pr [Xi = 1] = 1− pi .

i ̸= j → The independence of Xi and Xj implies that

Pr [Xi = 0,Xj = 0] = pipj

Pr [Xi = 0,Xj = 1] = pi (1− pj)

Pr [Xi = 1,Xj = 0] = (1− pi ) pj

Pr [Xi = 1,Xj = 1] = (1− pi ) (1− pj) .



The Pilling- up Lemma

Xi ⊕ Xj = 0⇒ Xi = Xj : linear expression

Pr [Xi ⊕ Xj = 0] = pipj + (1− pi ) (1− pj)

Xi ⊕ Xj = 1⇒ Xi ̸= Xj : affine expression

Pr [Xi ⊕ Xj = 1] = pi (1− pj) + (1− pi ) pj

The bias of Xi : ϵi = pi − 1
2 .

▶ −1
2 ≤ ϵi ≤ 1

2

▶ Pr [Xi = 0] = 1
2 + ϵi

▶ Pr [Xi = 1] = 1
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LEMMA 3.1 (Pilling- up lemma) Let ϵ1,2,...,k denote the bias of
the variable X1 ⊕ · · · ⊕ Xk . Then

ϵ1,2,...,k = 2k−1Πk
j=1ϵj

.
CORROLLARY 3.2 Suppose that ϵj = 0 for some j . Then
ϵ1,2,...,k = 0 .
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Concatenation of Linear Expressions

Consider four independent binary variables, X1, X2 and X3.

Let Pr [X1 ⊕ X2 = 0] = 1
2 + ϵ1,2 and Pr [X2 ⊕ X3 = 0] = 1

2 + ϵ2,3.

Pr [(X1 ⊕ X2)⊕ (X2 ⊕ X3) = 0] =
1

2
+ 2ϵ1,2ϵ2,3

Pr [X1 ⊕ X3 = 0] =
1

2
+ ϵ1,3

We are combining linear expressions to form a new linear expression.
ϵ1,3 = 2ϵ1,2ϵ2,3

The expression X1 ⊕ X2 = 0 and X2 ⊕ X3 = 0 are analogous to
linear approximation of S- boxes and X1 ⊕ X3 = 0 is analogous to a
cipher approximation.
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How do we construct expressions which are highly linear and
hence can be exploited?

This is done by considering the properties of the cipher’s only
nonlinear component: S-box.

It is possible to concatenate linear approximations of the S-boxes
together so that intermediate bits can be canceled out and we are
left with a linear expression which has a large bias and involves only
plaintext and the last round input bits.
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Linear Approximations of S- boxes

For linear expression X2 ⊕ X3 ⊕ Y1 ⊕ Y3 ⊕ Y4 = 0, 12 out of the 16
cases the expression hold true. The probability bias is 12

16 −
1
2 = 1

4 .

For X1 ⊕ X4 = Y2 the probability bias is 0.

For X3 ⊕ X4 = Y1 ⊕ Y4 the probability bias is 2
16 −

1
2 = −3

8 .
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Linear Approximation Table
a1X1 ⊕ a2X2 ⊕ a3X3 ⊕ a4X4 ⊕ b1Y1 ⊕ b2Y2 ⊕ b3Y3 ⊕ b4Y4 = 0
If A = 11012 = D16 and B = 01012 = 516, then
X1 ⊕ X2 ⊕ X4 ⊕ Y2 ⊕ Y4 = 0.
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Properties of the Table

▶ Each element in the table represents the number of matches
between the linear equation represented in hexadecimal as
“Input Sum” and the sum of the output bits represented in
hexadecimal as “Output Sum” minus 8.
Example: Input Sum=A and Output Sum=6 then expression
that is considered is X1 ⊕ X3 ⊕ Y2 ⊕ Y3 = 0

▶ Hence, dividing an element value by 16 gives the probability
bias for the particular linear combination of input and output
bits.

▶ The linear combination involving no output bits (column 0) will
always equal the linear combination of no input bits (row 0)
resulting in a bias of +1/2 and a table value of +8 in the top
left corner.

▶ The sum of any row or any column must be either +8 or - 8.



Constructing Linear Approximations for the Complete
Cipher

▶ Once the linear approximation information has been compiled
for the S-boxes in an SPN, we have the data to proceed with
determining linear approximations of the overall cipher of the
form of equation (1).

▶ This can be achieved by concatenating appropriate linear
approximations of S-boxes.

▶ By constructing a linear approximation involving plaintext bits
and data bits from the output of the second last round of
S-boxes, it is possible to attack the cipher by recovering a
subset of the subkey bits that follow the last round.



▶ We would like to use as less
S-Boxes as possible. The
S-Boxes that are used are called
active S-Boxes.

▶ The permutation layer
distributes all the outputs of one
S-Box to different S-Boxes at
the next round. Hence, the best
choice is to use just one output
bit of an S-Box.

▶ We consider S12 for the first
round.

▶ Only Y1, Y2, Y3 or Y4 should
be involved in the expression
that is used for S12.

▶ The choices are as follows
1 2 4 8

F -2 -4 -2 0
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▶ Ui (Vi ) represent the 16-bit
block of bits at the input
(output) of the round i S-boxes.

▶ Ui ,j (Vi ,j) represent the j-th bit
of block Ui (Vi ).

▶ Ki represents the subkey block
of bits XORed at the input to
round i .

S12: X1 ⊕ X2 ⊕ X3 ⊕ X4 = Y3

V1,7 = U1,5 ⊕ U1,6 ⊕ U1,7 ⊕ U1,8

= P5 ⊕ K1,5 ⊕ P6 ⊕ K1,6 ⊕ P7

⊕K1,7 ⊕ P8 ⊕ K1,8

with bias −1
4 .
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The choices for S32 and S34 are as
follows:

2 3 6 A

2 -2 -2 -2 +2

S32: X3 = Y3

V3,7 = U3,7 = V2,10 ⊕ K3,7

with bias −1
8 .
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K1,5 ⊕ K1,6 ⊕ K1,7 ⊕ K1,8 ⊕ K2,10 ⊕
K3,7 ⊕ K3,15 ⊕ K4,10 ⊕ K4,12 = 0
by application of the Piling- Up
Lemma bias is 23×−1

4 ×−
1
4 ×−

1
8 ×

−1
8 = 1

128 .
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P5 ⊕ P6 ⊕ P7 ⊕ P8 ⊕ U4,10 ⊕ U4,12 ⊕
∑

K = 0
where∑

K = K1,5⊕K1,6⊕K1,7⊕K1,8⊕K2,10⊕K3,7⊕K3,12⊕K4,10⊕K4,12

and
∑

K is fixed at either 0 or 1 depending on the key of the cipher.

▶ Now since
∑

K is fixed, we note that
P5 ⊕ P6 ⊕ P7 ⊕ P8 ⊕ U4,10 ⊕ U4,12 = 0
must hold with a probability of either pL = 1

2 −
1

128 = 63
128 or

1− 63
128 = 65

128 , depending on whether
∑

K = 0 or 1,
respectively.

▶ In other words, we now have a linear approximation of the first
three rounds of the cipher with a bias of magnitude 1

128 .

▶ We must now discuss how such a bias can be used to
determine some of the key bits.



Meaning of the pL

▶ Linear expression implicitly has subkey bits involved. If the sum
of the involved subkey bits is “0”, the bias will have the same
sign as the bias of the expression involving the subkey sum and
if the sum of the involved subkey bits is “1”, the bias will have
the opposite sign as the bias of the expression involving the
subkey sum

▶ pL = 1 implies that linear expression is a perfect representation
of the cipher behavior and the cipher has a catastrophic
weakness.

▶ pL = 0, then linear expression represents an affine relationship.



Steps of the Linear Cryptanalysis 1/2
1. Suppose that it is possible to find a probabilistic linear

relationship between a subset of plaintext bits and a subset of
state bits immediately preceding the substitutions performed in
the last round.

2. Assume that an attacker has a large number of plaintext-
ciphertext pairs, all of which are encrypted using the same
unknown key K .

3. Decrypt all the ciphertexts, using all possible candidate keys for
the last round of the cipher.

4. For each candidate key, we compute the values of the relevant
state bits involved in the linear relationship.

5. Determine if the above mentioned linear relationship holds.

6. Whenever it does, we increment a counter corresponding to the
particular candidate key.

7. The candidate key that has a frequency count that is furthest
from 1/2 times the number of pairs contains the correct values
for these key bits.



Steps of the Linear Cryptanalysis 2/2
▶ The linear expression affects the inputs to S-box S43 in the last

round.
▶ For each plaintext/ciphertext sample, we would try all 16

values for the target partial subkey K5,9,K5,10,K5,11,K5,12.
▶ We determine the value of U4,10,U4,12 by running the data

backwards through the target partial subkey and S-box S43 for
each ciphertext.

▶ We determine if the linear expression
P5 ⊕ P6 ⊕ P7 ⊕ P8 ⊕ U4,10 ⊕ U4,12 = 0 holds or not and
produce the following table.

Candidate Key Value

0 1 2 3 4 5 6 7 8 9 A B C D E F

P1,C1 + + - + - + - - - + - + + - - +

P2,C2 - + + + - - + - - - - - + + - +

. . .

Pn,Cn + - - + + - - + - - + - + - - +
The count which deviates the largest from half of the number of
plaintext/ciphertext samples is assumed to be the correct value.



Complexity of Attack

▶ The larger the magnitude of the bias in the S- boxes, the larger
the magnitude of the bias of the overall expression.

▶ The fewer active S- boxes, the larger the magnitude of the
overall linear expression bias.

▶ Let ϵ represent the bias from 1/2 of the probability that the
linear expression for the complete cipher holds. The number of
known plaintexts required in the attack is proportional to ϵ−2

and, letting NL represent the number of known plaintexts
required, it is reasonable to approximate NL by NL ≈ ϵ−2.

▶ In practice, it is generally reasonable to expect some small
multiple of ϵ−2 known plaintexts are required.



Differential Cryptanalysis

▶ Differential cryptanalysis exploits the high probability of certain
occurrences of plaintext differences and differences into the last
round of the cipher.

▶ A system with input X = [X1X2 . . .Xn] and output
Y = [Y1Y2 . . .Yn].

▶ Let two inputs to the system be X ′ and X ′′ with the
corresponding outputs Y ′ and Y ′′, respectively.

▶ The input difference is given by ∆X = X ′ ⊕ X ′′ where ⊕
represents a bit-wise exclusive-OR of the n-bit vectors and,
hence, ∆X = [∆X1∆X2 . . .∆Xn] where ∆Xi = X ′

i ⊕ X ′′
i .

▶ Similarly, ∆Y = Y ′ ⊕ Y ′′ is the output difference and
∆Y = [∆Y1∆Y2 . . .∆Yn]



Differential

▶ In an ideally randomizing cipher, the probability that a
particular output difference ∆Y occurs given a particular input
difference ∆X is 1

2

n
, where n is the number of bits of X .

▶ Differential cryptanalysis seeks to exploit a scenario where a
particular ∆Y occurs given a particular input difference ∆X
with a very high probability pD (i.e., much greater than 1

2

n
).

▶ The pair (∆X ,∆Y ) is referred to as a differential.

▶ Differential cryptanalysis is a chosen plaintext attack.

▶ The attacker will select pairs of inputs, X ′ and X ′′, to satisfy a
particular ∆X , knowing that for that ∆X value, a particular
∆Y value occurs with high probability.

▶ Investigate the construction of a differential (∆X ,∆Y ).



Differential Characteristic

▶ Examine high likely differential characteristics where a
differential characteristic is a sequence of input and output
differences to the rounds so that the output difference from one
round corresponds to the input difference for the next round.

▶ Using the highly likely differential characteristic gives us the
opportunity to exploit information coming into the last round
of the cipher to derive bits from the last layer of subkeys.



Example 1 for Differentials
X ,Y ∈ 0, 1, . . . , 4
Y = f (X ) = 3X + 2 mod 5, ∆X = X ′ − X ′′ mod 5

∆Y

X ′ Y ′ ∆X = 0 ∆X = 1 ∆X = 2 ∆X = 3 ∆X = 4

0 2 0 3 1 4 2

1 0 0 3 1 4 2

2 3 0 3 1 4 2

3 1 0 3 1 4 2

4 4 0 3 1 4 2

∆Y

0 1 2 3 4
0 5 0 0 0 0

1 0 0 0 5 0

∆X 2 0 5 0 0 0

3 0 0 0 0 5

4 0 0 5 0 0
Pr(∆Y = 1|∆X = 2) = 1, Pr(∆Y = 2|∆X = 2) = 0



Example 2 for Differentials
X ,Y ∈ 0, 1, . . . , 4
Y = f (X ) = X 2 mod 5, ∆X = X ′ − X ′′ mod 5

∆Y

X ′ Y ′ ∆X = 0 ∆X = 1 ∆X = 2 ∆X = 3 ∆X = 4

0 0 0 4 1 1 4

1 1 0 1 0 2 2

2 4 0 3 4 3 0

3 4 0 0 3 4 3

4 1 0 2 2 0 1

∆Y

0 1 2 3 4
0 5 0 0 0 0

1 1 1 1 1 1

∆X 2 1 1 1 1 1

3 1 1 1 1 1

4 1 1 1 1 1

Pr(∆Y = 1|∆X = 2) = 1
5 , Pr(∆Y = 2|∆X = 2) = 1

5



Differential of S-Box

▶ Examine the properties of individual S-boxes and use these
properties to determine the complete differential characteristic.

▶ Consider the input and output differences of the S-boxes in
order to determine a high probability difference pair.

▶ Combining S-box difference pairs from round to round so that
the nonzero output difference bits from one round correspond
to the non-zero input difference bits of the next round, enables
us to find a high probability differential consisting of the
plaintext difference and the difference of the input to the last
round.



▶ Pr(∆Y |∆X ) can be derived by considering input pairs
(X ′,X ′′) such that X ′ ⊕ X ′′ = ∆X .

z 0 1 2 3 4 5 6 7 8 9 A B C D E F

πS (z) E 4 D 1 2 F B 8 3 A 6 C 5 9 0 7



S-box difference distribution table



∆P = [1111 0000 0000 0000]
∆U1 = [1111 0000 0000 0000]

4

F 6

S11 : Pr(∆Y = 4|∆X = F ) = 6
16

∆V1 = [0100 0000 0000 0000]
∆U2 = [0000 1000 0000 0000]

B D 6 7 E F

8 4 4 2 2 2 2

S22 : Pr(∆Y = 6|∆X = 8) = 2
16

∆V2 = [0000 0110 0000 0000]
∆U3 = [0000 0100 0100 0000]

6 B 3 9 C

4 6 4 2 2 2

S32 : Pr(∆Y = 6|∆X = 4) = 6
16

S33 : Pr(∆Y = 6|∆X = 4) = 6
16

∆V3 = [0000 0110 0110 0000]
∆U4 = [0000 0110 0110 0000]
We reach to S42 S43 and stop here
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Steps of the Differential Cryptanalysis 1/2

1. Suppose that it is possible to find a differential with high
probability like Pr(∆U4 = [0000 0110 0110 0000]|∆P =
[1111 0000 0000 0000]) = ( 6

16)
3 × 2

16 = 27
4096 .

2. Assume that an attacker can choose plaintexts to be encrypted.
Assume that the attacker has a large number of P-C and P’-C’
pairs, all of which are encrypted using the same unknown key
K and plaintext⊕plaintext’=∆P.

3. Decrypt all the ciphertexts, using all possible candidate keys for
the last round of the cipher.

4. For each candidate key, we compute the values of the relevant
state bits involved in the differential.

5. Whenever the above mentioned differential holds does, we
increment a counter corresponding to the particular candidate
key.

6. The candidate key that has highest count is the correct key bits.



Steps of the Differential Cryptanalysis 2/2

▶ The differential affects the inputs to S-box S42 and S43 in the
last round.

▶ For each P-C and P’-C’ sample, we would try all 256 values for
the target partial subkey K5,5...12 and calculate 256 V5,5...12 and
V ′
5,5...12.

▶ We determine 256 U4,5...12 and U ′
4,,5...12 by running V s and V ′s

backwards through S-boxes S42 and S43.

▶ We determine if ∆U = U4,5...12 ⊕ U ′
4,5...12 = 0110 0110 or not

and produce the count table.

▶ The column which includes the highest number of + is the
right key value.



Modes of operation

For messages exceeding block length, n, the message is partitioned
into n-bit blocks.
EK : the encryption function
E−1
K : the decryption function

x = x1, . . . , xt : A plaintext message

1. Identical plaintext blocks
result in identical
ciphertext.

2. Reordering ciphertext
blocks results in
correspondingly
re-ordered plaintext
blocks.

3. One or more bit errors in
a single ciphertext block
affect decipherment of
that block only.
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Cipher Block Chaining Mode

1. Identical ciphertext
blocks do not result.

2. Ciphertext cj depends on
xj and all preceding
plaintext blocks.

3. A single bit error in
ciphertext block cj
affects decipherment of
blocks cj and cj+1.

4. The CBC mode is
self-synchronizing or
ciphertext autokey.
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Cipher feedback (CFB) Mode

1. Identical ciphertext blocks
do not result.

2. Ciphertext block cj depends
on both xj and preceding
plaintext blocks.

3. One or more bit errors in
any single r -bit ciphertext
block cj affects the
decipherment of that and
the next ⌈nr ⌉ ciphertext
blocks. Self - synchronizing,
but requires ⌈nr ⌉ ciphertext
blocks to recover.

4. Throughput: for r < n,
throughput is decreased by a
factor of n

r .
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Output feedback (OFB) Mode
1. Identical ciphertext blocks

do not result.

2. The keystream is
plaintext-independent.

3. One or more bit errors in
any ciphertext character cj
affects the decipherment of
only that character.

4. The OFB mode recovers
from ciphertext bit errors.

5. Throughput: for r < n,
throughput is decreased.
Since the keystream is
independent of plaintext or
ciphertext, it may be
pre-computed.



Data Integrity and Source Authentication

▶ Encryption does not protect data from modification by another
party.

▶ Need a way to ensure that data arrives at destination in its
original form as sent by the sender and it is coming from an
authenticated source.



Hash Functions

Definition - hash function

�

they can be reduced to 2 classes
based on linear transformations of
variables. The properties of these
12 schemes with respect to weak-
nesses of the underlying block cipher
are studied. The same approach
can be extended to study keyed hash
functions (MACs) based on block ci-
phers and hash functions based on
modular arithmetic. My brother is in
the audience. Finally a new attack is
presented on a scheme suggested by
R. Merkle. This slide is now shown
at the 2001 ESAT Course in a pre-
sentation on the state of hash func-
tions and MAC algorithms.
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A cryptographic hash function is a deterministic procedure that
takes an arbitrary block of data and returns a fixed-size bit string,
the hash value, such that an accidental or intentional change to the
data will change the hash value.
The data to be encoded is often called the message and the hash
value is sometimes called the message digest or simply digest.



Properties of Ideal Cryptographic Hash Functions

It is

1. easy to compute the hash value for any given message,

2. infeasible to find a message that has a given hash,

3. infeasible to modify a message without hash being changed,

4. infeasible to find two different messages with the same hash.

Even if the data is stored in an insecure place, its integrity can be
checked from time to time by recomputing the digest and verifying
that the digest has not changed.



Definition of Hash Family

A hash family is a four tuple X,Y,K,H, where teh following
conditions are satisfied:

1. X is a set of possible messages

2. Y is a finite set of possible message digests

3. K is a finite set of possible keys

4. For each K ∈ K, there is a hash function hK ∈ H. Each
hK : X→ Y.

A pair (x , y) ∈ X× Y is said to be valid under the key K if
hK (x) = y .
Let FX,Y denote the set of all functions from X to Y. Suppose that
|X| = N and |Y| = M. Then |FX,Y | = MN . Any hash family
F ⊆ FX,Y is termed an (N,M)-hash family.
MDC (Modification Dedection Code): An unkeyed hash function is
a function hK : X→ Y, where |K| = 1.



Security of Cryptographic Hash Functions
A cryptographic hash function must be able to withstand all known
types of cryptanalytic attacks. As a minimum, it must have the
following properties:

1. Preimage resistance: Given a hash y it should be difficult to
find any message x such that y = h(x). This concept is related
to that of one-way function.

2. Second preimage resistance: Given an input x1 it should be
difficult to find another input x2 where x1 ̸= x2 such that
h (x1) = h (x2). This property is sometimes referred to as weak
collision resistance.

3. Collision resistance: It should be difficult to find two different
messages x1 and x2 such that h (x1) = h (x2). Such a pair is
called a cryptographic hash collision. This property is
sometimes referred to as strong collision resistance. It requires
a hash value at least twice as long as that required for
preimage-resistance, otherwise collisions may be found by a
birthday attack.



Uses of hash functions

▶ Message authentication

▶ Software integrity

▶ One-time Passwords

▶ Digital signature

▶ Timestamping

▶ Certificate revocation management



Constructing Hash Function From Compression Functions

A compression function takes a fixed-length input string and output
a shorter string f : {0, 1}m+t → {0, 1}m.



The Merkle-Damgard Construction of Hash Functions

▶ Goal: construct a hash function h : {0, 1}⋆ → {0, 1}m from a
compression function f : {0, 1}m+t+1 → {0, 1}m

▶ Given message x of arbitrary length• Given message x of arbitrary length

x1

t bits t bits

x: xk

y1=x1 yk=xk||0
d yk+1= d

x2

y2=x2

f0m+1

z1

f

|| 1

z2

z1=f(0
m+1||y1) z2=f(z1|| 1 ||y2)

|| 1

x3
…

f

y3=x3

z3

z3=f(z2|| 1 ||y3)

t bits

f

zk+1

|| 1

zk+1=f(zk|| 1 ||yk+1)



Example:

▶ Compression function: f : {0, 1}128+512+1 → {0, 1}128
▶ Message x has 1000 bits:

▶ y1 is first 512 bits of x
▶ y2 is last 488 bits of x ||024
▶ y3 is 0480|| 32-bit binary representation of 24

▶ Iteration results
▶ z1 = f

(
0129||y1

)
z1 has 128 bits

▶ z2 = f (z1||1||y2)
▶ z3 = f (z2||1||y3) z3 is the message digest h(x)



Example:

▶ Suppose that message x ′ has 488 bits and h (x) = h (x ′) (there
is a collision for h):
▶ y ′

1 is x ′||024
▶ y ′

2 is 0480|| 32-bit binary representation of 24
▶ z ′1 = f

(
0129||y ′

1

)
z ′1 has 128 bits

▶ z ′2 = f (z ′1||1||y ′
2) z

′
2 is h(x ′)

▶ Then f (z ′1||1||y ′2) = f (z2||1||y3) and y3 = y ′2
▶ if z ′1 ̸= z2 then a collision is found for f
▶ if z ′1 = z2 then f

(
0129||y ′

1

)
= f (z1||1||y2), there is also a

collision for f



Security of the Merkle- Damgard Construction

If f : {0, 1}m+t+1 → {0, 1}m is collision resistant, then the
Merkle-Damgard construction h : {0, 1}⋆ → {0, 1}m is collision
resistant.



SHA1 (Secure Hash Algorithm)

▶ SHA was designed by NIST and is the US federal standard for
hash functions, specified in FIPS-180 (1993).

▶ SHA-1, revised version of SHA, specified in FIPS-180-1 (1995)
use with Secure Hash Algorithm).

▶ It produces 160-bit hash values.

▶ NIST have issued a revision FIPS 180-2 that adds 3 additional
hash algorithms: SHA-256, SHA-384, SHA-512, designed for
compatibility with increased security provided by AES.



SHA3 Contest
NIST announced a public competition on Nov. 2, 2007 to develop a
new cryptographic hash algorithm. The winning algorithm will be
named “SHA-3”, and will augment the hash algorithms currently
specified in the Federal Information Processing Standard (FIPS)
180-3, Secure Hash Standard.
NIST received 64 entries by October 31, 2008; and selected 51
candidate algorithms to advance to the first round on December 10,
2008, and 14 to advance to the second round on July 24, 2009.
Based on the public feedback and internal reviews of the
second-round candidates, NIST selected 5 SHA-3 finalists - BLAKE,
Grøstl, JH, Keccak, and Skein to advance to the third (and final)
round of the competition on December 9, 2010, which ended the
second round of the competition.
A one-year public comment period is planned for the finalists. NIST
also plans to host a final SHA-3 Candidate Conference in the spring
of 2012 to discuss the public feedback on these candidates, and
select the SHA-3 winner later in 2012.
Further details of the competition are available at
http://ehash.iaik.tugraz.at/wiki/The_SHA-3_Zoo.

http://ehash.iaik.tugraz.at/wiki/The_SHA-3_Zoo


Message Authentication Codes

MAC (Message Authentication Code): Hash function with secret
key

▶ hard to produce a forgery

▶ can only be generated and verified by someone who secret
MAC-key

▶ do not use the same key for MAC and for encryption



MAC = hash function with secret key
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MAC based on block cipher: retail MAC
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Symmetric Key Cryptography

P C P

secure channel

K

E D

Alice Eve Bob



Secret Key ↔ Public Key

▶ key agreement
How can 2 people who have never met share a key which is
only known to these 2 people

▶ digital signature
How can one be sure that a message comes from the sender
who claims to have produced that message?



Public Key Cryptosystem
W. Diffie, M. Hellman, “New directions in cryptography”, IEEE
Transactions on Information Theory, Nov 1976, Volume: 22, Issue:6,
page(s): 644 - 654.

1. for every K ∈ K eK is the inverse of dK ,
2. for every K ∈ K, x ∈ P and y ∈ C eK (x) = y and dK (y) = x

are easy to compute.
3. for almost every K ∈ K, each easily computed algorithm

equivalent to dK is computationally infeasible to derive from
eK ,

4. for every K ∈ K, it is feasible to compute inverse pairs eK and
dK from K .

Because of the third property, a user’s enciphering function eK can
be made public without compromising the security of his secret
deciphering function dK . The cryptographic system is therefore split
into two parts, a family of enciphering transformations and a family
of deciphering transformations in such a way that, given a member
of one family, it is infeasible to find the corresponding member of
the other.



Problem 1: Key-Agreement (1/3)

Diffie-Hellman Key Agreement Protocol
(f (X ,Z ): commutative one way function)

Alice Bob
YA = f (XA,Z )

YA

−→
YB = f (XB ,Z )

YB

←−
KAB = f (XA,YB) = f (XA, f (XB ,Z )) KBA = f (XB , f (XA,Z ))



Key-Agreement (2/3)

Modular Exponentiation

▶ given α and a prime p with α ∈ [1, p − 1]

▶ w = αx mod p can be computed efficiently (square and
multiply)

Inverse operation (discrete logarithm)

▶ given α, p and w , find x such that

αx mod p ≡ w



Key-Agreement (3/3)

▶ p = 37: the integers from 0 to 36 form a field with + and
× mod 37

▶ α = 2 is a generator of the non-zero elements: powers of 2
generate all non-zero elements: 20 = 1, 21 = 2, 23 = 8,
24 = 16, 25 = 32, 26 = 27, 27 = 17, ..., 236 = 1

▶ XA = 10⇒ YA = 210 mod 37 = 25

▶ XB = 13⇒ YB = 213 mod 37 = 15

▶ KAB = (YB)
XA = 1510 mod 37 = 158+2 mod 37 =

7× 3 mod 37 = 21

▶ KBA = (YA)
XB = 2513 mod 37 = 258+4+1 mod 37 =

34× 16× 25 mod 37 = 21

▶ KAB = KBA = 21



Problem 2: Public-key cryptography (1/3)

(trapdoor one-way functions)

PA

PA
PA

P C P
E D

AS

,( )AS

authentic channel

EveBob Alice



Public-key cryptography (2/3)

RSA public-key algorithm
trapdoor one-way function:

▶ given x : “easy” to compute f (x)

▶ given f (x): “hard” to compute x

▶ given f (x) and the trapdoor information: finding x is “easy”

given two large primes p and q and a public key (e, n)
n = p × q (factoring n is hard)
f (x) = xe mod n is a trapdoor one-way function
trapdoor information (p, q) allows to find a private key (d , n) such
that
(xe)d = (xe)1/e = x mod n



Public-key cryptography (3/3)

RSA public-key algorithm (2): detail
key generation:
choose two primes p and q
n = p × q , ϕ(n) = (p − 1)(q − 1)
choose e prime w.r.t. ϕ(n)
compute d = e−1 mod ϕ(n)
public key = (e, n)
private key = (d , n) or (p, q)
encrytion: c = me mod n
decrytion: m = cd mod n



Modular Exponentiation



Attacks on the RSA Cryptosystem

Although 35 years of research have led to a number of fascinating
attacks, none of them is devastating. They mostly illustrate the
dangers of improper use of RSA. Indeed, securely implementing RSA
is a nontrivial task.



Factoring Large Integers

We refer to factoring the modulus as a brute-force attack on RSA.

Factoring algorithms running time
Pollard’s Rho algorithm O

(√
p
)

Pollard’s p − 1 algorithm O (p′) where p′ is the largest
prime factor of p − 1

Pollard’ s p + 1 algorithm O (p′) where p′ is the largest
prime factor of p + 1

Elliptic Curve method (ECM) O
(
e(1+o(1))(2 ln p ln ln p)1/2

)
Quadratic Sieve (Q.S.) O

(
e(1+o(1))(lnN ln lnN)1/2

)
Number Filed Sieve (NFS) O

(
e(1.92+o(1))(lnN)1/3(ln lnN)2/3

)
Our objective is to survey attacks on RSA that decrypt messages
without directly factoring the RSA modulus N.
Is breaking RSA as hard as factoring?



Chinese Remainder Theorem

The following problem was posed by Sunzi (4th century AD) in the
book Sunzi Suanjing:
when a number is
repeatedly divided by 3, the remainder is 2;

by 5 the remainder is 3;
and by 7 the remainder is 2.

What will be the number?



Oystein Ore mentions another puzzle with a dramatic element from
Brahma-Sphuta-Siddhanta (Brahma’s Correct System) by
Brahmagupta (born 598 AD):
An old woman goes to market and a horse steps on her basket and
crashes the eggs.
The rider offers to pay for the damages and asks her how many eggs
she had brought.
She does not remember the exact number, but when she had taken
them out two at a time, there was one egg left. The same happened
when she picked them out three, four, five, and six at a time, but
when she took them seven at a time they came out even. What is
the smallest number of eggs she could have had?



Involves a situation like the following: we are asked to find an
integer x which gives a remainder of 4 when divided by 5, a
remainder of 7 when divided by 8, and a remainder of 3 when
divided by 9.
In other words, we want x to satisfy the following congruences.
x ≡ 4 mod 5, x ≡ 7 mod 8, x ≡ 3 mod 9
There can be any number of moduluses, but no two of them should
have any factor in common. Otherwise the existence of a solution
cannot be guaranteed.
The method for solving this set of three simultaneous congruences is
to reduce it to three separate problems whose answers may be
added together to get a solution to the original problem.
To understand this, think about why
144 + 135 + 120 will be a solution to the simultaneous
congruences.
144 gives a reminder of 4 when divided by 5. On the other hand,
135 and 120 are multiples of 5, so adding them doesn’t change this
reminder.
144 + 135 + 120 ≡ 144 mod 5 ≡ 4 mod 5
135 gives a reminder of 7 when divided by 8. On the other hand,
144 and 120 are multiples of 8, so adding them on doesn’t change
this reminder.
144 + 135 + 120 ≡ 135 mod 8 ≡ 7 mod 8
120 gives a reminder of 3 when divided by 9. But 144 and 135 are
multiples of 9, so adding them in doesn’t affect this remainder.
144 + 135 + 120 ≡ 120 mod 9 ≡ 3 mod 9
Therefore 399, which is the sum of 144, 135, and 120, satisfies all
three of the congruences.
Having now seen why 399 is a valid solution, we can also partly see
the process by which it was created. We found it as the sum of
three numbers.
The first number, 144, gives the right remainder when divided by 5
and is also a multiple of 8 and of 9.
The second number, 135, is a multiple of 5 and of 9 and gives the
correct remainder when divided by 8.
The third number, 120, is congruent to 3 module 9 and is a multiple
of both 5 and 8.
So where did we get these three numbers?
To start with, taking the last two of the three moduli 5, 8, and 9,
compute 8× 9 = 72. We look for a multiple of 72 which satisfies
the first congruence.
72× 2 = 144, and 144 ≡ 4 mod 5.
5× 9 = 45. We look for a multiple of 45 which satisfies the second
congruence. We find (by trial and error) that
1× 45 = 45 ≡ 5 mod 8, 2× 45 = 90 ≡ 2 mod 8,
3× 45 = 135 ≡ 7 mod 8
5× 8 = 40. We look for a multiple of 40 which is congruent to 3
module 9.
40 ≡ 4 mod 9, 80 ≡ 8 mod 8, 120 ≡ 3 mod 9
Now the required answer is the sum 144 + 135 + 120, namely 399.
Consider another example. Look for a number x satisfying the
following congruences.
x ≡ 1 mod 2, x ≡ 2 mod 3, x ≡ 3 mod 5, x ≡ 1 mod 7
3× 5× 7 = 105. We look for a multiple of 105 which is congruent
to 1 modulo 2. We can choose 105 itself, since it is odd.
2× 5× 7 = 70. We look for a multiple of 70 which is congruent to
2 modulo 3. 70 ≡ 1 mod 3⇒ 2× 70 ≡ 2× 1 ≡ 2 mod 3. We can
choose 140.
2× 3× 7 = 42. We look for a multiple of 42 which is congruent to
3 modulo 5. 42 ≡ 2 mod 5. 4× 42 ≡ 4× 2 = 8 ≡ 3 mod 5. We use
168.
2× 3× 5 = 30. We want a multiple of 30 which is congruent to 1
modulo 7. 30 ≡ 2 mod 7. 4× 30 ≡ 4× 2 = 8 ≡ 1 mod 7. We use
120.
Adding the four numbers we’ve found together, we get a solution of
105 + 140 + 168 + 120 = 533
One solution to a system of congruences

x ≡ a1 mod m1

x ≡ a2 mod m2

. . .

x ≡ an mod mn

with the mi mutually prime to each other can be found by adding
together n numbers. The i th of these numbers should be congruent
to ai modulo mi and it should be a multiple of all the other moduli
mk .
If a and m are relatively prime, then the congruence az ≡ b mod m
is always solvable for z , no matter what b is.
To see why this has to be true, consider, for instance, the first 5
multiples of 42 and reduce modulo 5.

42 ≡ 2 mod 5

0× 42 ≡ 0 mod 5

1 ≡ 2 mod 5

2× 42 ≡ 4 mod 5

3× 42 ≡ 1 mod 5

4× 42 ≡ 3 mod 5

Notice that one the right hand side, every number from 0 to 4
occurs, showing that a congruence 42z ≡ b mod 5 can always be
solved, no matter what b is.
This is not a coincidence, but is a consequence of the fact that 42
has no factor in common with 5. If any of the five numbers from 0
to 4 had been missing on the right-hand side of the five congruences
listed, then at least one right-hand side would have to be repeated.
But, given the fact that 42 has no factors in common with 5, this
would not be possible.



Broadcast Attack

Think that Alice wants to send the same message, x to Bob, Bill and
Bart, who have all the same public key, e, but different modulus,
n1, n2, n3. Can Eve find x without knowing the private keys?
Yes, she can by using CRT!

xe ≡ a1 mod n1

xe ≡ a2 mod n2

xe ≡ a3 mod n3



Common Modulus

To avoid generating a different modulus N = pq for each user, one
may wish to fix N once and for all. The same N is used by all users.
A trusted central authority could provide user i with a unique pair
(ei , di ) from which user i forms a public key < N, ei > and a secret
key < N, di >.
Fact 1: Let ⟨N, e⟩ be an RSA public key. Given the private key d ,
one can efficiently factor the modulus N = pq. Conversely, given
the factorization of N, one can efficiently recover d .
By Fact 1 Bob can use his own exponents eb, db to factor the
modulus N. Once N is factored Bob can recover Alice’s private key
da from her public key ea. This observation, due to Simmons, shows
that an RSA modulus should never be used by more than one entity.
Exposing the private key d and factoring N are equivalent. Hence
there is no point in hiding the factorization of N from any party who
knows d .



Blinding

Let < N, d > be Bob’s private key and < N, e > his corresponding
public key. Suppose Marvin wants Bob’s signature on a message
M ∈ Z ∗

N . Being no fool, Bob refuses to sign M.
Marvin can try the following: he picks a random r ∈ Z ∗

N and sets
M ′ = r eM mod N. He then asks Bob to sign the random message
M ′. Bob may be willing to provide his signature S ′ on the
innocent-looking M ′. Marvin now simply computes S = S ′/r mod N
and obtains Bob’s signature S on the original M. Indeed,
S = S ′

r = M′d

r = r edMd

r = rMd

r = Md

This technique, called blinding, enables Marvin to obtain a valid
signature on a message of his choice by asking Bob to sign a
random “blinded” message. Bob has no information as to what
message he is actually signing.



Elliptic Curve Group over R

Definition: set of the solutions of Weierstrass equation
E : y2 + a1xy + a3y = x3 + a2x

2 + a4x + a6 over a field and the
point at infinity O.
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Elliptic Curve Point Addition and Doubling over GF (p)
p > 3

E : y2 = x3 + ax + b

P1 = (x1, y1), P2 = (x2, y2) and P3 = (x3, y3) = P1 + P2

x3 = λ2 − x1 − x2
y3 = λ(x1 − x3)− y1

λ =

{
(y2 − y1) (x2 − x1)

−1 if P1 ̸= P2(
3x21 + a

)
(2y1)

−1 if P1 = P2

projective coordinates are used to get rid of modular multiplicative
inversion



Elliptic Curve Point Multiplication

[k]P = P + P + · · ·+ P︸ ︷︷ ︸
k

Require: EC point P = (x , y), integer k, 0 < k < M,
k = (kl−1, kl−2, · · · , k0)2, kl−1 = 1 and M

Ensure: Q = [k]P = (x ′, y ′)
Q ← P
for i from l − 2 downto 0 do

Q ← 2Q
if ki = 1 then
Q ← Q + P

end if
end for

point multiplication

point doubling point addition

Modular inversion Modular multiplication Modular addition



Elliptic Curve Point Addition and Doubling
Require: P1 = (x , y , 1, a), P2 = (X2,Y2,Z2, aZ

4
2 )

Ensure: P1 + P2 = P3 = (X3,Y3,Z3, aZ
4
3 )

1. T1 ← Z 2
2

2. T2 ← xT1

3. T1 ← T1Z2 T3 ← X2 − T2

4. T1 ← yT1

5. T4 ← T 2
3 T5 ← Y2 − T1

6. T2 ← T2T4

7. T4 ← T4T3 T6 ← 2T2

8. Z3 ← Z2T3 T6 ← T4 + T6

9. T3 ← T 2
5

10. T1 ← T1T4 X3 ← T3 − T6

11. aZ 4
3 ← Z 2

3 T2 ← T2 − X3

12. T3 ← T5T2

13. aZ 4
3 ←

(
aZ 4

3

)2
Y3 ← T3 − T1

14. aZ 4
3 ← a

(
aZ 4

3

)
latency = 14TMM
Require: P1 = (X1,Y1,Z1, aZ

4
1 )

Ensure: 2P1 = P3 = (X3,Y3,Z3, aZ
4
3 )

1. T1 ← Y 2
1 T2 ← 2X1

2. T3 ← T 2
1 T2 ← 2T2

3. T1 ← T2T1 T3 ← 2T3

4. T2 ← X 2
1 T3 ← 2T3

5. T4 ← Y1Z1 T3 ← 2T3

6. T5 ← T3

(
aZ 4

1

)
T6 ← 2T2

7. T2 ← T6 + T2

8. T2 ← T2 +
(
aZ 4

1

)
9. T6 ← T 2

2 Z3 ← 2T4

10. T4 ← 2T1

11. X3 ← T6 − T4

12. T1 ← T1 − X3

13. T2 ← T2T1 aZ 4
3 ← 2T5

14. Y3 ← T2 − T3

latency = 8TMM + 6TMAS



Modular Addition, Subtraction Circuit over GF (p)
Require: M, 0 ≤ A < M,

0 ≤ B < M
Ensure: C = A+ B mod M

C ′ = A+ B
C ′′ = C ′ −M
if C ′′ < 0 then
C = C ′

else
C = C ′′

end if
Require: M, 0 ≤ A < M,
0 ≤ B < M

Ensure: C = A− B mod M
C ′ = A− B
C ′′ = C ′ +M
if C ′ < 0 then

C = C ′′

else
C = C ′

end if



Power-Analysis Attacks: Why do they work?

VDD

PULL-UP Network

PULL-DOWN Network

b

c

d

a

a

b c

d

d+a.(b+c)

CL

Dynamic power consumption is mainly due to the charge and
discharge of the load capacitance CL.



Types of Power-Analysis Attacks

Simple Power Analysis (SPA) Attacks:

▶ every instruction =⇒ unique power-consumption trace

▶ one measurement

Differential Power Analysis (DPA) Attacks:

▶ many measurements

▶ statistical analysis used



SPA Attack on Elliptic Curve Point Multiplication

Require: EC point P = (x , y), integer k, k = (kl−1, kl−2, · · · , k0)2,
kl−1 = 1

Ensure: Q = (x ′, y ′)
Q ← P
for i from l − 2 downto 0 do

Q ← 2Q
if ki = 1 then
Q ← Q + P

end if
end for
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Countermeasure for SPA Attack

Require: EC point P = (x , y), integer k, k = (kl−1, kl−2, · · · , k0)2,
kl−1 = 1

Ensure: Q = (x ′, y ′)
Q ← P
for i from l − 2 downto 0 do

Q1 ← 2Q
Q2 ← Q1 + P
if ki = 1 then
Q ← Q2

else
Q ← Q1

end if
end for
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Current Consumption Measurement for DPA Attack

▶ Data length: 2400 clock cycles around the 2nd update of Q1.

▶ Clock frequency: 300 kHz.

▶ Sampling frequency: 250 MHz.
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Pre-Processing
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Correlation Analysis

1. hypothetical model =⇒ predict side-channel output for N
inputs.
Prediction is the number of bits changed from 0 to 1 from Xi

to Xi+1

2. Prediction is for:
▶ a certain moment of time
▶ a certain key guess

3. Predictions are correlated with the real side-channel output.
▶ Correlation is high =⇒ model is correct



Results of the Correlation Analysis
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Electromagnetic Analysis of an FPGA Implementation of
Elliptic Curve Cryptosystem over GF (p)



SEMA Attack
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DEMA Attack
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Correlation Analysis
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