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Abstract

In this paper, a class of discrete-time system modelling a network with two neurons is considered. Its linear stability is
investigated and Neimark-Sacker bifurcation (also called Hopf bifurcation for map) is demonstrated by analyzing the cor-
responding characteristic equation. In particular, the explicit formula for determining the direction of Neimark—Sacker
bifurcation and the stability of periodic solution is obtained by using the normal form method and the center manifold
theory for discrete time system developed by Kuznetsov. The theoretical analysis is verified by numerical simulations.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

In the past few decades, neural networks have received intensive interest due to their wide applications,
such as, pattern recognition, associative memory and combinational optimization, and its dynamical behavior
plays an important role. Many works [1-15] have been published to investigate the dynamics of neural net-
works since Hopfield [16] constructed a simplified neural network model. Neural networks with one or two
neurons are prototypes to understand the dynamics of large-scale networks, many results have been made
for such simplified networks [17,3-7,9,10,13,14,18].

In 2003, Yuan and Huang [19] studied the asymptotical behavior of the following difference system:

xi(n+ 1) = pxi(n) + anf(xi(n)) + anf (x2(n)),
xo(n+1) = pxp(n) + axf (x1(n)) + anf(x2(n)), n=0,1,2,...,

where ff€(0,1) is a constant and f:R — R is the activation function given by the piecewise constant
McCulloch-Pitts nonlinearity
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+1, u<o,
where ¢ € R is a constant, and acts as the threshold. In 2004, Yuan et al. [9] considered the following system:
xi(n+1) = pxi(n) + (1 = B)f (oex1(n)) + (1 = B)f (1x2(n)),
Xp(n+1) = fra(n) = (1 = B)f (xr(n)) + (1 = f)f (0xa(n)), n=0,1,2,...,

where f§ € (0,1) is internal decay of the neurons, the constant « > 0 and y, (i = 1, 2) denote the gain parameters,
f*R — R is a continuous transfer function and f{0) = 0. They discussed the global and local stability of the
equilibrium, which gave some sufficient conditions to guarantee the existence of bifurcation, meanwhile got
a formula to determine the direction and stability of bifurcation. In 2005, Yuan et al. [10] introduced a more
general model based on [9]. They studied the following discrete-time neural network model with self-connec-
tion in the following form

xi(n+1) = pxi(n) + anfi(xi(n) + anfr(xa(n)),
x(n+ 1) = pxa(n) + anfi(x1(n)) + anfr(x2(n)), n=0,1,2,...,

where x; (i = 1,2) denotes the state of the ith neuron, € (0,1) is internal decay of the neurons, the constants
ay (i,j=1,2) denotes the connection weights, f;: R — R (i=1,2) are continuous transfer functions and
f40)=0 (i=1,2). Some sufficient conditions were given to guarantee the stability of the equilibrium and
the existence of bifurcation. The direction of bifurcation and the stability of bifurcating periodic solution were
discussed. However, in a real neural network every neuron is usually independent and has its characteristics.
In most cases, the internal decay of neurons is different, so it is necessary to study the dynamical behavior of
neural networks with different internal decay of the neurons.
In this paper, we consider the following more general model:

xi(n+ 1) = oo (n) + an fi(x1(n)) + anfa(x2(n)),
Xo(n+1) = fa(n) + an fi(x1(n)) + anfr(x2(n)), n=0,1,2,...,

where o € (0,1), f € (0,1) are internal decay of neurons, a; (i = 1,2) denote the connection weights, f;: R — R
(i=1,2) are continuous transfer functions and f(0) =0 (i = 1, 2).
The discrete-time system (1.1) can be regarded as a discrete form of the differential system

X1 (1) = —wxi () + /i (2) + 712200 (2)),

(1.0)

(1.1)

1.2
(1) = —pox1(t) + 721./1(x1(2)) + v22/2(x2(1)), 2

or the system with a piecewise constant arguments
(1) = —xi (1) + /i ([4)) + 21220([1)), (1.3)

(1) = —pox1 (1) + /i (1) + 922200([1])),

where 11 > 0, u, > 0 and [-] denotes the greatest integer function. This system has wide application in certain
biomedical areas and much progress has been made in the study of such system (1.3) with the piecewise argu-
ments [20]. For the method of discrete analogy, we refer to [7,21,19,22].

Obviously, system (1.1) includes the discrete version of systems (1.2) and (1.3), which is an improved model,
compared with the model in [10]. The discussion of the stability of equilibrium is too complex and we study it
by setting a proper parameter. In order to analyze bifurcation, we find a simpler bifurcation parameter and
derive more general results.

Bifurcation analysis concerning the continuous dynamical systems was investigated in [13—-15]. However, in
this paper, based on the techniques developed by Kuznetsov [11], we not only investigate the stability of equi-
librium and the existence of Neimark-Sacker bifurcation of system (1.1), but also the direction of the Nei-
mark—Sacker bifurcation and the stability of the bifurcating periodic solution. We find that when the
bifurcation parameter exceeds a critical value, the Neimark—Sacker bifurcation will occur and its direction
and stability are determined completely by an algebraic expression of a(D™).
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The organization of this paper is as follows: In Section 2, we will discuss the stability of the trivial solutions
and the existence of Neimark—Sacker bifurcation. In Section 3, a formula for determining the direction of Nei-
mark—Sacker bifurcation and the stability of bifurcating periodic solution will be given by using the normal
form method and the center manifold theory for discrete time system developed by Kuznetsov. In Section
4, numerical simulations aimed at justifying the theoretical analysis will be reported.

2. Stability and existence of Neimark—Sacker bifurcation

In this section, we discuss the local stability of the equilibrium (0,0) of system (1.1). In [5,7], the transfer
function f of the models which they discussed is f{u) = tanh(cu), here we only need the following assumption:

(H)) f,€C'(R) and f,(00=0, i=12.

For the sake of simplicity and the need of discussion, the following parameters are defined:

Ty =5 (x+anfi(0), Tr=5(B+anf(0)), D=—ananf(0)/;(0),

N —

1
2
T :%(a“fl/(O) + anf;(0)).

Theorem 1. The zero solution of (1.1) is asymptotically stable if (H,) is satisfied and (T}, T, D) € Xy, where
X(J: X] UXQUXj;,

X = {(Tl,Tz,D) ERD > —1+2T) +T) —4T1T2;—%ﬁ <T<l1 —“;ﬁ;(rl — Ty)? >D},
X, = {(TI,TZ,D) ERD> 1 — 2T\ +T>) — 4T\ T>; — —“Jz’—ﬁ< <P o 1y >D},

X3 ={(T\,T2,D) € R D < 1 —4T\T5; (T, — T)* < D}.

Proof. The associated characteristic matrix for the linearization of (1.1) at (0,0) is
S (oc—i—anfl’(O) -2 anfy(0), )
ax f1(0) B+ axnfy(0) — 4
Let |4| =0, we get the associated characteristic equation of (1.1). That is
2=+ B+ anf{(0) + anf3(0)4 + (2 + anfi(0)(B + anf3(0)) — anas £{(0)£(0) = 0, (2.1)
A= (a+ B+ anf(0) + anf3(0))* — 4(o + anf{(0)(B + anf3(0))
+ 4ainax /(0)13(0)
= o — 2B + B+ 20a,1£/(0) — 20axnf3(0) — 2fay£](0) + 2Baxfi(0)
+a7,£/(0)* = 2a11ax{(0)£3(0) + a3,/3(0)" + danax £1(0)£5(0)
= (0= B+ anf{(0) — anfs(0))* +dapax f{(0)£3(0).

Next we discuss it in two cases:
Case 1. (T} — T»)*> > D. In this case, the roots of characteristic equation (2.1) are given by
Ma=Ti+T,++/(T, —Ty)> —D. (2.2)

Note that the eigenvalues |1;,| <1 if and only if
(TI;TZaD)GXIUX2a (23)
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where
X :{(T],Tz,D)€R3;D>—1+2(T1+T2)—4T1T2;—(x;—ﬁ<T<1—{x+ﬁ;(T1—T2)2>D},
X, = {(TMTZ,D) €RD> -1 —2(T1+T2)—4T1T2;—1—#<T<—a;ﬁ;(T1—T2)2 >D}.

Case 2. (T) — T»)> < D. In this case the characteristic equation (2.1) has a pair of conjugate complex roots

Ja=Ti+Tr+\/D— (T, —T,)i. (2.4)

The modulus of the eigenvalues |11 ,| <1 if and only if
(T],Tz,D) €X3 = {(T],Tz,D) €R3,D < 1 —4T1T27(T1 - T2)2 <D} (25)

Combining with Cases 1 and 2, we get Xy, = X7 U X, U X3. Thus the eigenvalues 4, ; of characteristic equa-
tion (2.1) are inside the unit circle for (7}, 75, D) € Xj, and thus the zero solution of (1.1) is asymptotically
stable.

Now, we choose D as the bifurcation parameter to study the Neimark—Sacker bifurcation of (0,0) in
this paper. In case of (T} — T»)* < D, the characteristic equation (2.1) has a pair of conjugate complex
roots, let

AD) =Ty + Ty + /D~ (T) — T»)’i, (2.6)

then the eigenvalues in (2.1) are A(D) and A(D). The modulus of the eigenvalue is

il = (T + T2 +D — (T, - T2)° = /D + 4T T, 2.7
|4 =1 if and only if
D=D'=1—4T\T,. (2.8)

Obviously,
|2] <1 for (T, — T,)* < D < D*.

Then we can conclude that D* is a critical value which destroy the stability of (0,0). O
Lemma 1. Suppose that (H,) is satisfied and —%ﬁ <T<l1- %ﬁ Then
W (SoN) >0
dp'” D=D* ’
(i) A5D*) # 1, k=1,2,3,4,
where J(D) and D™ are given by (2.6) and (2.8), respectively.
Proof. We know |A(D)| = /D + 4T, T,, By direct calculation, we obtain that

d 1
— |;L(D)|) =->0,
o+ o+

which means property (i) is true. Next we deal with the property of (ii). From —=5% < T < 1 — %5F, we know
0<T;+ T, <1. Clearly, (D*)=1 for some k € {1,2,3,4} if and only if the argument A(D*) € {0, +n/2,
+2n/3,n}. Since

IAD)| =1, ReA(D)=T,+T,>0, ImiD")=1/1— (T, +T,)">>0,

it follows that arg A(D*) €{0, £n/2, £2n/3, n}. The proof is completed. [J
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By the Hopf bifurcation for maps [12], we have the following theorem.

Theorem 2. Let the assumption (H;) hold and — # <T<l1- # Then we have

) if (T, — T,)> < D < D*, then the equilibrium (0,0) of (1.1) is asymptotically stable;
(il) if (T, — T»)* < D and D > D*, then the equilibrium (0,0) of (1.1) is unstable;
(iii) if D = D", system (1.1) undergoes a Neimark—Sacker bifurcation, that is, system (1.1) has a periodic solu-
tion bifurcating from the equilibrium (0,0) near D = D*, where D" is given by (2.8).

3. Direction and stability of the Neimark—Sacker bifurcation

In the previous section, we have obtained some sufficient conditions to ensure that system (1.1) undergoes
a Neimark—Sacker bifurcation at the equilibrium (0,0) when D takes the critical value D", In this section, a
formula for determining the direction of Neimark—Sacker bifurcation and the stability of bifurcating peri-
odic solutions of system (1.1) at D = D" shall be presented by employing the normal form method and
the center manifold theory for discrete time system developed by Kuznetsov [11]. For most of the models
in the literature [5,7,8], the transfer function fis f{u) = tanh(cu) , here we assume that the transfer functions
in (1.1) satisfy

(H:) f,€ CA(RR). [,(0)=f(0)=0, f/(0)f;"(0)#0.
Now system (1.1) can be rewritten as
(xl(nJrl)) _ <u+allfl'(0) arnfy(0) ><x1(n)> N <F1(x,D)> 3.1)
x(n+1) a» f1(0) B+ axnf;(0) ) \ x2(n) Fs(x,D) )’
where x = (x],xz)T € R~
From assumption (H,), we know that Fy(i =1,2) in (3.1) can be expanded as

Fi(x,D) = A" (05} + 527/ (0)3 + O(l[),
Fal.D) = 1700} + T L/(0)5) + O(e] ).
Denote
o+anfi(0)  anf;0) )
= = . 32
250 = ("L 00 s e 2

For convenience of calculation, we introduce two notations:

r1:T2—T1+\/D—(T1—T2)2i, (33)
ry =T, =T, +\/D— (T, —T,)"i. (3.4)

From the definition of T, T», we can obtain
7= —7, |rj|2 = —rr, =D = —apay f{(0)/5(0), j=1,2. (3:5)

Here for j=1,2, r; # 0 and a,a2£/(0)f;(0) < 0.

In fact, if ; = 0 or r, = 0, From (3.5), we have rir, = D = 0, then (T} — T»)* = D, and this is a contradic-
tion to (T} — T>)> < D. Hence r; # 0(j=1,2) and it follows from (3.5) that aja,,£{(0)£;(0) < 0.

Let ¢(D) € C* be the eigenvector of B(D) corresponding to A(D) given by (2.6). Then

B(D)q(D) = A(D)q(D).

Also let p(D) € C* be the eigenvector of the transposed matrix B'(D) corresponding to its eigenvalue A(D),

B'(D)p(D) = A(D)p(D).
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By direct computation we obtain that

o~ (1, @O (1, wEO)

¥ m

where r{(j = 1,2) are given by (3.3), (3.4). In order to normalize the g = (1,a2.£1(0)/r,)" and p, we obtain

p=—" (1, a”é/(O))T.

= 7

It is easy to see (p,q) = 1, where (-,-) means the standard scalar product in C* : (p,q) = Byq, + Drq,. Any vec-
tor x € R? can be represented for D near D* as

x = zq(D) +24(D)

for some complex z, obviously
z = {(p(D),x).
Thus, system (3.1) can be transformed for D near D* into the following form:
z=AMD)z+g(z,z,D), (3.6)
where A(D) can be written as /(D) = (1 + (p(D))eie(D )(@(D) is a smooth function with ¢(D*) = 0) and
a44m=1§;§%&xmﬁa (3.7)

We know that Fi(i =1,2) in (3.1) can be expanded as

Fi(&.D) = 08 + ¢ 08 +0(l]).
az)

FZ(évD) = 6

V00 + /008 + o)),

It follows that

Bi(x,y) := —2 xpx, =0, i=12 (3.8)
; 0L;08 | ’
Ci(x,y,u) == i X XU
) Zk; 050508, | g
= anf]" (0)xiyyu1 + anfy (0)xayyuy,  i=1,2. (3.9)

By (3.7)—(3.9) and the formulas

g0(D") = (p,B(9,9)), &u(D") = (p,B(¢,9)), &n(D")=(p,B(q,9)),
g21<D*) = <p7 C(C], q, L_]»
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We obtain

220(D") = g1 (D") = gpn(D") = 0,
g21 (D*) = [Tlcl (qa q, Z]) +p_2C2(q? q, Q)
BSOSO | ananfiOF0)  danfi(0)£'(0)
r2/5(0) ) r%
1

- an(ri +r)£3(0) {ananraf3(0)£1"(0) + azaxraf{(0)£y"(0)

+ anyan f3(0)°£1"(0) — anna3, £1(0)°£3"(0)}
= ! {andlzfz/(o)ff”(o) <T1 —T2\/D" — (T — T2)2i>
26112 D" — (T] - Tz)zle(())l

m

=—— {anf{”(O)

ry —r

T asanf/(0)17'(0) (rl 1D — (1, - m%)
T ayan (0770 - aua;f{<0>2f;’<0>}

(Ulnalzle(o)ff”(o) - a21a22f1'(0)f2’”(0))
1
2a12\/ D" — (T1 — T,)*£3(0)i

+ d2an f1(0)°£1"(0) — anndd f1(0)*£2(0)}.

Together with e %P = /(D) and D = —ayax.£](0)£3(0), we have

e_io(D*)gZI (1 _ zei()(D*))e—zil)(D*) 1 5 1 5
) Re( 2(1 — o)) gzogn) *§|g11| *Z|g02|

1
" 2a1£3(0)

+ {(@11a12/5(0)£1"(0) + az1a22/1(0)£3"(0))(T1 — T)

a(D*) = Re(

e gy,
=R
(")

S Re(I(D )
1

= m{(ﬂ + T)[ananfy(0)£"(0) — axaxnf(0)£,"(0)]
— (an1af3(0)£"(0) + azaxnfi(0)£,"(0))(T\ — T1)

— anyan f3(0)°/1"(0) + ana3 £1(0)°£3(0)}
1
= m {2T2a11a12f2'(0)f1'"(0) — 2T161216122f1l(0)f2m(0)
— aiyan f3(0)°7"(0) + anai £/{(0)3(0)}
1

= 4an/3(0) {(B+ anf3(0))ananfi(0)f"(0)

— (o4 an f{(0)aasnf{(0)f3"(0) — atyaa £3(0)°1"(0)
+ana3, £(0)*(0)}

- 45112}2’(0) { (B + anf;(0))aianf;(0)£"(0)
— (e + anf(0))anaxnf{(0)£,"(0)

1 47T, 10\ 2 £ 1N\ 2 g
oo @ ORA0) — an {0 70) |

2117
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1
= 61222/0 01161121/0 2’021///0
— (& + anf(0))ananf](0)*£3(0)£3"(0)

+ 1= (a4 anfi(0)(B + anf3(0)](anf3(0)°£7(0) — anfi(0)*/(0))}
1 T PR "
—W{ﬁaualzﬂ (0)/3(0)°£7"(0) + anananf;(0)£3(0)*£"(0)
— oananfi(0 )fz( 1" (0) — ajaziarnfi(0 )fz( )£ (0)
+anfy(0°77(0)(1 = aB) — axnfi(0)°£y(0)(1 — ap)
—Ofalzazzfz( )3f1/( )‘f‘“anazzﬁ( )fz( ) W(O)
— Pananf{(0)£(0)°£"(0) + Panaxf(0)’£;"(0)

— anananf|(0)£3(0)*£"(0) + ananaxnf](0)’£,(0)£"(0)}

_ af{(0)/3"(0) , 7(0) ,
_m[ 1+ of + Bainfi(0)] + 477(0) (1 — af — aanfs(0)]. (3.10)

Theorem 3. Suppose that the condition (Hy) hold and T € (— "’Lﬁ ,1— Hﬁ Z2E), then the direction of the Neimark—
Sacker bifurcation and stability of bifurcating periodic solution can be determlned by the sign of a(D"). In fact, if
a(D*) <0(>0), then the Neimark—Sacker bifurcation is supercritical (subcritical) and the bifurcating periodic
solution is asymptotically stable (unstable), where D” is given by (2.8).

This method is introduced by Kuznetsov in [ 11].

Remark 1. If the two-neuron network (1.1) is without self-connections, that is, a;; = d», = 0, then system (1.1)
has the following form:

xi(n+ 1) = oy (n) + annfaxz(n)),
x2(n+1) = fx;(n) + anfi(x2(n)), n=0,1,2,...
From (3.10), we can obtain
o L=aB [f7"(0) axf{(0)/3"(0)
0= - o ) (312

From the previous analysis, we know aj,a21£{(0)/;(0) < 0. If sgn(f](0)f7"(0)) = sgn(f;(0)/,"(0)), we have
sgn(a(D")) = sgn(f(0)£]"(0)) = sgn(f;(0)£5"(0)) from (3.12). Thus we obtain the following result.

(3.11)

Corollary 1. Suppose that (H,) is satisfied and sgn(f{(0)f]"(0)) = sgn(f5(0)/5"(0)). Then the direction of the
Neimark—Sacker bifurcation and stability of bifurcating periodic solution are determined by the sign of
S0)£7(0). Indeed, if f{(0)f]"(0) < 0(>0), the Neimark—Sacker bifurcation is supercritical (subcritical) and
the bifurcating periodic solution is asymptotically stable (unstable).

Remark 2. If the two-neuron network with self-connections modelled by a discrete-time system of the form
(1.1) with o = f8

xi(n+1) = Bxi(n) + ayfi(xi(n)) + anfr(xz(n)),

3.13

ool 1) = B, (1) + s fi (54 (1)) + axfoea(m), G13)
which is the model studied by Yuan et al. [10]. From (3.10), we obtain

o) = 2SO 4y g o)+ 0D 11— g pangio)), (3.14)

4a12£;(0)£5(0) 411(0)
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It tallies with the result of Yuan et al. [10]. Here we find the two bifurcation parameters are different. In our
paper, we assume D = —aj2a21/{(0)f5(0) as the bifurcation parameter. In [10] the bifurcation parameter is
Dy = (anaxn — anaxn)f{(0)75(0). We obtain Dy = D + ayjaxnf](0)/5(0). In fact it does not influence the sign
of a(D"). The bifurcation parameter in our paper is simpler. System (1.1) includes the model of Yuan et al.
[10]. Yuan et al. [10] only discussed a two-neuron model with the same internal decay of the neurons, however
our model can deal with the system with different internal decay of the neurons, which is more general.

4. Numerical simulations

In this section, we give numerical simulations to support our theoretical analysis.
Example 1. Let a =1, =2 a4, =1,a1, = —1,a2 = —1 and fi(u) = sin(u), f>(u) = arctan(u/2) in the system
(1.1). By the simple calculation, we obtain

! ! 1 1 1! 1 1 1
AO=1 £O=3. FO=R0)=0. [0)=-1 £0)=-].
1 ' , 1 3
Tzi(a“fl(o)‘F“ZZfz(O))zzv —1+2(T1+T2)—4T1T2:—T6a
45 11
_1_2(T1+T2)_4T1T2__E7 1—4T1T2—E.

It follows from (2.8) that D* = L (ay; = 1), the Neimark—Sacker bifurcation occurs when D = L. Choosin
16 g 16 g
ar = i, so that D = % < D*,(Ty,T,,D) € X,. By Theorem 1, we know the origin is asymptotically stable,

the corresponding waveform and phase plots are shown in Fig. 1. Choosing a,; = %, then D = % > D*. By The-
orem 2, we know that a Neimark—Sacker bifurcation occurs when D = D* = % The origin loses its stability

and a periodic solution bifurcates from the origin when D=3>D". From (3.10), we have
a(D*) = — Bl < 0. By Theorem 3, we know the periodic solution is asymptotically stable. The corresponding
phase plots are shown in Figs. 2 and 3. In Fig. 2 its zero solution undergoes a Neimark—Sacker bifurcation at

the origin and in Fig. 3 it is stable.

Example 2. Let o =1, =1 a1 = 1,a;, = —1,an = —1 and f(u) =sin(u), fr(u) = " — (Ju* + 1) in the sys-

tem (1.1). By the simple calculation, we obtain

./[1/(0) =1, le(O) =1, 1//(0) = 2”(0) =0, flm(o) =-1, 2”/(0) =1,

o , |
T =3 (anf{(0) + anf;(0) =0, —1+2T1+T) —4T\T> =3,
7 5
~1-AT 1)~ 4T = —¢, 1-4NT> =3
It follows from (2.8) that D* =3 (ay; = 3), the Neimark—Sacker bifurcation occurs when D =3. Choosing

a>; = 1.6, so that D =1.6 < D", (T}, T>,D) € X,. By Theorem 1, we know the origin is asymptotically stable,

-0.01

-0.021 : . _0.02)

-0.03]
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Fig. 1. Phase plot and waveform plot for system (1.1) with ayy =3, D =3 < D*.
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Fig. 4. Phase plot and waveform plot for system (1.1) with a,; = 1.6, D =1.6 < D".
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the corresponding waveform and phase plots are shown in Fig. 4. Choosing a,; = 1.7, then D = 1.7. By The-
orem 2, we know that a Neimark—Sacker bifurcation occurs when D = D* = 3. The origin loses its stability and
a periodic solution bifurcates from the origin when D = 1.7 > D*. From (3.10), we have a(D*) = —% < 0. By
Theorem 3, we know the periodic solution is asymptotically stable. The corresponding phase plots are shown
in Figs. 5 and 6. In Fig. 5 its zero solution undergoes a Neimark—Sacker bifurcation at the origin and in Fig. 6
it is stable.

5. Conclusions

The discrete-time system of neural networks provides some dynamical behaviors which enriches the theory
of continuous system and has potential applications in neural networks. Although the system discussed above
is quite simple, it is potentially useful as the complexity found might be carried over to the model with delay.

By choosing a proper bifurcation parameter, we have shown that a Neimark—Sacker bifurcation occurs
when this parameter passes through a critical value. The direction of Neimark—Sacker bifurcation and the sta-
bility of the bifurcating periodic solution are also discussed.
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