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Abstract. Mixed-mode oscillations (MMOs) are trajectories of a dynamical system in which there
is an alternation between oscillations of distinct large and small amplitudes. MMOs have
been observed and studied for over thirty years in chemical, physical, and biological sys-
tems. Few attempts have been made thus far to classify different patterns of MMOs, in
contrast to the classification of the related phenomena of bursting oscillations. This pa-
per gives a survey of different types of MMOs, concentrating its analysis on MMOs whose
small-amplitude oscillations are produced by a local, multiple-time-scale “mechanism.” Re-
cent work gives substantially improved insight into the mathematical properties of these
mechanisms. In this survey, we unify diverse observations about MMOs and establish a
systematic framework for studying their properties. Numerical methods for computing
different types of invariant manifolds and their intersections are an important aspect of
the analysis described in this paper.
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212 DESROCHES ET AL.

Fig. 1 Bromide ion electrode potential in the Belousov–Zhabotinsky reaction. Reprinted with per-
mission from Hudson, Hart, and Marinko, J. Chem. Phys., 71 (4), 1601–1606, (1979).
c©1979, American Institute of Physics.

1. Introduction. Oscillations with clearly separated amplitudes have been ob-
served in several application areas, notably in chemical reaction dynamics. Figure 1
reproduces Figure 12 in Hudson, Hart, and Marinko [106]. It shows a time series of
complex chemical oscillations of the Belousov–Zhabotinsky (BZ) reaction [18, 242] in
a stirred tank reactor. The series appears to be periodic, and there is evident struc-
ture of the oscillations within each period. In particular, pairs of small-amplitude
oscillations (SAOs) alternate with pairs of large-amplitude oscillations (LAOs). The
result is an example of a mixed-mode oscillation, or MMO, displaying cycles of (at
least) two distinct amplitudes. There is no accepted criterion for this distinction be-
tween amplitudes, but the separation between large and small is clear in the case of
Figure 1. The pattern of consecutive large and small oscillations in an MMO is an
aspect that draws immediate attention. Customarily, the notation Ls1

1 Ls2
2 · · · is used

to label series that begin with L1 LAOs, followed by s1 SAOs, L2 LAOs, s2 SAOs, and
so on. We will call Ls1

1 Ls2
2 · · · the MMO signature; it may be periodic or aperiodic.

Signatures of periodic orbits are abbreviated by giving the signature of one period.
Thus, the time series in Figure 1, which appears to be periodic, has signature 22. As
Hudson, Hart, and Marinko varied the flow rate through their reactor, MMOs with
varied signatures were observed, as well as simple oscillations with only large or only
small amplitudes. Similar results to those presented in their paper have been found
in other experimental and model chemical systems. Additionally, MMOs have been
observed in laser systems and in neurons. We present an overview with references to
experimental studies of MMOs in these and other areas in Table 4 of the last section
of this survey.

Dynamical systems theory studies qualitative properties of solutions of differential
equations. The theory investigates bifurcations of equilibria and periodic orbits, de-
scribing how these limit sets depend upon system parameters. MMOs may be periodic
orbits, but we then ask questions that go beyond those typically examined by stan-
dard/classical dynamical systems theory. Specifically, we seek to dissect the MMOs
into their epochs of SAOs and LAOs, identify each of these epochs with geomet-
ric objects in the state space of the system, and determine how transitions are made
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MIXED-MODE OSCILLATIONS WITH MULTIPLE TIME SCALES 213

between them. When the transitions between epochs are much faster than the oscilla-
tions within the epochs, we are led to seek models for MMOs with multiple time scales.

Early studies of MMOs in model systems typically limited their investigations to
cataloging the patterns of MMO signatures found as a parameter is varied. Barkley [16]
is an exception: he assessed the capability of multiple-time-scale models for MMOs
to produce the behavior observed by Hudson, Hart, and Marinko in [106]. He com-
pared the MMOs from these experiments and from a seven-dimensional model for the
BZ reaction proposed by Showalter, Noyes, and Bar-Eli [207] with three-dimensional
multiple-time-scale models. Barkley was unable to produce a three-dimensional model
with the qualitative characteristics of the MMOs in the larger model, but such models
with many of the desired properties were subsequently found. This paper discusses two
of these models, emphasizing the one proposed and studied by Koper [123]. Koper’s
model is similar to a normal form for singular Hopf bifurcation [87], a codimension-
one bifurcation that arises in the context of systems with two slow variables and one
fast variable. Our central focus is upon MMOs whose SAOs are a byproduct of local
phenomena occurring in generic multiple-time-scale systems. Analogous to the role
of normal forms in bifurcation theory, understanding the multiple-time-scale dynam-
ics of MMOs in their simplest manifestations leads to insights into the properties of
MMOs in more complex systems. We also revisit the Showalter, Noyes, and Bar-Eli
model and highlight the role of multiple time scales in the MMOs of this example.

The geometry of multiple-time-scale dynamical systems is intricate. Section 2
provides a short review. Beginning with the work of the “Strasbourg” school [50] and
Takens’ work [216] on “constrained vector fields” in the 1970s, geometric methods
have been used to study generic multiple-time-scale systems with two slow variables
and one fast variable. Folded singularities are a prominent phenomenon in this work.
As described in section 2, they lie on a fold of the critical manifold , where an attract-
ing and a repelling sheet meet. Folded singularities yield equilibria of a desingularized
reduced vector field that is constructed in the singular limit of the time-scale param-
eter. More recently, Dumortier and Roussarie [57] and Krupa, Szmolyan, and Wech-
selberger [144, 214] introduced singular blow-up techniques for the analytical study of
the dynamics near folded singularities. These methods give information about canard
orbits that connect attracting and repelling slow manifolds .

Canard orbits organize the number of SAOs for MMOs associated with folded
nodes. The unfoldings of folded nodes [88, 237], folded saddle-nodes [86, 144], and
singular Hopf bifurcations [87] give insight into the characteristics of MMOs and how
they are formed as system parameters vary. Passage of trajectories through the region
of a folded node is one mechanism for generating MMOs that we discuss at length in
section 3.1 and illustrate with examples in sections 4 and 5. Singular Hopf bifurcation
and the closely related folded saddle-node bifurcation of type II together constitute
a second mechanism that produces SAOs and MMOs in a robust manner within
systems having two slow variables and one fast variable. These bifurcations occur
when a (true) equilibrium of the slow-fast system crosses a fold curve of a critical
manifold. Singular Hopf bifurcation is discussed in section 3.2 and also illustrated
in sections 4 and 5. We discuss a third mechanism for producing SAOs in slow-fast
systems that is organized by a Hopf bifurcation in the layer equations and requires two
fast variables. We call this mechanism a dynamic Hopf bifurcation and distinguish
trajectories that pass by a dynamic Hopf bifurcation with a delay and trajectories
with a tourbillon [235], whose SAOs have larger magnitude than those of a delayed
Hopf bifurcation. Dynamic Hopf bifurcation is discussed in section 3.4 and illustrated
in sections 6 and 7.
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214 DESROCHES ET AL.

Complementary to theoretical advances in the analysis of slow-fast systems, nu-
merical methods have been developed to compute and visualize geometric structures
that shape the dynamics of these systems. Slow manifolds and canard orbits can
now be computed in concrete systems; see Guckenheimer [87, 91] and Desroches,
Krauskopf, and Osinga [42, 43, 44, 45]. The combination of new theory and new nu-
merics has produced new understanding of MMOs in many examples that have been
studied previously. This paper reviews and synthesizes these advances. It is organized
as follows. Section 2 gives background about relevant parts of geometric singular per-
turbation theory. Multiple-time-scale mechanisms that produce SAOs in MMOs are
then discussed and illustrated in section 3. The four subsequent sections provide case
studies that illustrate and highlight recent theoretical advances and computational
techniques. More details on the computational methods used in this paper can be
found in section 8. The final section 9 includes a brief survey of the MMO literature
and discusses other mechanisms that are not associated with a split between slow and
fast variables.

2. Geometric Singular Perturbation Theory of Slow-Fast Systems. We con-
sider here a slow-fast vector field that takes the form

(2.1)

{
ε ẋ = ε dx

dτ = f(x, y, λ, ε),

ẏ = dy
dτ = g(x, y, λ, ε),

where (x, y) ∈ R
m ×R

n are state-space variables, λ ∈ R
p are system parameters, and

ε is a small parameter 0 < ε � 1 representing the ratio of time scales. The functions
f : Rm × R

n × R
p × R → R

m and g : Rm × R
n × R

p × R → R
n are assumed to be

sufficiently smooth, typically C∞. The variables x are fast and the variables y are
slow. System (2.1) can be rescaled to

(2.2)

{
x′ = dx

dt = f(x, y, λ, ε),

y′ = dy
dt = ε g(x, y, λ, ε)

by switching from the slow time scale τ to the fast time scale t = τ/ε.
Several viewpoints have been adopted to study slow-fast systems, starting with

asymptotic analysis [58, 165] using techniques such as matched asymptotic expan-
sions [119, 149]. Geometric singular perturbation theory (GSPT) takes a geomet-
ric point of view and focuses upon invariant manifolds, normal forms for singu-
larities, and analysis of their unfoldings [10, 71, 113, 114, 218]. Fenichel’s seminal
work [71] on invariant manifolds was an initial foundation of GSPT and is also called
Fenichel theory. A third viewpoint was adopted by a group of French mathematicians
in Strasbourg. Using nonstandard analysis, they made many important discover-
ies [19, 20, 22, 23, 49, 50] about slow-fast systems. This paper adopts the GSPT
viewpoint. We only focus on the results of GSPT that are necessary to study MMOs.
There are other important techniques that are part of GSPT, such as the exchange
lemma [113, 115], the blow-up method [57, 143, 237], and slow-fast normal form the-
ory [10], that are not described in this paper.

2.1. The Critical Manifold and the Slow Flow. Solutions of a slow-fast system
frequently exhibit slow and fast epochs characterized by the speed at which the so-
lution advances. As ε → 0, the trajectories of (2.1) converge during fast epochs to
solutions of the fast subsystem or layer equations

(2.3)

{
x′ = f(x, y, λ, 0),
y′ = 0.
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MIXED-MODE OSCILLATIONS WITH MULTIPLE TIME SCALES 215

During slow epochs, on the other hand, trajectories of (2.2) converge to solutions of

(2.4)

{
0 = f(x, y, λ, 0),
ẏ = g(x, y, λ, 0),

which is a differential-algebraic equation (DAE) called the slow flow or reduced system.
One goal of GSPT is to use the fast and slow subsystems (2.3) and (2.4) to understand
the dynamics of the full system (2.1) or (2.2) for ε > 0. The algebraic equation in (2.4)
defines the critical manifold

S := {(x, y) ∈ R
m × R

n | f(x, y, λ, 0) = 0}.

We remark that S may have singularities [142], but we assume here that this does
not happen so that S is a smooth manifold. The points of S are equilibrium points
for the layer equations (2.3).

Fenichel theory [71] guarantees persistence of S (or a subset M ⊂ S) as a slow
manifold of (2.1) or (2.2) for ε > 0 small enough if S (or M) is normally hyperbolic.
The notion of normal hyperbolicity is defined for invariant manifolds more generally,
effectively stating that the attraction to and/or repulsion from the manifold is stronger
than the dynamics on the manifold itself; see [68, 69, 70, 97] for the exact definition.
Normal hyperbolicity is often difficult to verify when there is only a single time scale.
However, in our slow-fast setting, S consists entirely of equilibria and the requirement
of normal hyperbolicity of M ⊂ S is satisfied as soon as all p ∈ M are hyperbolic
equilibria of the layer equations, that is, the Jacobian (Dxf)(p, λ, 0) has no eigenvalues
with zero real part. We call a normally hyperbolic subset M ⊂ S attracting if all
eigenvalues of (Dxf)(p, λ, 0) have negative real parts for p ∈ M ; similarly, M is called
repelling if all eigenvalues have positive real parts. If M is normally hyperbolic and
neither attracting nor repelling, we say it is of saddle type.

Hyperbolicity of the layer equations fails at points on S where its projection
onto the space of slow variables is singular. Generically, such points are folds in
the sense of singularity theory [10]. At a fold point p∗, we have f(p∗, λ, 0) = 0 and
(Dxf)(p∗, λ, 0) has rank m − 1 with left and right null vectors w and v, such that
w · [(D2

xxf)(p∗, λ, 0) (v, v)] �= 0 and w · [(Dyf)(p∗, λ, 0)] �= 0. These inequalities state
that the tangencies of the critical manifold to the affine spaces of fast variables are
similar to a quadratic function. Singularity theory makes the stronger statement that
there are local coordinates in which the function f becomes y1 = x2

1 [10]. The set
of fold points forms a submanifold of codimension one in the n-dimensional critical
manifold S. In particular, when m = 1 and n = 2, the fold points form smooth curves
that separate attracting and repelling sheets of the two-dimensional critical manifold
S. In this paper we do not consider more degenerate singular points of the projection
of S onto the space of slow variables.

Away from fold points the implicit function theorem implies that S is locally the
graph of a function h(y) = x. Then the reduced system (2.4) can be expressed as

(2.5) ẏ = g(h(y), y, λ, 0).

We can also keep the DAE structure and write (2.4) as the restriction to S of the
vector field

(2.6)

{
ẋ = ± (Dxf)

−1
(Dyf) g,

ẏ = g,
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on R
m × R

n by observing that f = 0 and ẏ = g imply ẋ = ± (Dxf)
−1

(Dyf) g. The
vector field (2.6) blows up when f is singular. It can be desingularized by scaling
time by ± det (Dxf), where we choose the sign so that the orientation of trajectories
remains unchanged on the attracting sheets of S. This desingularized system plays
a prominent role in much of our analysis. If S is normally hyperbolic, not only S,
but also the slow flow on S persists for ε > 0; this is made precise in the following
fundamental theorem.

Theorem 2.1 (Fenichel’s theorem [71]). Suppose M = M0 is a compact normally
hyperbolic submanifold (possibly with boundary) of the critical manifold S of (2.2) and
that f, g ∈ Cr, r < ∞. Then for ε > 0 sufficiently small the following hold:

(F1) There exists a locally invariant manifold Mε diffeomorphic to M0. Local
invariance means that Mε can have boundaries through which trajectories
enter or leave.

(F2) Mε has a Hausdorff distance of O(ε) from M0.
(F3) The flow on Mε converges to the slow flow as ε → 0.
(F4) Mε is Cr-smooth.
(F5) Mε is normally hyperbolic and has the same stability properties with respect

to the fast variables as M0 (attracting, repelling, or saddle type).
(F6) Mε is usually not unique. In regions that remain at a fixed distance from the

boundary of Mε, all manifolds satisfying (F1)–(F5) lie at a Hausdorff distance
O(e−K/ε) from each other for some K > 0 with K = O(1).

The normally hyperbolic manifold M0 has associated local stable and unstable mani-
folds

W s
loc(M0) =

⋃
p∈M0

W s
loc(p) and Wu

loc(M0) =
⋃

p∈M0

Wu
loc(p),

where W s
loc(p) and Wu

loc(p) are the local stable and unstable manifolds of p as a hy-
perbolic equilibrium of the layer equations, respectively. These manifolds also persist
for ε > 0 sufficiently small: there exist local stable and unstable manifolds W s

loc(Mε)
and Wu

loc(Mε), respectively, for which conclusions (F1)–(F6) hold if we replace Mε

and M0 by W s
loc(Mε) and W s

loc(M0) (or similarly by Wu
loc(Mε) and Wu

loc(M0)).
We call Mε a Fenichel manifold . Fenichel manifolds are a subclass of slow man-

ifolds, invariant manifolds on which the vector field has speed that tends to 0 on
the fast time scale as ε → 0. We use the convention that objects in the singular
limit have subscript 0, whereas the associated perturbed objects have subscripts ε.
Geometrically, the stable manifold W s

loc(Mε) of a Fenichel manifold Mε consists of
points whose trajectories approach Mε in forward time; similarly, Wu

loc(Mε) consists
of points whose trajectories approach Mε in backward time.

2.1.1. The Critical Manifold and the Slow Flow in the Van der Pol Equation.
Let us illustrate these general concepts of GSPT with an example. One of the simplest
systems in which the concepts are manifest, and historically perhaps also the first, is
the Van der Pol equation [225, 226, 227] with constant forcing λ ∈ R given by

(2.7)

{
ε ẋ = y − 1

3x
3 + x,

ẏ = λ− x.

This slow-fast system has only one fast and one slow variable, but it already exhibits
complicated dynamics that were truly surprising when they were first discovered [50].
By setting ε = 0 in (2.7), we obtain the reduced system with an algebraic equation
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Fig. 2 Phase portraits of the Van der Pol equation (2.7) for λ = 0 (a) and for λ = 1 (b). Shown are
the critical manifold S (gray solid curve) and the y-nullcline (dashed line); double arrows
indicate the direction of the fast flow and single arrows that of the slow flow. Panel (a)
shows a candidate for a relaxation oscillation (black) surrounding an unstable equilibrium.
Panel (b) is the moment of the singular Hopf bifurcation with a folded singularity at the local
minimum p+.

that defines the critical manifold of (2.7) as the cubic curve

(2.8) S = {(x, y) ∈ R
2 | y = 1

3x
3 − x =: c(x)}.

It is normally hyperbolic away from the local minimum and maximum p± = (±1,∓ 2
3 )

of the cubic, where S has a fold with respect to the fast variable x. At p± normal
hyperbolicity fails, since ∂

∂xf(x, y, λ, 0) = 1− x2 is zero at p±. Hence, p± are the fold
points and they naturally decompose the critical manifold into three branches,

S = Sa,− ∪ {p−} ∪ Sr ∪ {p+} ∪ Sa,+,

where Sa,− := S ∩ {x < −1}, Sa,+ := S ∩ {x > 1}, and Sr = S ∩ {−1 < x < 1}.
From the sign of ∂

∂xf(x, y, λ, 0) we conclude that the two branches Sa,− and Sa,+ are
attracting, and the branch Sr is repelling. The critical manifold S is shown as the
gray cubic curve in Figure 2; note that S and its attracting/repelling nature does not
depend on λ, so it is the same in both panel (a), where λ = 0, and panel (b), where
λ = 1. The dynamics of any point not on S is entirely controlled by the direction of
the fast variable x, which is indicated in Figure 2 by the horizontal double arrows;
observe that the middle branch of S is repelling and the two unbounded branches are
attracting.

To obtain the slow flow (2.5) on S in the Van der Pol equation (2.7) it is not
actually necessary to solve the cubic equation y = c(x) for x on Sa,−, Sr, and Sa,+.
It is more convenient to write the slow (reduced) flow in terms of the fast variable x.
To this end, we differentiate f(x, y, λ, 0) = y − c(x) = 0 with respect to τ and obtain

ẏ = ẋ x2 − ẋ = ẋ (x2 − 1).

Combining this result with the equation for ẏ we get

(2.9) (x2 − 1) ẋ = λ− x or ẋ =
λ− x

x2 − 1
.

D
ow

nl
oa

de
d 

03
/3

1/
24

 to
 7

8.
17

7.
16

4.
12

0 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

218 DESROCHES ET AL.

The direction of the slow flow on S is indicated in Figure 2 by the arrows on the gray
curve. The slow flow does depend on λ, because the direction of the flow is partly
determined by the location of the equilibrium at x = λ on S. The slow flow is well
defined on Sa,−, Sr, and Sa,+, but not at x = ±1 (as long as λ �= ±1). We can
desingularize the slow flow near x = ±1 by rescaling time with the factor (x2 − 1).
This gives the equation ẋ = λ− x of the desingularized reduced flow . Note that this
time rescaling reverses the direction of time on the repelling branch Sr, so care must
be taken when relating the phase portrait of the desingularized system to the phase
portrait of the slow flow.

Let us now focus specifically on the case for λ = 0, shown in Figure 2(a), because
it is representative for the range |λ| < 1. The y-nullcline of (2.7), defined by ẏ = 0, is
shown as the dashed black vertical line (the x-nullcline is S) and the origin is the only
equilibrium, which is a source for this value of λ. The closed curve is a singular orbit
composed of two fast trajectories starting at the two fold points p± concatenated with
segments of S. Such continuous concatenations of trajectories of the layer equations
and the slow flow are called candidates [20]. The singular orbit follows the slow flow
on S to a fold point, then it jumps, that is, it makes a transition to a fast trajectory
segment that flows to another branch of S. The same mechanism returns the singular
orbit to the initial branch of S. It can be shown [143, 165] that the singular orbit
perturbs for ε > 0 to a periodic orbit of the Van der Pol equation that lies O(ε2/3)
close to this candidate. Van der Pol introduced the term relaxation oscillation to
describe periodic orbits that alternate between epochs of slow and fast motion.

2.2. Singular Hopf Bifurcation and Canard Explosion. The dynamics of slow-
fast systems in the vicinity of points on the critical manifold where normal hyper-
bolicity is lost can be surprisingly complicated and nothing like what we know from
systems with a single time scale. This section addresses the phenomenon known as
a canard explosion, which occurs in planar slow-fast systems after a singular Hopf
bifurcation. We discuss this first for the example of the Van der Pol equation (2.7).

2.2.1. Canard Explosion in the Van der Pol Equation. As mentioned above, the
phase portrait in Figure 2(a) is representative of a range of λ-values. However, the
phase portrait for λ = 1, shown in Figure 2(b), is degenerate. Linear stability analysis
shows that for ε > 0 the unique equilibrium point (x, y) = (λ, 1

3λ
3 − λ) is a source

for |λ| < 1, but a sink for |λ| > 1. A Hopf bifurcation occurs for λ = ±1. A Hopf
bifurcation of a dynamical system is characterized by a simple pair of purely imaginary
eigenvalues at an equilibrium point crossing the imaginary axis with nonzero speed as
a parameter is varied [148]. As a result, one finds a family of periodic orbits emerging
from the bifurcation point. One distinguishes two generic cases: the supercritical
Hopf bifurcation where the bifurcating periodic orbits are stable, and the subcritical
Hopf bifurcation where the bifurcating periodic orbits are unstable. The type of Hopf
bifurcation is determined by the sign of the Lyapunov coefficient (the coefficient of
the third-order term in the associated Hopf normal form), which is required to be
nonzero for the Hopf bifurcation to be generic. Near a generic Hopf bifurcation, the
amplitude of the periodic orbits is comparable to the square root of the distance of the
parameter to the bifurcation point. For the Van der Pol equations (2.7) a supercritical
Hopf bifurcation occurs at λH = ±1, and the bifurcating periodic orbits exist in the
parameter interval |λ| < 1.

The analysis of how the observed stable dynamics of the Van der Pol equation (2.7)
changes with λ from a stable focus to relaxation oscillations when ε > 0 is small was
a major development in the theory of slow-fast systems. Figure 3(a) shows the result
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Fig. 3 Numerical continuation of periodic orbits in the Van der Pol equation (2.7) for ε = 0.05.
Panel (a) shows a selection of periodic orbits: the dark gray orbit is a typical small limit
cycle near the Hopf bifurcation at λ = λH , whereas all the black orbits occur in a very small
parameter interval at λ ≈ 0.993491. Panels (b) and (c) are sketched bifurcation diagrams
corresponding to supercritical and subcritical singular Hopf bifurcations; here, A denotes the
amplitude of the limit cycle.

of a numerical continuation in the parameter λ of the periodic orbit for ε = 0.05
that emerges from the Hopf bifurcation. Close to the Hopf bifurcation at λH = 1.0
the periodic orbit (dark gray curve) is small, as is to be expected. However, as λ
decreases, the periodic orbit grows very rapidly, where it follows the repelling slow
manifold Sr

ε for a long time. In fact, the values of λ for all black orbits in Figure 3(a)
are λ ≈ 0.993491, that is, they agree to six decimal places. Note that we show the
growing orbits only up to a characteristic intermediate size: the largest periodic orbit
in Figure 3(a) just encompasses the fold point p−. Upon further continuation in λ
this periodic orbit continues to grow rapidly until it reaches the shape of a relaxation
oscillation; compare with Figure 2(a).

The Hopf bifurcation at λH = 1 occurs when the equilibrium moves over the
fold point p+. It is called a singular Hopf bifurcation. The eigenvalues at the Hopf
bifurcation have magnitude O(ε−1/2), so that the periodic orbit is born at the Hopf
bifurcation with an intermediate period between the fast O(ε−1) and slow O(1) time
scales. The size of this periodic orbit grows rapidly from diameter O(ε1/2) to diameter
O(1) in an interval of parameter values λ of length O(exp(−K/ε)) (for some K > 0
fixed) that is O(ε) close to λH . Figures 3(b) and (c) are sketches of possible bifurcation
diagrams in λ for the singular Hopf bifurcation in a supercritical case (which one finds
in the Van der Pol system) and in a subcritical case, respectively; the vertical axis
represents the maximal amplitude of the periodic orbits. The two bifurcation diagrams
are sketches that highlight the features described above. There is a very small interval
of λ where the amplitude of the oscillation grows in a square-root fashion, as is to be
expected near a Hopf bifurcation [148]. However, the amplitude then grows extremely
rapidly until it reaches a plateau that corresponds to relaxation oscillations.

The rapid growth in amplitude of the periodic orbit near the Hopf bifurcation
is called a canard explosion. The name canard derives originally from the fact that
some periodic orbits during the canard explosion look a bit like a duck [50]. In fact,
the largest periodic orbit in Figure 3(a) is an example of such a “duck-shaped” orbit.
More generally, and irrespective of its actual shape, one now refers to a trajectory as a
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canard orbit if it follows a repelling slow manifold for a time of O(1) on the slow time
scale. A canard orbit is called a maximal canard if it joins attracting and repelling
slow manifolds. Since the slow manifolds are not unique, this definition depends
upon the selection of specific attracting and repelling slow manifolds; compare (F6)
of Theorem 2.1. Other choices yield trajectories that are exponentially close to one
another. In the Van der Pol equation (2.7) the canard explosion occurs O(e−K/ε)-
close in parameter space to the point where the manifolds Sa,+

ε and Sr
ε intersect

in a maximal canard. It is associated with the parameter value λ = 1, where the
equilibrium lies at the fold point p+ of the critical manifold S; see Figure 2(b).

2.3. Singular Hopf Bifurcation and Canard Explosion in Generic Planar Sys-
tems. In the Van der Pol equation (2.7) the singular Hopf bifurcation takes place
at λ = 1, where the equilibrium lies at a fold point. In a generic family of slow-fast
planar systems a singular Hopf bifurcation does not happen exactly at a fold point,
but at a distance O(ε) in both phase space and parameter space from the coincidence
of the equilibrium and the fold point. One can obtain a generic family by modifying
the slow equation of the Van der Pol equation (2.7) to

ẏ = λ− x+ a y.

In this modified system the equilibrium and the fold point still coincide at x = 1, but
the Hopf bifurcation occurs for x =

√
1 + ε a. A detailed dynamical analysis of canard

explosion and the associated singular Hopf bifurcation using geometric or asymptotic
methods exists for planar slow-fast systems [12, 13, 57, 58, 141, 143]; we summarize
these results as follows.

Theorem 2.2 (canard explosion in R
2 [143]). Suppose a planar slow-fast system

has a generic fold point p∗ = (xp, yp) ∈ S, that is,
(2.10)

f(p∗, λ, 0) = 0,
∂

∂x
f(p∗, λ, 0) = 0,

∂2

∂x2
f(p∗, λ, 0) �= 0,

∂

∂y
f(p∗, λ, 0) �= 0.

Assume the critical manifold is locally attracting for x < xp and repelling for x > xp

and there exists a folded singularity for λ = 0 at p∗, namely,

(2.11) g(p∗, 0, 0) = 0,
∂

∂x
g(p∗, 0, 0) �= 0,

∂

∂λ
g(p∗, 0, 0) �= 0.

Then a singular Hopf bifurcation and a canard explosion occur at

λH = H1 ε+O(ε3/2) and(2.12)

λc = (H1 +K1) ε+O(ε3/2).(2.13)

The coefficients H1 and K1 can be calculated explicitly from normal form transfor-
mations [143] or by considering the first Lyapunov coefficient of the Hopf bifurca-
tion [145].

In the singular limit we have λH = λc. For any ε > 0 sufficiently small, the
linearized system [90, 148] at the Hopf bifurcation point has a pair of singular eigen-
values [27]

σ(λ; ε) = α(λ; ε) + i β(λ; ε),

with α(λH ; ε) = 0, ∂
∂λα(λH ; ε) �= 0, and

lim
ε→0

β(λH ; ε) = ∞ on the slow time scale τ, and

lim
ε→0

β(λH ; ε) = 0 on the fast time scale t.
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Fig. 4 The critical manifold S with attracting sheet Sa (red) and repelling sheet Sr (blue) that meet
at a fold curve F (gray). The fast flow transverse to S is indicated by double (large) arrows
and the slow flow on S near a folded node by single (small) arrows; see also Figure 5(b).
The darker shaded region of Sa is the funnel, consisting of all points that pass through the
folded node.

2.4. Folded Singularities in Systems with One Fast and Two Slow Variables.
A canard explosion for a planar system happens in an exponentially small parameter
interval. However, as soon as there is more than one slow variable, canard orbits
can exist for O(1) ranges of a parameter. To illustrate this, we consider (2.1) for the
special case m = 1 and n = 2 and write it as

(2.14)


ε ẋ = f(x, y, z, λ, ε),
ẏ = g1(x, y, z, λ, ε),
ż = g2(x, y, z, λ, ε).

We assume that the critical manifold S = {f = 0} of (2.14) has an attracting sheet
Sa and a repelling sheet Sr that meet at a fold curve F , as is shown in Figure 4. We
also assume that the fold points p∗ ∈ F on S are generic in the sense of singularity
theory, that is,

f(p∗, λ, 0) = 0,
∂f

∂x
(p∗, λ, 0) = 0,

∂2f

∂x2
(p∗, λ, 0) �= 0, D(y,z)f(p∗, λ, 0) has full rank one.

The slow flow is not defined on the fold curve before desingularization. At most fold
points, trajectories approach or depart from both the attracting and repelling sheets
of S. In generic systems, there may be isolated points, called folded singularities ,
where the trajectories of the slow flow switch from incoming to outgoing. Folded
singularities are equilibrium points of the desingularized slow flow. As described
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above, the desingularized slow flow can be expressed as

(2.15)


ẋ =

(
∂
∂y f

)
g1 +

(
∂
∂z f

)
g2 ,

ẏ = − (
∂
∂xf

)
g1,

ż = − (
∂
∂xf

)
g2,

restricted to S. A fold point p∗ ∈ F is a folded singularity if

g1(p∗, λ, 0)
∂f

∂y
(p∗, λ, 0) + g2(p∗, λ, 0)

∂f

∂z
(p∗, λ, 0) = 0.

Figure 4 shows an example of the slow flow on S and the thick dot on F is the folded
singularity at which F changes from attracting to repelling (with respect to the slow
flow).

There are different possibilities for the stability of p∗ in (2.15). Let σ1 and σ2

denote the eigenvalues of the Jacobian matrix of (2.15) restricted to S and evaluated
at a folded singularity p∗. We call p∗ a

folded saddle if σ1 σ2 < 0, σ1,2 ∈ R,
folded node if σ1 σ2 > 0, σ1,2 ∈ R,
folded focus if σ1 σ2 > 0, Im(σ1,2) �= 0.

Figure 5 shows phase portraits of the (linearized) slow flow, in panels (a) and (b), and
the associated desingularized slow flow, in panels (c) and (d), respectively. Panels (a)
and (c) are for the case of a folded saddle and panels (b) and (d) of a folded node.
Note that the phase portraits for the slow flow in Figure 5(a) and (b) are obtained
by reversing the direction of the flow on Sr where ∂

∂xf > 0, that is, by reversing the
arrows in the phase portraits of the desingularized slow flow in panels (c) and (d) in
the half planes where x > 0. It is an important observation that the trajectories of the
slow flow that lie along the eigendirections of the folded saddle or node connect the
two sheets of the critical manifold through the folded singularity in finite (slow) time;
such a trajectory is called a singular canard . We remark that there are no singular
canards for the case of a folded focus, which is why it is not shown here. For the case
of a folded node one generically has an inequality of the form |σ1| > |σ2|, and we write
|σs| > |σw |, replacing the numeric labels with s and w to emphasize the strong and
weak eigendirections. Notice further for the case of the folded node in Figure 5(b)
that the strong singular canard γ̃s and the fold curve F bound a full (shaded) sector of
trajectories that cross from Sa to Sr by passing through the folded node. This sector
and the corresponding region for the full system (2.14) are called the funnel of the
folded node. The linearized system in Figure 5(b) should be compared with Figure 4,
which shows a nonlinear slow flow near a folded node and, hence, also has a funnel
consisting of a full sector of trajectories that pass through the folded singularity.

Singular canards act as candidates of maximal canards of the full system for ε > 0.
This is described in the next theorem [19, 23, 31, 214, 237].

Theorem 2.3 (canards in R
3
). For the slow-fast system (2.14) with ε > 0

sufficiently small the following hold:
(C1) There are no maximal canards generated by a folded focus.
(C2) For a folded saddle the two singular canards γ̃1,2 perturb to maximal canards

γ1,2.
(C3.1) For a folded node let µ := σw/σs < 1. The singular canard γ̃s (“the strong

canard”) always perturbs to a maximal canard γs. If µ−1 �∈ N, then the
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z

x
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F
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(c)

z
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Sr

F
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(d)

z
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γ̃1 γ̃2
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F

Sa

γ̃w

γ̃s(b)

.

.

Fig. 5 Phase portraits of the locally linearized slow flow near a folded saddle (a) and a folded
node (b); the singular canards defined by the eigendirections are shown as thick lines. The
corresponding desingularized slow flow is shown in panels (c) and (d), respectively.

singular canard γ̃w (“the weak canard”) also perturbs to a maximal canard
γw. We call γs and γw primary canards.

(C3.2) For a folded node suppose k > 0 is an integer such that 2k+1 < µ−1 < 2k+3
and µ−1 �= 2(k + 1). Then, in addition to γs,w, there are k other maximal
canards, which we call secondary canards.

(C3.3) The primary weak canard of a folded node undergoes a transcritical bifurcation
for odd µ−1 ∈ N and a pitchfork bifurcation for even µ−1 ∈ N.

The proof of this theorem is based upon analysis of a canonical (normal) form of a
slow-fast system near a folded singularity. Recall that a maximal canard corresponds
to a (transverse) intersection of the slow manifolds Sa

ε and Sr
ε near a folded singu-

larity. After a rescaling of coordinates (a “blow-up”), the canonical system becomes
a regular perturbation problem and the variational equation along the “blown-up”
singular canards (ε = 0 problem) becomes a classical Weber equation that also arises
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in mathematical physics [176]. Properties of the Weber equation imply a transverse
intersection of Sa

ε and Sr
ε for µ−1 /∈ N and, hence, existence of maximal canards

(parts (C2)–(C3.1)) for sufficiently small perturbations 0 < ε � 1. The proof of parts
(C3.2)–(C3.3) is more involved and is based upon an extension of Melnikov theory
[236] to show the bifurcation of secondary canards from the primary weak canard for
µ−1 ∈ N.

3. Slow-Fast Mechanisms for MMOs. In this section we present key theoretical
results of how MMOs arise in slow-fast systems with SAOs occurring in a localized
region of the phase space. More specifically, we discuss four local mechanisms that
give rise to such SAOs:

• passage near a folded node, discussed in section 3.1;
• singular Hopf bifurcation, discussed in section 3.2;
• three-time-scale problems with a singular Hopf bifurcation, discussed in sec-
tion 3.3;

• the tourbillon mechanism of a dynamic Hopf bifurcation, discussed in sec-
tion 3.4.

In sections 3.1–3.4 our major focus is on how the local mechanism under consideration
gives rise to SAOs. To this end, we introduce relevant normal forms and model
systems and provide precise statements on the nature of the resulting SAOs. It is in
the nature of the subject that some of this material is quite technical. However, this
analysis allows us to estimate quantities that can be measured in examples of MMOs
produced from both numerical simulations and experimental data. Specifically, we
consider the number of SAOs and the changes in their amplitudes from cycle to cycle.
These characteristics of each local mechanism are illustrated and discussed in terms
of underlying geometric concepts, with pointers to the case studies in sections 4–7.
Furthermore, we show in sections 3.1–3.4 how the respective local mechanism results
in MMOs in the presence of a global return mechanism that takes the trajectory back
to the region with SAOs. Such global return mechanisms are found in models; see
section 3.2 and the case studies in sections 4–5 for examples with an S-shaped slow
manifold. We also consider the geometry of nearby slow manifolds that are associated
with the approach to and departure from the SAO regions.

3.1. MMOs Due to a Folded Node. Folded nodes are only defined for the sin-
gular limit (2.4) of system (2.1) on the slow time scale. However, they are directly
relevant to MMOs because, for ε > 0 small enough, trajectories of (2.1) that flow
through a region where the reduced system has a folded node undergo small oscilla-
tions. Benôıt [19, 20] first recognized these oscillations. Wechselberger and collabora-
tors [31, 214, 237] gave a detailed analysis of folded nodes, while Guckenheimer and
Haiduc [88] and Guckenheimer [86] computed intersections of slow manifolds near a
folded node and flow maps along trajectories passing through these regions. From
Theorem 2.3 we know that the eigenvalue ratio 0 < µ < 1 at the folded node is a
crucial quantity that determines the dynamics in a neighborhood of the folded node.
In particular, µ controls the maximal number of oscillations. The studies mentioned
above use normal forms to describe the dynamics of oscillations near a folded node.
Two equivalent versions of these normal forms are

(3.1)


ε ẋ = y − x2,
ẏ = z − x,
ż = −ν
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and

(3.2)


ε ẋ = y − x2,
ẏ = −(µ+ 1)x− z,
ż = 1

2µ.

Note that µ is the eigenvalue ratio of system (3.2) and that ν �= 0 and µ �= 0 imply
that no equilibria exist in (3.1) and (3.2). If we replace (x, y, z) in system (3.1) by
(u, v, w) and call the time variable τ1, then we obtain system (3.2) via the coordinate
change

x = (1 + µ)1/2 u, y = (1 + µ) v, z = −(1 + µ)3/2 w

and the rescaling of time τ = τ1/
√
1 + µ, which gives

(3.3) ν =
µ

2(1 + µ)2
or µ =

−1 +
√
1− 8ν

−1−√
1− 8ν

.

Therefore, in system (3.1) the number of secondary canards changes with the param-
eter ν: when ν is small, µ ≈ 2ν. Applying the “standard” scaling [214] x = ε1/2 x̄,
y = ε ȳ, z = ε1/2 z̄, and t = ε1/2 t̄ to system (3.1), and dropping the bars for notational
convenience, yields

(3.4)


ẋ = y − x2,
ẏ = z − x,
ż = −ν .

Hence, the phase portraits of system (3.1) for different values of ε are topologically
equivalent via linear maps. The normal form (3.4) describes the dynamics in the
neighborhood of a folded node, which is at the origin here, with eigenvalue ratio µ as
given in (3.3). Trajectories that come from y = ∞ with x > 0 and pass through the
folded-node region make a number of oscillations in the process, before going off to
y = ∞ with x < 0. There are no returns to the folded-node region in this system.

Let us first focus on the number of small oscillations. If 2k + 1 < µ−1 < 2k + 3
for some k ∈ N and µ−1 �= 2(k + 1), then the primary strong canard γs twists
once and the ith secondary canard ξi, 1 ≤ i ≤ k, twists 2i + 1 times around the
primary weak canard γw in an O(1) neighborhood of the folded-node singularity in
system (3.4), which corresponds to an O(

√
ε) neighborhood in systems (3.1) and

(3.2) [214, 237]. (A twist corresponds to a half rotation.) We illustrate this in Figure 6
for system (3.4) with ν = 0.025. Note that ν = 0.025 corresponds to µ ≈ 0.0557.
Hence, 2k + 1 < µ−1 ≈ 17.953 < 2k + 3 for k = 8, so Theorem 2.3 states that there
exist eight secondary canards ξi, 1 ≤ i ≤ 8, along with the strong and weak canards
γs/w. Figure 6 shows the attracting slow manifold Sa

ε and the repelling slow manifold
Sr

ε of (3.4) in a three-dimensional region bounded by the planes {z = ±α}, denoted
Σα and Σ−α, with α = 0.14; see section 8 for details on how these computations
were done. Even though the rescaled normal form (3.4) no longer depends on ε, we
still indicate the ε-dependence of the slow manifolds to distinguish them from the
attracting and repelling sheets of the critical manifold; furthermore, Sa

ε and Sr
ε can

be thought of as the slow manifolds of (3.1) or (3.2). Both manifolds are extensions of
Fenichel manifolds and illustrate how the slow manifolds intersect near the fold curve
of the critical manifold; the fold curve is the z-axis. Due to the symmetry

(x, y, z, t) �→ (−x, y,−z,−t)
of the normal form (3.4), the two slow manifolds Sa

ε and Sr
ε are each other’s image

under rotation by π about the y-axis. The intersection curves in Figure 6(a) are the
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Fig. 6 Invariant slow manifolds of (3.4) with ν = 0.025 in a neighborhood of the folded node.
Both the attracting slow manifold Sa

ε (red) and the repelling slow manifold Sr
ε (blue) are

extensions of Fenichel manifolds. The primary strong canard γs (black curve) and three
secondary canards ξ1 (orange), ξ2 (magenta), and ξ3 (cyan) are the first four intersection
curves of Sa

ε and Sr
ε ; the inset shows how these objects intersect a cross-section orthogonal

to the fold curve {x = 0, y = 0}.

canard orbits; labeled are the primary strong canard γs (black) and the first three
secondary canards ξ1 (orange), ξ2 (magenta), and ξ3 (cyan). The inset panel (b) shows
the intersection curves of Sa

ε and Sr
ε with the plane Σfn := {z = 0} that contains the

folded node at the origin. Canard orbits are identified in Σfn as intersection points;
only γs and ξ1–ξ3 are labeled, but notice that there are further canards (including the
weak canard γw) very close together in the center of the figure.

A trajectory entering the fold region becomes trapped in a region bounded by
strips of Sa

ε and Sr
ε and two of their intersection curves. The intersection curves

are maximal canards, and the trajectory is forced to follow the oscillations of these
two bounding canard orbits. In order to illustrate how many canards there are and
precisely how many oscillations they make, we show in Figure 7(a) the flow map
of (3.4) with ν = 0.025. Due to the strong contraction along Sa

ε , the flow map
through the fold region is strongly contracting in one direction for trajectories that
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Fig. 7 Numerical study of the number of rotational sectors for system (3.4) with ν = 0.025.
Panel (a) illustrates the flow map through the folded node by plotting the z-coordinates z out

of the first return to a cross-section x = −10 of 500 trajectories with equally spaced initial
values (x, y, z) = (20, 400, z in), where −3.25 ≤ z in ≤ −0.75. Panels (b1)–(b4) show four
trajectories projected onto the (x, y)-plane that correspond to the points labeled in panel (c),
where z in = −1.25 in panel (b1), z in = −1.5 in panel (b2), z in = −1.75 in panel (b3), and
z in = −2.25 in panel (b4).

do not extend along Sr
ε . Hence, the flow map will be almost one-dimensional and can

be approximated by following trajectories starting on the critical manifold far away
from the fold curve. The flow map shown in Figure 7(a) was obtained by integrating
500 equally spaced initial values on the line segment {x = 20, y = x2 = 400, −3.25 ≤
z ≤ −0.75} until they reach the plane x = −10; plotted are the z-coordinates of the
final values versus the initial values. One can see ten segments in this flow map that are
separated by discontinuities. These discontinuities mark sectors on the line segment
{x = 20, y = x2 = 400, −3.25 ≤ z ≤ −0.75} that correspond to an increasing
number of SAOs; in fact, each segment corresponds to a two-dimensional sector Ii,
0 ≤ i ≤ 9, on the attracting sheet Sa

ε of the slow manifold. The outer sector I0 on the
right in Figure 7(a) is bounded on the left by the primary strong canard γs; sector I1

is bounded by γs and the first maximal secondary canard ξ1; sectors Ii, i = 2, . . . , 8,
are bounded by maximal secondary canard orbits ξi−1 and ξi; and the last (left outer)
sector I9 is bounded on the right by ξ8. On one side of the primary strong canard γs

and each maximal secondary canard ξi, 1 ≤ i ≤ 8, trajectories follow the repelling slow
manifold Sr

ε and then jump with decreasing values of x. On the other side of γs and ξi,
trajectories jump back to the attracting slow manifold and make one more oscillation
through the folded-node region before flowing toward y = ∞. The four panels (b1)–
(b4) in Figure 7 show portions of four trajectories projected onto the (x, y)-plane;
their initial values are (x, y, z) = (20, 400, z in) with z in as marked in panel (a), that
is, z in = −1.25, z in = −1.5, z in = −1.75, and z in = −2.25 for (b1)–(b4), respectively.
The trajectory in panel (b1) was chosen from the sector I2, bounded by ξ1 and ξ2;
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this trajectory makes two oscillations. The trajectory in panel (b2) comes from I5

and, indeed, it makes five oscillations. The other two trajectories, in panels (b3) and
(b4), make seven and nine oscillations, respectively, but some of these oscillations are
too small to be visible.

The actual widths of the rotational sectors in Figure 7 are very similar due to the
ε-dependent rescaling used to obtain (3.4). When the equations depend on ε as in
(3.1) and (3.2), however, the widths of the sectors depend on ε. In fact, all sectors are
very small except for the sector corresponding to maximal rotation, which is bounded
by ξk and the primary weak canard. For an asymptotic analysis of the widths of
the rotational sectors that organize the oscillations, system (3.2) is more convenient,
because the eigenvalues of the desingularized slow flow are −µ and −1. Brøns, Krupa,
and Wechselberger [31] found the following result.

Theorem 3.1 (widths of rotational sectors). Consider system (2.14) and assume
it has a folded-node singularity. At an O(1) distance from the fold curve, all secondary
canards are in an O(ε(1−µ)/2) neighborhood of the primary strong canard. Hence, the
widths of the rotational sectors Ii, 1 ≤ i ≤ k, is O(ε(1−µ)/2) and the width of sector
Ik+1 is O(1).

Note that, as µ → 0 (the folded saddle-node limit), the number of rotational sec-
tors increases indefinitely and the upper bounds on their widths decrease to O(ε1/2).

3.1.1. Folded Node with a Global Return Mechanism. A global return mech-
anism may reinject trajectories to the folded-node funnel to create an MMO. In this
situation, we create a candidate trajectory as is illustrated in Figure 8. Starting from
the folded node we follow the fast flow until it returns to the funnel and then flows
back to the folded node. Let us denote by δ the distance from the singular strong ca-
nard γ̃s, measured on a cross-section at a distance O(1) away from the fold, at which
the candidate trajectory returns to the funnel. Provided that certain technical con-
ditions are satisfied, one can show that this candidate gives rise to an MMO periodic
orbit with signature 1s, where the number s of SAOs is as predicted by Theorem 3.1;
this theorem also implies that the candidate is most likely to pass through the sector
Ik+1 of maximal rotation, where k is determined by the eigenvalue ratio µ. Overall,
we have the following result.

Theorem 3.2 (generic 1k+1 MMOs [31]). Consider system (2.14) with the fol-
lowing assumptions:

(A0) Assume that 0 < ε � 1 is sufficiently small, ε1/2 � µ, and k ∈ N is such
that 2k + 1 < µ−1 < 2k + 3.

(A1) The critical manifold S is (locally) a folded surface.
(A2) The corresponding reduced problem possesses a folded-node singularity.
(A3) There exists a candidate periodic orbit (as constructed in Figure 8), which

consists of fast fibers of the layer problem, a global return segment, and a
segment on Sa within the funnel that starts at distance δ from γ̃s (as measured
at a distance O(1) away from the fold F ).

(A4) An appropriate transversality hypothesis is satisfied.
Then there exists a stable MMO with signature 1k+1.

The transversality hypothesis of (A4) is cumbersome to formulate in a general
setting. In the context of an S-shaped manifold, it concerns the projection of the two
fold curves onto the opposite sheets of the attracting slow manifold and the flow along
these sheets; see [31].

Theorem 3.2 requires not only sufficiently small 0 < ε � 1, but also µ � ε1/2

(while 0 < µ < 1). However, ε is usually of the order O(10−2) in applications, so that
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Fig. 8 Schematic diagram of the candidate periodic orbit Γc that gives rise to MMOs with SAOs
produced by a folded-node singularity. The candidate Γc approaches the folded node along
the attracting sheet Sa (red) of the critical manifold (red) in the sector of maximal rotation
associated with the weak singular canard γ̃w. The distance to the strong singular canard γ̃s
is labeled δ. When the trajectory reaches the folded node (black dot) it jumps along a layer
and proceeds to make a global return.

µ must be close to 1 in order for the theorem to apply. Therefore, such maximal MMO
signatures are seldom seen in applications. Furthermore, the SAOs for an MMO with
signature 1k+1 tend to be too small to be readily visible.

Figure 7 illustrates that the amplitudes of the SAOs are much larger for trajec-
tories that approach the folded node close to the strong canard and lie in one of the
sectors Ii with i ≤ k rather than Ik+1. We know from Theorem 3.1 that the maximal
width of a sector Ii with i ≤ k is bounded from above by O(ε(1−µ)/2) with µ < 1/3.
When δ is O(ε(1−µ)/2) one may actually find stable MMOs with i ≤ k SAOs, which
is the following result [31].

Theorem 3.3 (stable MMOs with signature 1i
). Suppose system (2.14) satisfies

assumptions (A0)–(A3) of Theorem 3.2 and, the following additional assumption:
(A5) For δ = 0, the global return point is on the singular strong canard γ̃s and as

δ passes through zero the return point crosses γ̃s with nonzero speed.
Suppose now that δ = O(ε(1−µ)/2) > 0. Then, for sufficiently small 0 < ε � 1 and
k ∈ N such that 2k + 1 < µ−1 < 2k + 3, the following holds. For each i, 1 ≤ i ≤ k,
there exist subsectors Ĩi ⊂ Ii with corresponding distance intervals (δ−i , δ

+
i ) of widths

O(ε(1−µ)/2), which have the property that if δ ∈ (δ−i , δ
+
i ), then there exists a stable

MMO with signature 1i.
Theorem 3.3 says that we should observe a succession of stable 1i MMOs with

increasingly more SAOs as δ increases (assuming that µ remains fixed in such a
parameter variation). In the transition from a 1i to a 1i+1 MMO signature, that
is, in the regions in between intervals (δ−i , δ

+
i ) and (δ−i+1, δ

+
i+1), we expect to find
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more complicated signatures, which are usually a mix of 1i and 1i+1. Geometrically,
different stable MMOs are selected as one moves the flow map in Figure 7(a) up
or down; since the rotational sector Ik+1 for general ε-dependent systems has much
larger width than the other sectors, one should expect that the transitions through Ii
with i ≤ k happen rather quickly during a parameter-induced variation of δ.

If µ = O(ε1/2), that is, assumption (A0) does not hold, then we may still expect
stable MMO signatures of type 1k+1, as soon as the global returns falls inside the
funnel region and δ = O(1) [144]; note that k = O(1/ε1/2) and the amplitudes of the
SAOs for such an MMO will again be tiny. If µ = O(ε1/2) and δ = O(ε1/2) as well, the
mixed MMO signatures with larger-amplitude SAOs are more likely to occur. For ex-
ample, Figure 20 in section 4 displays an MMO of type 1213 in the Koper model. Here,
global returns come very close to the secondary maximal canard ξ2, first slightly to the
left (hence, into the rotational sector I2 with two SAOs) and then slightly to the right
(hence, into the rotational sector I3 with three SAOs), creating this MMO signature.

The theory described so far does not capture all of the possible dynamics near
a folded node. If higher-order terms are included in the normal forms (3.1)–(3.2),
then equilibria may appear in an O(ε1/2) neighborhood of the folded node as soon as
µ = O(ε1/2) or smaller. This observation motivates our study of the singular Hopf
bifurcation in three dimensions.

3.2. MMOs Due to a Singular Hopf Bifurcation. Equilibria of a slow-fast sys-
tem (2.1) always satisfy f(x, y, λ, ε) = 0; generically, they are located in regions where
the associated critical manifold S is normally hyperbolic. However, in generic one-
parameter families of slow-fast systems, the equilibrium may cross a fold of S. When
this happens the folded singularity at which the equilibrium crosses the fold curve is
an actual equilibrium of the slow-fast system. In generic vector fields with two slow
variables the folded singularity thus created is a folded saddle-node, which exists ex-
actly at the specific parameter value at which the equilibrium crosses the fold curve;
one speaks of a folded saddle-node of type II [162]. This is distinguished from the
folded saddle-node of type I [214, 144], which refers to a saddle-node bifurcation of
the reduced flow only, meaning that it does not involve a true equilibrium of the full
system. This distinction stems from the fact that—as we have seen with the exam-
ples of the folded saddle and the folded node—a singularity of the reduced system
need not be the projection of an equilibrium of the full slow-fast system. However, a
folded saddle-node of type II is an actual equilibrium of the full system. Importantly,
this implies that, when ε > 0, the system has a singular Hopf bifurcation which oc-
curs generically at a distance O(ε) in parameter space from the folded saddle-node
bifurcation of type II [87].

In order to obtain a normal form for the singular Hopf bifurcation, we follow [87]
and add higher-order terms to the normal form (3.1) of the folded node, to obtain

(3.5)


ε ẋ = y − x2,
ẏ = z − x,
ż = −ν − a x− b y − c z.

As with (3.1), we apply the standard scaling [214] x = ε1/2 x̄, y = ε ȳ, z = ε1/2 z̄, and
t = ε1/2 t̄; system (3.5) then becomes

(3.6)


x̄′ = ȳ − x̄2,
ȳ′ = z̄ − x̄,

z̄′ = −ν − ε1/2 a x̄− ε b ȳ − ε1/2 c z̄.
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This scaled vector field provides an O(ε1/2) zoom of the neighborhood of the folded
singularity where SAOs are expected to occur. The scaling removes ε from the first
equations, while the coefficients a, b, and c of the third equation become ε-dependent;
ν remains fixed. Note that the coefficient of ȳ tends to 0 faster than those of x̄, z̄ as
ε → 0. This feature makes the definition of normal forms for slow-fast systems some-
what problematic: scalings of the state-space variables and the singular perturbation
parameter ε interact with each other. These ε-dependent scalings play an important
role in “blow-up” analysis of fold points and folded singularities.

In contrast to the normal form (3.1) of a folded node, system (3.6) possesses equi-
libria for all values of ν. If ν = O(1), then these equilibria are far from the origin,
with coordinates that are O(ε−1/2) or larger. Since we want to study the dynamics
near a folded singularity, the ε-dependent terms in (3.6) play little role in this pa-
rameter regime and the system can be regarded as an inconsequential perturbation
of the folded-node normal form (3.4); hence, if ν = O(1), then Theorems 3.2 and 3.3
apply. On the other hand, if ν = O(ε1/2) or smaller, then one equilibrium lies within
an O(1)-size domain of the phase space. This equilibrium is determined by the coef-
ficients a and c (to leading order) and plays an important role in the local dynamics
near a folded singularity [87, 144]. In particular, the equilibrium undergoes a singular
Hopf bifurcation for ν = O(ε) [87]. Thus, for parameter values ν = O(ε1/2) or smaller,
the higher-order terms in the third equation of (3.6) are crucial.

So what is the most appropriate normal form of a system that undergoes a singular
Hopf bifurcation? Several groups have derived system (3.5), but drop the term by
because it has higher order in ε after the scaling. However, this term appears in the
formula for the lowest-order term in ε of the first Lyapunov coefficient of the Hopf
bifurcation of (3.5) and, hence, must be retained if we hope to determine a complete
unfolding of the singular Hopf bifurcation [87].

The MMOs that occur close to the singular Hopf bifurcation have a somewhat dif-
ferent character than those generated via the folded-node mechanism. Guckenheimer
and Willms [95] observed that a subcritical (ordinary) Hopf bifurcation may result in
large regions of the parameter space being funneled into a small neighborhood of a
saddle equilibrium with unstable complex eigenvalues. After trajectories come close
to the equilibrium, SAOs grow in magnitude as the trajectory spirals away from the
equilibrium. Similar MMOs may pass near a singular Hopf bifurcation. Then the
equilibrium is a saddle-focus and trajectories on the attracting Fenichel manifold are
funneled into a region close to the one-dimensional stable manifold of the equilibrium.
SAOs occur as the trajectory spirals away from the equilibrium. We review here our
(still incomplete) understanding of singular Hopf bifurcations and the MMOs passing
nearby.

The normal form (3.5) does not yield MMOs because there is no global return
mechanism; trajectories that leave the vicinity of the equilibrium point and the fold
curve flow to infinity in finite time. This property can be changed by adding a cubic
term to the normal form that makes the critical manifold S-shaped, similar to the
Van der Pol equation:

(3.7)


ε ẋ = y − x2 − x3,
ẏ = z − x,
ż = −ν − a x− b y − c z.

This modification of the normal form for the singular Hopf bifurcation was derived
previously as a “reduced” model for MMOs [123, 139]. System (3.7) introduces only
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Fig. 9 Phase portrait of an MMO periodic orbit Γ (black curve) for system (3.7) with (ν, a, b, c, ε) =
(0.0072168,−0.3872,−0.3251, 1.17, 0.01). The critical manifold S (gray) is the S-shaped sur-
face with folds at x = 0 and x = − 2

3
. The orbit Γ is composed of two slow segments near

the two attracting sheets of S and two fast segments, with SAOs in the region near the equi-
librium p on the repelling sheet Sr of S just past the fold at x = 0. Panel (a) shows a
three-dimensional view and panel (b) the projection onto the (x, y)-plane.

a small perturbation near the origin, but the S-shaped critical manifold creates the
possibility that trajectories leaving a neighborhood of the origin might return, as
illustrated in Figure 9. Figure 9 shows an example of the overall structure of MMOs
in system (3.7) with small ν, namely, for (ν, a, b, c, ε) = (0.0072168,−0.3872,−0.3251,
1.17, 0.01); note that ν = O(ε). The S-shaped critical manifold S is the gray surface in
Figure 9(a); a top view is shown in panel (b). The manifold S has two fold curves, one
at x = 0 and one at x = − 2

3 , that decompose S into one repelling and two attracting
sheets. For our choice of parameters there exists a saddle-focus equilibrium p on the
repelling sheet that is close to the origin (which is the folded-node singularity). The
equilibrium p has a pair of unstable complex conjugate eigenvalues. A stable MMO
periodic orbit Γ, shown as the black curve in Figure 9, interacts with p as follows.
Starting just past the fold at x = 0, that is, in the region near the origin with x < 0,
the orbit Γ spirals away from p along its two-dimensional unstable manifold and
repeatedly intersects the repelling sheet Sr of S. As soon as Γ intersects the repelling
slow manifold (not shown), it jumps to the attracting sheet of S with x < − 2

3 . The
orbit Γ then follows this sheet to the fold at x = − 2

3 , after which it jumps to the
attracting sheet of S with x > 0. Then Γ returns to the neighborhood of p and the
periodic motion repeats.

The MMO periodic orbit Γ displayed in Figure 9 is only one of many types of
complex dynamics present in system (3.7). One aspect of the complex dynamics
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Fig. 10 A chaotic MMO trajectory of system (3.7) with (ν, a, b, c, ε) = (0.004564,−0.2317, 0.2053,
1.17, 0.01). Panel (a) shows the time series of the x-coordinate of the trajectory from t = 100
to t = 200, and panel (b) the projection of the trajectory onto the (x, y)-plane.

in system (3.7) is the fate of the periodic orbits created in the Hopf bifurcation.
There are parameter regimes for (3.7) with stable periodic orbits of small amplitude
created by a supercritical Hopf bifurcation. Subsequent bifurcations of these periodic
orbits may be period-doubling or torus bifurcations [87]. Period-doubling cascades
can give rise to small-amplitude chaotic invariant sets that may be associated with
chaotic MMOs. For example, Figure 10 plots a chaotic MMO trajectory for (3.7) with
(ν, a, b, c, ε) = (0.004564,−0.2317, 0.2053, 1.17, 0.01) that arises from such a period-
doubling cascade of the periodic orbit emerging from the singular Hopf bifurcation.
It appears that it is chaotic because of the nonperiodicity of its time series, shown
for the x-coordinate in Figure 10(a). A two-dimensional projection onto the (x, y)-
plane is shown in panel (b). Note that this trajectory does not come close to either
the equilibrium point p or the folded singularity at the origin. As ν decreases from
the value used in Figure 10 (where ν is already of order O(ε)), the large-amplitude
epochs of the trajectories become less frequent and soon disappear, resulting in a
small-amplitude chaotic attractor. Section 4 discusses a rescaled subfamily of (3.7),
giving further examples of complex dynamics and some analysis of the organization
of MMOs associated with this system.

We would like to characterize the parameter regimes with MMOs for which the
SAOs are solely or partially due to spiraling along the unstable manifold Wu(p) of a
saddle-focus p. Analysis of this issue appears to be significantly more complicated than
that for folded nodes and has barely begun. We offer a few insights into locating these
parameter regimes. First, we think of ν in the normal form (3.7) of the singular Hopf
bifurcation as the “primary” bifurcation parameter and seek ranges of ν where MMOs
are found. If the Hopf bifurcation at ν = νH is supercritical, then, for parameters
close enough to the Hopf bifurcation, the limit set of Wu(p) is just the bifurcating
stable periodic orbit. The onset of MMOs is observed to occur at a distance ν = O(ε)
from the Hopf bifurcation due to a new type of bifurcation [87]. This bifurcation
occurs at parameters where p is a saddle-focus and Wu(p) is tangent to the two-
dimensional repelling Fenichel manifold Sr

ε . At first glance one might think that two
unstable objects in a dynamical system cannot intersect. However, recall that Wu(p)
consists of trajectories that approach p as t → −∞, while Sr

ε consists of forward
trajectories that remain slow for an O(1) time on the slow time scale. Consequently,
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y
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(a)
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ε

Σ

(b)

.
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Fig. 11 Tangency between the unstable manifold Wu(p) of the equilibrium and the repelling slow
manifold Sr

ε of (3.7) with (ν, a, b, c, ε) = (0.007057, 0.008870,−0.5045, 1.17, 0.01). Panel (a)
shows trajectories of Wu(p) (red) and Sr

ε (blue) that are terminated on the green cross-
section Σ defined by y = 0.3. The intersections Wu(p) ∩ Σ (with points on computed
trajectories marked “o”) and Sr

ε ∩Σ (with points on computed trajectories marked “x”) are
shown in panel (b).

it is possible for a single trajectory to satisfy the criteria to belong to both of these
objects. Figure 11 illustrates an example of a tangency betweenWu(p) and Sr

ε for (3.7)
with (ν, a, b, c, ε) = (0.007057, 0.008870,−0.5045, 1.17, 0.01) (note that ν = O(ε) and,
hence, is very close to νH ≈ −8.587 × 10−5). Shown are a collection of trajectories
on Wu(p) (red) that start close to p and end in the cross-section Σ := {y = 0.3},
together with a collection of trajectories on Sr

ε that start on the repelling sheet of
the critical manifold and also end in Σ; see section 8.1 for details of the method used
to compute these manifolds. Figure 11(b) shows the tangency of the two intersection
curves of Wu(p) and Sr

ε with Σ.
The number of SAOs that an MMO periodic orbit Γ makes along Wu(p) is de-

termined by how close Γ comes to p and by the ratio of real to imaginary parts of the
complex eigenvalues of p. The only way to approach p is along its stable manifold
W s(p), so an MMO like that displayed in Figure 9 must come very close to W s(p).
The minimum distance d between an MMO and W s(p) is analogous to the distance δ
of a trajectory from the primary strong canard in the case of folded nodes. Unlike for
the case of a folded node, the maximal amplitude of the SAOs observed near Wu(p)
is largely independent of d. What does change as d → 0 is that the epoch of SAOs
increases in length and begins with oscillations that are too small to be detectable.
There has been little investigation of how the parameters of the normal form (3.7)
influence d, but Figure 8 in Guckenheimer [87] illustrates that d depends upon the
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parameter c in a complex manner. It is known that there are parameter regions where
the global returns of MMO trajectories are close to W s(p). Nevertheless, since MMOs
are not found immediately adjacent to a supercritical Hopf bifurcation, the ratio of
real to imaginary parts of the complex eigenvalues remains bounded away from 0 on
MMO trajectories. This prevents the appearance of extraordinarily long transients
with oscillations that grow arbitrarily slowly like those found near a subcritical Hopf
bifurcation; see section 5 and also [89, Figure 5].

The singular Hopf and folded-node mechanisms for creating SAOs are not mu-
tually exclusive and can be present in a single MMO in the transition regime with
ν = O(ε1/2). The specific behavior that one finds depends in part on whether the
equilibrium p near the singular Hopf bifurcation is a saddle-focus with a pair of com-
plex eigenvalues or a saddle with two real eigenvalues. The MMO displayed in Fig-
ure 21 contains some SAOs that lie inside the rotational sectors between the attracting
and repelling slow manifolds and some SAOs that follow the unstable manifold of the
saddle-focus equilibrium. On the other hand, we note that SAOs cannot be associated
with a saddle equilibrium that has only real eigenvalues; this occurs in a parameter
region with ν > (a + c)ε1/2 (to leading order), but ν = O(ε1/2) here. Hence, in this
situation SAOs are solely associated with the folded-node-type mechanism described
for ν = O(1) (that is, µ = O(1)). Krupa and Wechselberger [144] analyzed the tran-
sition regime ν = O(ε1/2) and showed that the folded-node theory can be extended
into this parameter regime provided the global return mechanism projects into the
funnel region.

Slow-fast systems with a single fast variable, like the ones we have used to study
folded nodes and singular Hopf bifurcations, do not have fast oscillations. Their fast
subsystems are one-dimensional, and the trajectories of vector fields on the line are
constrained to be monotone. This means that LAOs in these systems are always
relaxation oscillations whose trajectories cross a critical manifold in order to change
their orientation along the fast direction. Models of MMOs with LAOs that do not
appear to be relaxation oscillations must, therefore, have at least two fast variables;
the oscillations of the BZ reaction displayed in Figure 1 are such an example. The
next section discusses systems with three time scales. Such systems can be viewed
as intermediate between the cases of one and two fast variables, and they do feature
“simple” MMOs with L > 1.

3.3. MMOs in Three-Time-Scale Systems. When the coefficients ν, a, b, and
c in the normal forms (3.5) and (3.7) of the singular Hopf bifurcation are of order
O(ε) or smaller, then z evolves slowly relative to y and the system actually has three
time scales: fast, slow, and superslow. Krupa, Popović, and Kopell [139] studied this
regime with geometric methods and asymptotic expansions for the case a = c = 0.
They observed MMOs for which the amplitudes of the SAOs remain relatively large.
Their analysis is based upon rescaling the system such that it has two fast variables
and one slow variable. To make the three-time-scale structure explicit, we set ν = εν̂,
a = εâ, b = εb̂, and c = εĉ. Rescaling the singular Hopf normal form (3.7) of
section 3.2 by x = ε1/2 x̄, y = ε ȳ, z = ε1/2 z̄, and t = ε1/2 t̄ yields

(3.8)


ẋ = y − x2 − ε1/2x3,
ẏ = z − x,

ż = ε(−ν̂ − ε1/2 â x− ε b̂ y − ε1/2 ĉ z),

which is still a singularly perturbed system, but now has two fast variables, x and
y, and a slow variable z. An equilibrium lies within an O(1)-size domain around the
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Fig. 12 Phase portraits of system (3.9) for three different values of z. Shown are several trajectories
(black) and one trajectory (gray) that approximates a separatrix. For each z, there is a
single equilibrium point p at (x, y) = (z, z2). Panels (a)–(c) are for z = 2, z = 0.25, and
z = 0, for which p is a stable node, a stable focus, and a center surrounded by a continuous
family of periodic orbits, respectively. The boundary of this family is the maximal canard.

origin if ν̂ = O(ε1/2) or smaller, i.e., ν = O(ε3/2) or smaller. This equilibrium plays an
important role in the dynamics if it is of saddle-focus type; in particular, it undergoes
a Hopf bifurcation for ν̂ = O(ε), i.e., ν = O(ε2).

We start the analysis by considering the two-dimensional layer problem of (3.8),
in which z acts as a parameter. It is given by

(3.9)


ẋ = y − x2,
ẏ = z − x,
ż = 0

and is exactly the same as the system obtained in the analysis of the planar canard
problem, where the parameter λ is replaced by z; compare with system (2.7). Sys-
tem (3.9) has a unique equilibrium p for each value of z, given by (x, y) = (z, z2).
Figure 12 shows phase portraits of (3.9) in the (x, y)-plane for three different values
of z, namely, z = 2, z = 0.25, and z = 0 in panels (a), (b), and (c), respectively.
For z > 0, the equilibrium p is an attracting fixed point in the (x, y)-plane; it is a
node for z > 1 and a focus for 0 < z < 1; note that this information also determines
the type of equilibrium of (3.8) obtained for ν̂ = O(ε1/2) to leading order—the same
argument can also be used to determine the basin boundary of the saddle-focus equi-
librium in section 3.2. The basin boundary of p is an unbounded trajectory that is
shown in gray in panels (a) and (b). When z = 0, the vector field (3.9) has a time-
reversing symmetry that induces the existence of a family of periodic orbits. Indeed,
the function

H(x, y) = exp(−2y) (y − x2 + 1/2)

is an integral of the motion and the level curve H = 0 is a parabola that separates
periodic orbits surrounding p (the origin) from unbounded orbits that lie below the
parabola and become unbounded with x → ±∞ in finite time.

When z remains small and is slowly varying compared to x and y, system (3.8)
can be viewed as a perturbation of (3.9). In this situation, changes in H can be used
to monitor the SAOs of trajectories. We demonstrate this with a numerical study
of MMOs in the (unscaled) singular Hopf normal form (3.7), where we focus on the
case a = c = 0 studied in [139]. We further fix b = −0.005 and ε = 0.01 and vary
the parameter ν. Then ż = −ν − by, which implies that z increases when y is large
but decreases when the system has SAOs and y is small. More precisely, we want
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Fig. 13 Stable periodic MMOs of system (3.7) with (a, b, c, ε) = (0,−0.005, 0, 0.01). Row (a) shows
the periodic MMO with signature 14 for ν = 0.00015 as a time series of x in panel (a1) and
in projection onto the (z, y)-plane in panel (a2); similar projections are shown in row (b)
for ν = 0.00032, where the periodic MMO has signature 91.

the average value of z to increase during epochs of SAOs and decrease during epochs
of LAOs. The changes in z should be of sufficient magnitude to drive the trajectory
across the slow manifolds and trigger a transition between these epochs.

Figure 13(a) displays a periodic MMO with signature 14 found at ν = 0.00015
(which is of order O(ε2)). Note that, for this choice of parameters, ż = 0 on the
plane y = 0.03. The projection in panel (a2) of the orbit onto the (z, y)-plane shows
that z decreases approximately from −0.003713 to −0.004143, while the trajectory
makes four SAOs, and z increases during a single LAO. Note that system (3.7) also
possesses two equilibria with z-coordinates given by ±√−ν/(b ε), which equals ±√

3
in this case. However, the MMO signature shown in panel (a2) is confined to the area
near the origin (in the z-direction), so these two equilibria have no influence on the
dynamics.

As ν increases, the value of y for which ż = 0 increases, and trajectories have a
propensity to pass more quickly through the region of SAOs. Figure 13(b) shows a
periodic MMO with signature 91 obtained for ν = 0.00032. This value of ν lies close
to the upper end of the range in which MMOs seem to exist for the chosen values
of (a, b, c, ε) = (0,−0.005, 0, 0.01), and ż = 0 when y = 0.064. As the projection
in panel (b2) illustrates, the average value of z increases (|z| decreases) during each
LAO, but it takes nine LAOs before it crosses the threshold into the region of SAOs.
On the other hand, a single SAO takes the trajectory back to the region of LAOs.
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Fig. 14 Return map of system (3.7) with (ν, a, b, c, ε) = (0.0003, 0,−0.005, 0, 0.01) to the section
x = 0. Panel (a) shows that the return is almost one dimensional along a line that is
approximately given by y = 0.1153 z−0.004626. The z-coordinates of the returns for initial
conditions along this line with z ∈ [−0.0043,−0.004] are plotted versus their initial z-values
in panel (b).

For intermediate values of ν ∈ (0.00015, 0.00032), the system displays aperiodic
MMOs as well as periodic MMOs with a variety of signatures. These signatures can
be analyzed via an approximately one-dimensional return map to a cross-section at
x = 0. Returns to this cross-section with x decreasing appear to lie along a thin strip;
this is illustrated in Figure 14(a) for ν = 0.0003, for which the system appears to have
aperiodic MMOs. The thin strip in Figure 14(a) is approximately given by the line
y = 0.1153 z−0.004626 (and x = 0). If we take 600 initial conditions on this line with
z ∈ [−0.0043,−0.004], then their next returns to the cross-section fall onto two seg-
ments that are close to the initial line and within the segment z ∈ [−0.0043,−0.004].
Figure 14(b) graphs these returns, showing the z-coordinates z out of returns of the
600 initial conditions versus their initial z-coordinates z in; the diagonal z out = z in is
also pictured. This figure suggests that the return map near the line segment can be
approximated by a rank-one map with two segments of slopes close to one, separated
by a steep segment for initial values z in ≈ −0.004055. The return map increases z
on the left “branch” of this map and decreases z on the right branch. This is the
behavior described above, since larger values of z correspond to SAOs and smaller
values to LAOs. Trajectories that do not hit the steep section of the map go back and
forth repeatedly between the two branches. As ν varies, the “shape” of the return
map remains qualitatively the same: the two branches still have slopes close to one,
but their offset from the diagonal varies. Approximately for ν < 0.00013, the image of
the right branch, representing SAOs, maps to itself, while for ν > 0.00034, the image
of the left branch maps to itself, and the system only has a large periodic relaxation
oscillation with no SAOs. In the range of ν where MMOs do exist, kneading theory for
one-dimensional maps [41] can be applied to the numerically generated return maps
to predict the signatures of the MMOs.

Further insight into the steep segment of the return map at z = z in ≈ −0.004055
comes from computing intersections of the attracting and repelling slow manifolds.
We computed forward trajectories from initial conditions on the attracting sheet (with
x < − 2

3 ) and backward trajectories from initial conditions on the repelling sheet of
the critical manifold to their intersection with the cross-section {x = 0}. Since the
trajectories quickly converge to the attracting and repelling slow manifolds, their
intersections with {x = 0} give a good approximation of the intersection curves of
the slow manifolds with {x = 0}. These two intersection curves have one point in
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common, which is approximately (y, z) = (−0.0050941,−0.0040564). Hence, this
point lies in the region that gives rise to the steep segment shown in Figure 14(b).
By definition, the intersection of the attracting and repelling slow manifolds is a
maximal canard. Initial conditions on the cross-section {x = 0} to one side of the
repelling manifold result in SAOs, while trajectories on the other side result in fast
jumps to the other sheet of the attracting slow manifold (with x > 0). Thus, we have
confirmed numerically that canard orbits separate the two branches of the return map
displayed in Figure 14(b); compare also with Figure 7(a), which illustrates that the
one-dimensional return map calculated near a folded node has several steep sections
that correspond to the primary strong canard and the maximal secondary canards of
the problem.

3.4. MMOs Due to the Tourbillon Mechanism of a Dynamic Hopf Bifurca-
tion. Recall from section 3.3 that the abrupt transitions between SAOs and LAOs
in system (3.8) are a consequence of the three-time-scale structure, which allows us
to view the system as having two fast variables and only one slow variable. Such
a system with two or more fast variables may have a Hopf bifurcation in the layer
equations. We now consider this situation, and assume that a pair of complex eigen-
values of the layer equations cross the imaginary axis as one follows a trajectory of the
reduced system. Due to the complex eigenvalues in the fast directions, trajectories
spiral around the slow manifold, which gives rise to oscillations. The amplitude of
such an oscillation initially decreases (while the real part of the complex eigenvalues is
negative) and then increase again (after the real part becomes positive). We refer to
this situation as a dynamic Hopf bifurcation. Our primary goal is to determine when
MMOs have SAOs that are associated with a dynamic Hopf bifurcation. Note that,
unlike in systems with a single fast variable, this type of SAO is associated neither
with a folded singularity of the critical manifold nor with a (singular) Hopf bifurcation
of the system for ε > 0.

A well-known example of a dynamic Hopf bifurcation is the phenomenon of de-
layed Hopf bifurcation. For simplicity, we discuss it here for a system with one slow
and two fast variables, the lowest dimensions possible. Consider a segment L on the
one-dimensional critical manifold S along which the layer equations undergo a Hopf
bifurcation. That means that the linearization of the layer equations along L has a
pair of complex eigenvalues α± iβ that cross the imaginary axis transversally. In the
case of a supercritical Hopf bifurcation, a one-parameter family of attracting periodic
orbits of the layer equations, parameterized by the slow variable, emanates from the
point L0 ∈ L where α = 0. If a trajectory u(t) of the full system comes close to L
near a point Lu ∈ L that lies at a distance δ = |Lu − L0| = O(1) from L0, then u(t)
will come exponentially close to L on the slow time scale. The layer equations un-
dergo a Hopf bifurcation, but, in analytic systems, u(t) remains close to L for an O(1)
distance after the Hopf bifurcation has occurred [169]. This delay happens because it
takes an O(1) time for u(t) to be repelled away from L. In particular, u(t) does not
immediately follow the periodic orbits of the layer equations emanating from L0. The
slow-fast analysis identifies a definite “jump” point (called a buffer point) at which
u(t) leaves L and approaches the periodic orbits, if it has not done so earlier. There
are SAOs along L in a delayed Hopf bifurcation, but they are exponentially small
near L0 and the jump from L to the periodic orbits may occur within a single period
of the SAOs. Thus, SAOs near a delayed Hopf bifurcation are typically so small that
they are unobservable in practical examples. This situation is reminiscent of MMOs
associated with folded nodes with δ = O(1). More specifically, Theorem 3.2 predicts
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maximal 1k+1 MMO signatures but, due to strong contraction toward the primary
weak canard γw on Sa,ε, only the final rotation is actually observed; see Figure 7(b4).

In a number of examples, such as those in sections 6 and 7, one actually ob-
serves MMOs with SAOs near a dynamic Hopf bifurcation whose amplitudes remain
observably large. We adopt the term tourbillon from Wallet [235] to describe the
trajectories passing through a dynamic Hopf bifurcation with oscillations whose am-
plitude remains above an observable threshold. We discuss the tourbillon and how it
gives rise to MMOs also in systems with one slow and two fast variables. Consider
the model system

(3.10)


ẋ = −y + z x,
ẏ = x+ z y,
ż = ε

that is obtained by linearization of the layer equations for a dynamic Hopf bifurcation.
This equation is separable in polar coordinates, yielding ṙ = ε t r for trajectories
that have initial conditions in the plane {z = 0}. Hence, the general solution is
r(t) = r(0) exp(ε t2/2), which means that the amplitude of a solution decreases for

z < 0 and then increases for z > 0. We conclude that r(1/
√

ε)
r(0) = exp(1

2 ) and that

the oscillations have almost constant amplitude over a time interval of 1/
√
ε. If the

r-coordinate of a trajectory decreases to r = 1 at a value of z that is O(
√
ε), then the

minimum amplitude of the oscillations associated with the dynamic Hopf bifurcation
will still be observable. The amplitudes of these oscillations and the coupling of ε with
the distance of approach to the dynamic Hopf point characterize the tourbillon regime
and distinguish it from a delayed Hopf bifurcation. When ε is fixed in a system, the
distinction between a delayed Hopf point and a tourbillon becomes blurred, but it is
clear in many examples.

System (3.10) describes SAOs with distinctly nonzero amplitudes locally near the
point where the dynamic Hopf bifurcation occurs in the layer equations. However,
it does not account for characteristic abrupt transitions at the beginning and end
of an SAO epoch within an MMO, such as those in sections 6 and 7, because these
transitions depend upon mechanisms that are not part of the local analysis of system
(3.10). There is as yet no comprehensive study of possible geometric mechanisms
that determine the sudden start and the end of a section of SAOs arising from a
tourbillon. This paper largely avoids this issue and concentrates on local mechanisms
for generating the SAOs of MMOs. Nevertheless, the following example illustrates
one mechanism for an abrupt jump away from SAOs of a tourbillon. Consider a
“dynamic” section through the unfolding of the codimension-two Bogdanov–Takens
bifurcation [90], defined as

(3.11)


ẋ = y,
ẏ = λ+ z y − x2 − x y,
ż = ε.

As before, we regard z as a slowly varying parameter. For λ > 0 and ε = 0, the system
has two straight lines of equilibria defined by x = ±√

λ and y = 0. A supercritical Hopf
bifurcation occurs along the line of equilibria with x > 0. The family of periodic orbits
born at this bifurcation terminates at a homoclinic orbit. Moreover, there is always a
bounded region of the (x, y)-plane in which oscillations around the equilibrium occur;
this is the tourbillon region. The line of (saddle) equilibria with x < 0 of the layer
equations perturbs to a Fenichel manifold of saddle type and its stable and unstable
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Fig. 15 Time series of the x-coordinate of a trajectory of (3.11) with initial point (x, y, z) =
(−1, 0.8,−0.12). Panels (a)–(c) are for λ = 0.1 and for ε = 0.006, ε = 0.012, and ε = 0.02,
respectively.

manifolds guide the entrance and exit to the tourbillon in this example. As we have
seen, the number of oscillations and their minimum amplitude is determined by the
magnitude both of the initial condition and of ε. This is illustrated in Figure 15 with
trajectories of system (3.11) for λ = 0.1 and different values of ε, all starting from
the initial condition (x, y, z) = (−1, 0.8,−0.12) that lies outside the tourbillon region.
Note that x and y are O(1) quantities, and so the condition for a tourbillon is that |z|
is of order

√
ε. In Figure 15(a) for ε = 0.006 we do not find a tourbillon but observe

oscillations that decay rapidly, are very small for a while, and then grow rapidly again
before the trajectory jumps away. In panel (b) for ε = 0.012, on the other hand, the
oscillations decay and then grow more gradually and they remain of observable size
throughout. We conclude that ε is now just about large enough to speak of a tourbillon
region, passage through which results in seven SAOs before the jump occurs. For even
larger values of ε the same initial condition results in oscillations that maintain an
almost constant amplitude; see Figure 15(c) for ε = 0.02. Observe that, owing to the
faster drift through the region near the Hopf bifurcation in the layer system, we now
find only three SAOs before the trajectory jumps away.

It is interesting to compare the SAOs associated with a tourbillon with those
occurring near a folded node or near a singular Hopf bifurcation. The first difference
between these types of SAOs is that the period of the oscillations is O(ε) (slow time)
for the tourbillon, while it is O(

√
ε) for the other two cases. Second, the minimum

amplitude and the number of SAOs for a tourbillon are governed by the singular
perturbation parameter and the distance of the global return to the delayed Hopf
bifurcation point. For the folded node, the eigenvalue ratio µ and the distance δ of
the global return to the strong canard determine the minimum amplitude and num-
ber of the SAOs, while for the singular Hopf bifurcation these properties of the SAO
are determined only by the distance of the global return to the stable manifold of
the saddle-focus equilibrium. Finally, the termination of the SAOs for a tourbillon
depends upon either a global mechanism or some defined threshold for the ampli-
tude of SAOs. There is no distinguished termination mechanism associated with a
folded node, but the intersections of the unstable manifold of the equilibrium and the
repelling slow manifold typically limit the amplitude of SAOs near a singular Hopf
bifurcation.

3.5. Summary of Local Mechanisms for SAOs. We now summarize the main
results of this review section on the local mechanisms that give rise to MMOs. For
systems with a single fast variable, the local mechanisms responsible for SAOs must
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involve a mixture of the two time scales. We distinguish three regions near folded
nodes and folded saddle-nodes that yield MMOs:

1. Folded Nodes: If the parameters satisfy suitable order conditions (ν = O(1))
so that no equilibrium of the full system is near the folded node, then the
theory of section 3.1 applies and SAOs are due to the twisting of slow mani-
folds.

2. Singular Hopf: As is shown in the section 3.2, the dynamics near a singular
Hopf bifurcation (ν = O(ε)) tends to be quite complicated. SAOs occur when
the trajectory follows the unstable manifold of a saddle-focus .

3. Transition Regime: The folded-node and singular Hopf regimes are separated
by a transition regime with intermediate values of ν = O(

√
ε). Extensions of

the folded-node theory have been developed in [144]; note that the parameter
µ in [144] not only represents the eigenvalue ratio, but also describes the
distance of the equilibrium to the folded node in a blown-up system. In this
transition regime, it is possible for the SAOs to pass through the rotational
sectors of the folded node as well as spiral along the unstable manifold of the
saddle-focus equilibrium.

In systems with at least two fast variables the tourbillon provides a different local
mechanism that generates SAOs. Here, the layer equations have complex eigenvalues
and the SAOs are aligned with the fast directions of the system. Little systematic
study of the tourbillon as a mechanism that generates MMOs has been carried out,
and the theory remains fragmentary.

Finally, three-dimensional systems with three time scales can exhibit all of the
mechanisms discussed in this section. In other words, a three-time-scale system may
be considered as having two slow variables, in which case the folded-node and singular
Hopf mechanisms may be found, or, alternatively, as having two fast variables, which
allows for the possibility of a tourbillon.

The following sections are case studies that illustrate these different local mech-
anisms for MMOs:

• The Koper model in section 4 is a three-dimensional slow-fast system with a
folded node and a supercritical singular Hopf bifurcation.

• The three-dimensional reduced Hodgkin–Huxley model in section 5 also fea-
tures a folded node, but has a subcritical singular Hopf bifurcation.

• The four-dimensional Olsen model of the peroxidase-oxidase reaction in sec-
tion 6 displays MMOs associated with a tourbillon.

• The Showalter–Noyes–Bar-Eli model in section 7 is a seven-dimensional sys-
tem that exhibits MMOs. The global mechanism that organizes these MMOs
is unknown, but we show here that their SAOs are due to a tourbillon.

4. MMOs in the Koper Model of Chemical Reactors. Our first case study is a
system introduced by Koper [123]. We use it to illustrate how MMOs arise near a
folded node and near a (supercritical) singular Hopf bifurcation in a specific model
equation. The equations of the Koper model are

(4.1)


ε1 ẋ = k y − x3 + 3 x− λ,

ẏ = x− 2 y + z,
ż = ε2 (y − z),

where λ and k are parameters. Koper studied this three-dimensional idealized model
of chemical reactions with MMOs. While this example is well known, we revisit its
analysis and enhance it by using the recently developed theory outlined in the pre-
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vious sections. When ε1 and ε2 are both small, system (4.1) has three time scales;
when only ε1 is small, it is a slow-fast system with two slow variables y and z and
one fast variable x. We note that a two-dimensional variant of (4.1) was first studied
by Boissonade and De Kepper [26] in their efforts to understand bistability and os-
cillations of chemical systems. The first analysis of MMOs in the three-dimensional
extended model was carried out by Koper, who explained the MMOs by invoking the
presence of a Shil′nikov homoclinic bifurcation.

As mentioned in section 3.2, the Koper model (4.1) is a rescaled subfamily of the
cubic normal form (3.7) for the singular Hopf bifurcation. To see this, replace (x, y, z)
in system (4.1) by (u, v, w) and consider the affine coordinate change

x =
u− 1

3
, y =

k v − λ+ 2

27
, z =

2 v − w − 1

3
.

Now also scale time by the factor −k
9 , where we assume that k < 0. Then (4.1)

becomes (3.7) with ε = −k ε1/81, a = 18/k, b = 81 ε2/k
2, c = −9 (ε2 + 2)/k, and

ν = (3 ε2 λ− 6 ε2 − 3 k ε2)/k
2. Note that the coefficients of the normal form satisfy

2 b− a c+ a2 = 0,

which means that the Koper model (4.1) is only equivalent to a subfamily of the
singular Hopf normal form (3.7). However, (4.1) still has a folded node and a singular
Hopf bifurcation in certain parameter regimes.

Let us first analyze the parameter regimes where SAOs are organized by a folded
node. To this end, we work with both system (4.1) and the equivalent system

(4.2)


ε1 ẋ = y − x3 + 3 x,

ẏ = k x− 2 (y + λ) + z,
ż = ε2 (λ+ y − z),

which we refer to as the symmetric Koper model, because it has the symmetry

(4.3) (x, y, z, λ, k, τ) → (−x,−y,−z,−λ, k, τ).
System (4.2) is obtained by replacing (x, y, z) in system (4.1) by (u, v, w) and applying
the coordinate change x = u, y = k v − λ, and z = k w. We focus our analysis on the
case ε2 = 1 and consider (4.2) as a system with two slow variables. Observe that the
critical manifold of (4.2),

S = {(x, y, z) ∈ R
3 | y = x3 − 3 x =: c(x)},

does not depend on k and λ. This cubic-shaped critical manifold S has two fold curves
F± = {(x, y, z) ∈ R

3 | x = ±1, y = ∓2}, which gives the decomposition

S = Sa,− ∪ F− ∪ Sr ∪ F+ ∪ Sa,+,

where Sa,− = S ∩ {x < −1}, Sr = S ∩ {−1 < x < 1}, and Sa,+ = S ∩ {1 < x} are
normally hyperbolic. Note that Sa,± are attracting and Sr is repelling. To derive
the desingularized slow flow on S we consider the algebraic equation 0 = y − c(x),
obtained by setting ε1 = 0 in (4.2), and differentiate implicitly with respect to τ .
Then the time rescaling τ �→ τ(3 x2 − 3) gives

(4.4)

{
ẋ = k x− 2 (c(x) + λ) + z,
ż = (3 x2 − 3) (λ+ c(x) − z).
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Fig. 16 The “singular” bifurcation diagram in the (k, λ)-plane of the desingularized slow flow (4.4).
Shown are the folded saddle-node of type II (straight lines), the transition from a folded node
to a folded focus (parabolas), and the curve indicating where the candidate trajectory from
the folded node returns with δ = 0 (gray curve, obtained numerically), which is not shown
in panel (b). Panel (a) gives a global view and panel (b) is an enlargement of the region
near the right intersection point of the two parabolic curves. The types of folded equilibria
in each parameter region are indicated as follows: f = folded focus, n = folded node, and
s = folded saddle. The subscripts indicate whether the equilibrium lies on F+ or F−. The
superscripts a, r, and sa stand for attractor, repeller, and saddle, respectively.

The desingularization reverses the direction of time on the repelling part Sr of S. We
find folded singularities as equilibria of (4.4) that lie on the fold lines F±. The only
equilibrium on F+ is (x, z) = (1, 2λ − 4 − k), with y = −2, and the only one on F−
is (x, z) = (−1, 2λ+ 4 + k), with y = 2. The associated Jacobian matrices are

(4.5) A± =

(
k 1

6 (2 + k ∓ λ) 0

)
.

By classifying the folded singularities according to their type and stability, we
obtain a “singular” bifurcation diagram; we then use results from section 3 to identify
possible MMO regions. Figure 16 shows this singular bifurcation diagram in (k, λ)-
space, where we use the notation eh

± to indicate the type e and stability h of the
folded singularities; e is f , n, or s for focus, node, or saddle, and h is a, r, or
sa for attractor, repeller, or saddle, respectively. The different parameter regions
are divided by three types of curves. Folded saddle-nodes of type II occur when
det(A±) = 0 ⇔ λ = ±(k+2). The eigenvalues change from real to complex conjugate
along the parabolic curves tr(A±)

2 − 4 det(A±) = k2 + 24 (k ∓ λ) + 48 = 0. The
vertical line tr(A±) = k = 0 is the locus where the real part of a complex eigenvalue
changes sign. The enlargement in panel (b) resolves the region near (k, λ) = (−2, 0).

MMOs are likely to exist in the regions where system (4.2) has a folded node,
provided the global return mechanism brings orbits back into the associated funnel
region. Recall from section 3.1 the construction of a candidate periodic orbit Γc

that consists of a segment on Sa ending at the folded node, followed by a fast fiber
of the layer problem and a global return mechanism. Figure 17(a1) illustrates this
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Fig. 17 The candidate periodic orbit Γc of the folded node na+ of (4.2) with (ε1, ε2, λ, k) =
(0, 1,−7,−10) returns at a distance δ from the strong singular canard γ̃s. Panel (a1)
shows all of Γc and panel (a2) an enlargement near na+ to illustrate the definition of δ.
Panel (b) shows δ as a function of λ, with all other parameters fixed. The distance δ only
has meaning for δ > 0 and for values of λ larger than its value at the folded saddle-node of
type II at λ = −8.

construction for a candidate periodic orbit passing through na
+, where we used k =

−10 and λ = −7; this is a computational example of the sketch shown in Figure 8.
Starting at na

+, the candidate Γc jumps to Sa,−, which is followed by a slow segment
until Γc reaches F−. After another jump Γc returns inside the singular funnel, as
shown in Figure 17(a2), and we measure the distance δ to the strong singular canard
γ̃s. This distance δ depends on the parameters; for example, δ varies as a function
of λ with k = −10 fixed in Figure 17(b). Note that δ < 0 means that Γc no longer
returns to the singular funnel; as long as δ > 0 the candidate Γc gives rise to periodic
MMOs as ε1 > 0. Hence, the curve in the (k, λ)-plane along which δ = 0 marks
the start of the MMO regime. Figure 16(a) shows the locus of δ = 0 as a gray
curve; its symmetrical image corresponds to candidate periodic orbits for na

−. The
two (symmetric) parameter regions bounded by the lines of folded saddle-nodes of
type II, where ssa

± changes to na
±, and the curves where δ = 0 are the regimes where

MMOs are predicted to exist; note that the curves δ = 0 run all the way up to the
folded saddle-nodes of type II, which is not shown in Figure 16(b).

Koper identified a parameter region of “complex and mixed-mode oscillations”
for ε > 0 by using continuation methods; see Figure 1 on page 75 of [123]. We can
interpret his results as perturbations of the MMO regimes we identified in the singular
bifurcation diagram in Figure 16(a). To this end we consider bifurcations of equilibria
of (4.2) for ε > 0; this analysis was already carried out by Koper [123] for (4.1). The
bifurcation diagram in the (k, λ)-plane is shown in Figure 18 for ε1 = 0.01, with the
saddle-node curves (green) labeled SN and the Hopf curves (blue) labeled H. Included
are the curves of folded saddle-nodes of type II (dashed red) labeled FSN II; the curves
FSN II already predict the “cross-shaped” bifurcation diagram for the full system for
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Fig. 18 Bifurcation diagram for equilibria of the full system (4.2) with ε1 = 0.01. Shown are
saddle-node bifurcations (green, labeled SN) and Hopf bifurcations (blue, labeled H). The
saddle-node bifurcation curve has a cusp point (labeled C) and meets the Hopf bifurcation
curve in two Bogdanov–Takens points (labeled BT). The dashed curves are folded saddle-
nodes of type II (red, labeled FSN II) that occur in the singular limit (4.4).

ε1 > 0 sufficiently small [26]. In fact, this bifurcation structure persists over a wide
range of ε1. We find the saddle-node and Hopf bifurcation curves as follows. The
Jacobian matrix A of (4.2) on the fast time scale has the characteristic polynomial
σ3 + c2 σ

2 + c1 σ + c0 with coefficients

c2 = 3 (ε1 + x2 − 1), c1 = ε1 (ε1 + 9 x2 − k − 9), c0 = ε2
1 (3 x

2 − 3− k),

where x corresponds to an equilibrium, that is, x3 − (k + 3)x + λ = 0. Hence, a
saddle-node bifurcation occurs along a curve given by

c0 = − det(A) = 0 ⇔ λ = ±2

(
1 +

k

3

)3/2

,

which has a cusp point at k = −3 and does not depend on ε1; the cusp point is labeled
C in Figure 18. The Hopf bifurcation is found for c0 − c1 c2 = 0, provided c1 > 0. To
first order in ε1, we find

λ = ±
(
2 + k − 1

3
k ε1 +O(ε2

1)

)
,

which implies that the Hopf bifurcation curve H lies O(ε1) close to the curves of
folded saddle-nodes of type II, as expected. The saddle-node and Hopf bifurcation
curves coincide at two Bogdanov–Takens points (labeled BT) for k = − 1

2 ε1. The
MMO regime for ε1 > 0 lies in the region with k < 0 and it has a lower bound with
respect to λ along a curve that is close to H. We discuss this in more detail for fixed
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Fig. 19 Bifurcation diagram in λ for the Koper model (4.1) with (ε2, k) = (1,−10). Panels (a1)
and (a2) are for ε1 = 0.01 and panels (b1) and (b2) are for ε1 = 0.1 as used by Koper.
Panels (a1) and (b1) plot the period T and panels (a2) and (b2) the maxima of |x| versus
λ. A branch of periodic orbits (an “MMO” with signature 10) emanates from the Hopf
bifurcation H and coexists with isolas of MMOs with different signatures.

k = −10. Note that from now on we use the original equations (4.1), but this does
not alter the bifurcation diagrams of the (k, λ)-plane in Figures 16 and 18.

Koper [123] computed a numerical bifurcation diagram for fixed k = −10 and ε1 =
0.1 with λ > 0 as the free parameter; he found isolated closed curves of MMO periodic
orbits. We computed more detailed bifurcation diagrams, using the same system (4.1)
as Koper, where we concentrated on the (symmetrically related) region λ < 0 and
used ε1 = 0.01 as well as ε1 = 0.1. The result is shown in Figure 19, where row (a)
is for ε1 = 0.1 and row (b) for ε1 = 0.01. The vertical axis in panels (a1) and (b1) is
the period T of the periodic orbits, while in panels (a2) and (b2) it is the maximum
absolute value of the x-coordinate. A family of stable periodic orbits emanates from
the Hopf bifurcation H, but it quickly loses stability in a period-doubling bifurcation
PD. We abuse notation and label this family 10; the period-doubled family is labeled
20, and note that it appears as a disconnected curve in the (λ, T )-projection because
it has twice the period at the point PD. The 10 orbit becomes stable again in a
second period-doubling bifurcation, which is quickly followed by a fold (not labeled)
that renders it unstable, until a second fold SL, after which relaxation oscillations
are persistent. The MMOs reside on isolas that exist for the range of λ roughly in
between the two period-doubling bifurcations. We used alternatingly light- and dark-
blue colors to highlight these families; we found MMOs with signatures 1s with s
ranging from 2 to 14 as indicated in Figure 19.
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Fig. 20 An MMO periodic orbit with signature 1213 (black) generated by a folded-node singular-
ity of (4.1) for (ε1, ε2, λ, k) = (0.1, 1,−7,−10). Panel (a) shows a time series of the
x-coordinate. Panel (b) depicts the projection of the periodic orbit onto the (z, y)-plane to-
gether with nearby canard orbits ξ2, ξ3, and ξ4, and panel (c) shows these objects in phase
space together with the attracting and repelling slow manifolds Sa

ε1
(red) and Sr

ε1
(blue),

respectively.

The MMOs on the isolas in Figure 19 are generated by the folded-node mechanism;
we refer to section 5 for a more detailed discussion of MMOs on such isolas. Here,
we focus on the fact that MMOs with more complicated signatures can be found as
soon as the candidate periodic orbit returns close to a maximal canard. Figure 20
shows the stable MMO periodic orbit that exists for λ = −7; here, we used ε1 = 0.1.
Panel (a) shows a time series of the x-coordinate, which identifies the signature of this
MMO as 1213; a projection onto the (z, y)-plane is shown in panel (b). We computed
the attracting and repelling slow manifolds Sa

ε1 and Sr
ε1 , respectively. They are shown

D
ow

nl
oa

de
d 

03
/3

1/
24

 to
 7

8.
17

7.
16

4.
12

0 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

MIXED-MODE OSCILLATIONS WITH MULTIPLE TIME SCALES 249

in Figure 20(c) along with three maximal secondary canard orbits ξ2, ξ3, and ξ4 that
are also drawn in panel (b). The figure shows how both LAOs are funneled into the
folded-node region, practically on Sa

ε1 and very close to ξ2. Figure 20(b) illustrates
that they are actually separated by Sr

ε1 on either “side” of ξ2, which means that the
number of SAOs that follow for one of the LAOs is two, while for the other it is three,
as dictated by ξ3. Referring to Figure 7(a), a one-dimensional approximation of the
return map will have branches corresponding to trajectories that make increasingly
larger numbers of SAOs as they pass through the folded node, and the trajectory
shown in Figure 20(c) has returns that alternate between the branches corresponding
to two and three SAOs.

We observe that the last of the three SAOs has a distinctly larger amplitude, which
Figure 20 suggests is due to this oscillation following a canard and then executing a
jump back to Sa

ε1 . However, there is also an equilibrium q nearby. For k = −10 a
singular Hopf bifurcation occurs for λ = λH ≈ −7.67. We found that the folded node
in Figure 20 is at (x, y, z) = (1, [λ−2]/k, [2λ−4−k]/k) = (1, 0.9, 0.8) and the nearby
equilibrium q at (x, y, z) = (xq , xq, xq), where xq ≈ 0.897 is a root of x3−(k+3)x+λ.

We find pronounced SAOs generated by a singular Hopf bifurcation if we decrease
λ closer to the value λH ; note that we have to stay above the value of λ for which
there is a tangency between the unstable manifold Wu(q) of q and the repelling slow
manifold Sr

ε1 ; see also section 3.2. Figure 21 shows the MMO periodic orbit of (4.1)
for λ = −7.52. The time series of the x-coordinate shows SAOs that are quite different
from the SAOs in Figure 20(a). Figure 21(b) shows an enlarged bifurcation diagram
in the (k, λ)-plane with the parameter location of the two MMOs for Figures 20 and 21
indicated by two black dots at k = −10. The Hopf curve (solid blue) and the curve of
folded saddle-nodes of type II (dashed red) are labeled H and FSN II, respectively. The
MMO region is bounded by the curve δ = 0 (dashed black) and the tangency between
Wu(q) and Sr

ε1 (dashed cyan); in between the Hopf bifurcation and this tangency bi-
furcation the periodic orbits have small amplitudes and the transition to MMOs occurs
O(ε) away from the Hopf curve. There are two dots in Figure 21(b): the labeled one
lies well inside the MMO region and corresponds to the situation shown in Figure 20;
the second (unlabeled) dot lies very close to the tangency curve and corresponds to the
situation shown in the other panels of Figure 21. Figure 21(c) shows geometrically how
the SAOs are organized. The red and blue surfaces are the attracting and repelling
slow manifolds Sa

ε1 and Sr
ε1 , respectively. During the epoch of SAOs, the MMO peri-

odic orbit lies almost on Sa
ε1 and it cannot pass through Sr

ε1 , which twists very tightly
and forces a decrease in the amplitudes of the SAOs; this first part of the SAOs is still
reminiscent of the passage through a folded node, which lies at (1, [λ − 2]/k, [2λ −
4− k]/k) = (1, 0.952, 0.904), and their amplitudes decrease with ε1. Since S

r
ε1 spirals

around the one-dimensional stable manifold of q, the MMO periodic orbit comes very
close to q = (xq , xq, xq), with xq ≈ 0.951. The SAOs that follow are organized by
Wu(q) and their amplitudes increase to relatively large values before the LAO.

In summary, if we fix k in Figure 21(b) and increase λ, we observe the following
typical sequence of events near a singular Hopf bifurcation of an equilibrium q. For
small enough λ there are no MMOs and the attractor is an equilibrium. This equilib-
rium crosses a fold of the critical manifold at FSN II, but it remains stable until a su-
percritical (singular) Hopf bifurcation at distance O(ε1) away gives rise to small oscil-
lations. The transition to MMOs occurs after a tangency between Wu(q) and Sr

ε1 ; for
λ-values just past this tangency the MMOs have many SAOs that all lie near Wu(q).
As λ increases further, the MMOs exhibit SAOs organized by the folded node. Finally,
a crossing of the curve δ = 0 corresponds to a transition to relaxation oscillations.
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Fig. 21 An MMO periodic orbit near a singular Hopf bifurcation for (4.1) with (ε1, ε2, λ, k) =
(0.1, 1,−7.52,−10). Panel (a) shows the time series of the x-coordinate. The bifurcation di-
agram in panel (b) illustrates how close the parameters are to a tangency bifurcation between
Wu(q) and Sr

ε (dashed cyan); the Hopf H (solid blue), folded saddle-node of type II FSN II
(dashed red), and δ = 0 (dashed black) curves are shown as well; see also Figure 16. The
slow manifolds Sa

ε and Sr
ε shown in panel (c) guide the MMO toward the equilibrium q ≈

(0.951, 0.951, 0.951), after which Wu(q) organizes the SAOs. The high compression and
twisting of Sr

ε near Wu(q) is highlighted in panel (d).
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Fig. 22 An MMO periodic orbit of (4.1) for (ε1, ε2, λ, k) = (0.01, 1,−0.063,−2.1) that exhibits
SAOs near the maximum as well as the minimum of the LAO.

To end this case study, we report the existence of a different type of MMO not
found by Koper; it is shown in Figure 22. The MMO has SAOs near both the max-
imum and the minimum of the LAO. Hence, this MMO passes near folded nodes na

±
on both fold curves. The parameter region where this occurs is quite small, so that it
is difficult to locate such an MMO using simulation; it is the region in Figure 16 near
k = −2 that can only be seen in the enlargement in panel (b). We found the MMO
periodic orbit in Figure 22 by selecting parameters k = −2.1 and λ = −0.063 in this
region and choosing ε1 = 0.01 rather small; a more detailed study of the range of pa-
rameters for which there exist such MMOs with two SAO epochs remains future work.

5. MMOs in a Reduced Hodgkin–Huxley System. As the next case study we
consider a three-dimensional reduced version of the famous Hodgkin–Huxley equa-
tions [105] that describe the generation of action potentials in the squid giant axon;
see [118, 198] for the derivation and also [45], where the same example was used. The
reduced model only describes the dynamics for voltage (V ), the activation of the potas-
sium channels (n), and the inactivation of the sodium channels (h); the activation of
the sodium channels (m) is very fast and it reaches its equilibrium state m = m∞(V )
(almost) instantaneously, which can be justified mathematically by a center-manifold
reduction [198]. The evolution of the gates n and h is considered slow, while the
evolution of the voltage V is considered fast. To justify this time-scale separation,
we nondimensionalize the Hodgkin–Huxley equations by introducing a dimensionless
voltage variable v = V/kv and a dimensionless time τ = t/kt, where kv = 100 mV is
a reference voltage scale and kt = 1 ms is a fast reference time scale; this gives

(5.1)



εv̇ = f(v, h, n) := Ī −m3
∞(v)h (v − ĒNa)

− ḡk n
4 (v − ĒK)− ḡl (v − ĒL),

ḣ = g1(v, h) :=
kt

τh

(h∞(v)− h)

th(v)
,

ṅ = g2(v, n) :=
kt

τn

(n∞(v)− n)

tn(v)
,
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Table 1 Original parameter values of the Hodgkin–Huxley equations (5.1).

gNa gk gl ENa EK EL τh τn C

120.0 36.0 0.3 50.0 −77.0 −54.4 1.0 1.0 1.0

with dimensionless parameters Ēx = Ex/kv, ḡx = gx/gNa, with x ∈ {m, n, h},
Ī = I/(kvgNa), and ε = C/(ktgNa) =: τv/kt. The original Hodgkin–Huxley parameter
values are given in Table 1. Thus, ε = 1

120 ≈ 0.01 � 1 and system (5.1) represents a
singularly perturbed system with v as a fast variable and (n, h) as slow variables. The
functions x∞(v) and tx(v), with x ∈ {m, n, h}, describe the (dimensionless) steady-
state values and time constants of the gating variables, respectively; they are given by

x∞(v) =
αx(v)

αx(v) + βx(v)
and tx(v) =

1

αx(v) + βx(v)
,

with

αm(v) = (kvv+40)/10
1−exp(−(kvv+40)/10) , βm(v) = 4 exp(−(kvv + 65)/18),

αh(v) = 0.07 exp(−(kvv + 65)/20), βh(v) =
1

1+exp(−(kvv+35)/10) ,

αn(v) =
(kvv+55)/100

1−exp(−(kvv+55)/10) , βn(v) = 0.125 exp(−(kvv + 65)/80).

The original Hodgkin–Huxley equations with scaling parameters τh = τn = τm =
1 show no MMOs [105], but if τh > τh,e > 1 or τn > τn,e > 1 are beyond certain
threshold values, then MMOs are observed [45, 198, 199]. Here, we focus on a specific
case with τh = 6.0, τn = 1.0, and C = 1.2 (so that ε = 0.01). We use the applied

current I (in units of µA/cm
2
) of the original Hodgkin–Huxley equations, that is,

the rescaled Ī in (5.1), as the only free parameter. Furthermore, in order to facilitate
comparison with other studies, we represent output in terms of the nonrescaled voltage
V = 100 v, which is in units of mV.

From a mathematical point of view, the MMOs are generated due to the presence
of a (subcritical) singular Hopf bifurcation at I = IH ≈ 8.359 and a folded node in
the singular limit ε = 0. The critical manifold of (5.1) is defined by

n4(v, h) =
Ī −m∞(v)3 h (v − ĒNa)− ḡL (v − Ēl)

ḡk (v − Ēk)
,

which is a cubic-shaped surface S = Sa,− ∪ F− ∪ Sr ∪ F+ ∪ Sa,+ for physiologically
relevant values of I. The outer sheets Sa,± are stable, the middle sheet Sr is unstable,
and F± denote fold curves [198]. The desingularized reduced system on this manifold
is given by {

v̇ =
(

∂
∂hf

)
g1 +

(
∂
∂nf

)
g2,

ḣ = − ( ∂
∂vf

)
g1.

A phase-plane analysis of the desingularized reduced flow in the physiologically rele-
vant range shows that there exists a folded-node singularity on F− for I > IFSN ≈
4.83. Furthermore, it can be shown that the global return mechanism projects into the
funnel region for I < Ir ≈ 15.6; see [198, 199]. Hence, the folded-node theory predicts
the existence of stable MMOs for a range of I-values that converges to IFSN < I < Ir
in the singular limit as ε → 0.
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Fig. 23 Maximal secondary canard orbits ξ5 and ξ6 of the three-dimensional reduced Hodgkin–
Huxley equations (5.1) with τh = 6.0, τn = 1.0, C = 1.2, and I = 12. Panel (a) shows
the two canard orbits in projection onto the (n, V )-plane; also shown are the strong sin-
gular canard γ̃s and the weak primary canard γw. The projection of ξ5 and ξ6 onto the
(h, V )-plane in panel (b) shows that they make five and six oscillations, respectively.

Figure 23(a) shows the folded-node singularity for I = 12, where it lies approxi-
mately at (v, h, n) = (−0.593, 0.298, 0.407), in projection onto the (n, V )-plane. The
two black curves are the strong singular canard γ̃s and the primary weak canard γw

that pass through the folded node. The other two curves are maximal secondary
canards ξ5 and ξ6 that were found as intersections of extended slow manifolds com-
puted near the folded node; see also section 8 and [45, Figure 6]. Their projections
onto the (h, V )-plane, which illustrate the oscillating nature of ξ5 and ξ6, are shown
in Figure 23(b). Notice that the final oscillations of the primary weak canard γw

in Figure 23(a) show the distinct characteristics of saddle-focus-induced SAOs. In-
deed, a saddle-focus equilibrium q ≈ (−0.589, 0.379, 0.414) exists relatively close to
the folded node, due to the singular Hopf bifurcation at IH ≈ 8.359. Decreasing I
from I = 12 toward I = IH causes q to move closer to the folded node and the mix of
folded-node-induced SAOs and saddle-focus-induced SAOs will be more pronounced;
compare with Figure 21(c).

The equilibrium q for I = 12 persists when I is varied. A partial bifurcation
diagram is shown in Figure 24(a), where we plot the maximum of V versus I. Similar
to the analysis in [45], a unique equilibrium exists for all I and it is stable for I < IH
and, approximately, I > 270.772. The (singular) Hopf bifurcation (labeled H) at IH
gives rise to a family of saddle-type periodic orbits. This family of periodic orbits
undergoes three fold bifurcations (SL) at I ≈ 6.839, I ≈ 27.417, and I = ISL ≈
14.860, after which both nontrivial Floquet multipliers are less than 1 in modulus
and the associated stable periodic orbits correspond to what is known in the field as
tonic spiking. Figure 24(a) shows that the first SL is quickly followed by a period-
doubling bifurcation (PD) at I ≈ 7.651, where one of the Floquet multipliers, which
are both unstable after this first SL, passes through −1. Hence, the periodic orbits
after PD are nonorientable and of saddle type. Note that a second PD (not shown
in Figure 24(a)) must take place before the second SL.

MMOs exist as isolated families of periodic orbits for a range of I; Figure 24(a)
shows eleven of these isolas colored in alternating light and dark blue. All periodic
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Fig. 24 MMO periodic orbits of the three-dimensional reduced Hodgkin–Huxley equations (5.1) with
τh = 6.0, τn = 1.0, and C = 1.2. Panel (a) shows a bifurcation diagram where the maximal
V -value is plotted versus the applied current I. Isolas of MMO periodic orbits exist over
a range of I bounded by a period-doubling bifurcation PD and a saddle-node of limit cycle
bifurcation SL. The isolas are colored in alternating light and dark blue. Panel (b) shows
an enlargement near the Hopf bifurcation. All isolas shown have a fold bifurcation for
ISL ≈ 8.087. The periodic orbit Γ shown in panel (c) is the stable MMO for I = 12;
panel (d) shows Γ when it has a maximal V -value of −20 mV.

orbits on a single isola have the same number of oscillations. Each isola contains a
short plateau with large maximal V near V = 40 mV where the associated MMOs
are stable and have signatures 1s. For our specific choice ε = 0.01, we found that
the stable MMO interval appears to be bounded by IH on the left and by ISL on
the right, that is, 8.359 < I < 14.860. Recall that the theory based on the singular
limit as ε → 0 predicts the existence of stable MMO periodic orbits with signatures
1s for 4.83 ≈ IFSN < I < Ir ≈ 15.6; the match is surprisingly good, even though ε is
relatively large. As I ↓ IH , the number s in the stable 1s MMO signatures approaches
infinity, since a homoclinic orbit through the Hopf singularity is formed; see also [45].
Furthermore, there exist stable MMO signatures with more complicated signatures
1s11s2 · · · ; see [199]. The MMO periodic orbits go through several bifurcations along
the isolas (mostly period-doubling and/or saddle-node of limit cycle bifurcations);
compare also Figure 19 for the Koper model in section 4. The maximal V -value indi-
cates the amplitude of the largest of the oscillations of the respective MMO periodic
orbit. Note the folded structure of the isolas for V = VF+ ≈ −20 mV, which is ap-
proximately the repolarization threshold value for action potentials. This value also
corresponds to the V -value of the upper fold curve F+, at which a trajectory jumps
back. For MMOs on a plateau, the LAOs correspond to a full action potential, while
the s SAOs that follow are subthreshold oscillations.
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Figure 24(b) shows an enlargement of how the isolas of MMO periodic orbits
accumulate near the Hopf bifurcation, which is the region where theory predicts a
signature 1s, that is, an MMO with one large excursion and s SAOs. This is organized
by how the global return mechanism projects onto the critical manifold S as I varies.
If the return projects onto a secondary canard, then part of the periodic orbit follows
the secondary canards onto the unstable branch Sr,ε of the slow manifold. However,
only canard periodic orbits that reach the region of the upper fold curve F+ are
maximal secondary canards. Hence, the corresponding family of secondary canards
can be split into two groups: we call the secondary canards with maximum V < VF+

jump-back canards and those with maximum V > VF+ jump-away canards. This is
an important distinction in this application, because while the jump-away canards
will create action potentials, the jump-back canards will not.

We illustrate the canards along one of the isolas shown in Figures 24(a) and (b).
The stable MMO periodic orbit Γ that exists on the plateau for I = 12 is shown in
Figure 24(c); its signature is 16 and it lies on the isola that corresponds to periodic
orbits with a total of seven oscillations. Note that the large excursion of Γ is above
threshold. The six SAOs of Γ are due to the fact that the global return lands on the
rotational sector bounded by the maximal secondary canards ξ5 and ξ6 for I = 12
(not shown); compare Figure 23(b). When the periodic orbit Γ is continued in the
direction of increasing I, the maximal V -value decreases and the LAO changes from
an action potential to a subthreshold oscillation. Figure 24(d) shows Γ (which is now
unstable) when its maximal V -value is approximately −20 mV. Observe that Γ still
has a total of seven oscillations, but now two of them have a fast segment. These fast
segments are jump-back canards. More precisely, the periodic orbit Γ consists of a
segment of a jump-back canard of the ξ6 canard family that connects to a segment of
a jump-back canard of the strong canard family, which in turn connects to the former
segment, hence, closing the loop. One could classify Γ in Figure 24(d) as an MMO
with signature 25, because only five of its oscillations have really small amplitude
due to the passage near the folded node, while there are two clearly distinguishable
larger oscillations with fast segments due to jump-back canards. However, none of
these larger canard oscillations of Γ results in a full action potential, meaning that all
oscillations are classified as SAOs in this application context.

Figure 25 illustrates the characteristics of the periodic orbits along the lower
parts of the isolas in Figure 24(a), where they are very close to the branch of saddle
periodic orbits bifurcating from the Hopf bifurcation. More specifically, Figure 25(a)
shows a “waterfall diagram” representation of the time series of 90 periodic orbits
along the lower part, for I ≤ 12, of the isola along which one finds a total of ten
oscillations. This part of the branch is shown in Figure 25(b). The fold point for this
isola is at I = ISL ≈ 8.087, and the associated periodic orbit is drawn in boldface in
Figure 25(a). The periodic orbits on the part of the branch for ISL ≤ I ≤ IH are
highlighted in blue. The periodic orbits along this part of the isola are quite different
from the MMOs one finds near the plateaux of the isolas; namely, they consist of a
mix of SAOs and jump-back canards, ten in total. Figure 25(c) shows the projection
of the periodic orbit at the fold onto the (n, V )-plane; also shown is the coexisting
small periodic orbit that lies on the branch emanating from the Hopf bifurcation.
This figure suggests that the periodic orbit at the fold is approaching a homoclinic
cycle of the small periodic orbit.

6. MMOs in Olsen’s Four-Dimensional Model of the PO Reaction. Many ap-
plications do not lead to models that have a clear split into slow and fast time scales.
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Fig. 25 Continuation of a family of periodic orbits that consist of ten oscillations. The continuation
starts and ends at I = 12 with a fold at I ≈ 8.087. Panel (a) shows a three-dimensional
“waterfall diagram” visualization of the time series of V for 90 computed periodic orbits
along this part of the isola; the boldface periodic orbit lies at the fold point. The orbits in
blue correspond to the part of isola in between the fold point and the I-value that corresponds
to the Hopf bifurcation, that is, IH ≈ 8.359. Panel (b) shows the maximal V -value along
the branch in the (I, V )-plane, where the arrows indicate the direction of the continuation.
Panel (c) shows the periodic orbit at the fold together with a coexisting small periodic orbit
in projection onto the (n, v)-plane.

Often some assumptions to that extent can be made, but most variables will be slow in
certain regions of phase space and fast in others. The following case study illustrates
how the geometrical ideas from slow-fast systems can be used in such a context. We
study a four-dimensional model of the peroxidase-oxidase (PO) biochemical reaction
that was introduced by Olsen and collaborators [37, 173]; see also [44], where this
same example was used. The Olsen model describes dynamics of the concentrations
of two substrates (O2 and NADH) and two free radicals, denoted A, B, X , and Y ,
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Table 2 Parameter values used in the four-dimensional Olsen model (6.1).

k1 k2 k3 k4 k5 k6 k7 k−7 k8 α
0.28 250 0.035 20 5.35 0 0.8 0.1 0.825 1

30 95 160
0

4

8

0 75 150
0

4

8

B

A Γ

H

SN

T

Γ̂
Σ⊥

H

SN

H

(a)

t

A Γ

(b)
.

.

Fig. 26 The stable MMO periodic orbit Γ of the Olsen model (6.1) with parameters as in Table 2.
Panel (a) shows Γ (blue) projected onto the (A,B)-plane and superimposed on the bifurca-
tion diagram of (6.1) with α = 0; solid (dashed) black and gray curves are stable (unstable)
equilibria, where the gray color indicates that X or Y are negative, and SN , H, and T
are saddle-node, Hopf, and transcritical bifurcations, respectively. The family Γ̂ of periodic
orbits that emanates from H is represented by its maxima and minima in A (green curve);
the line Σ⊥ (cyan) indicates where the (A,B)-plane changes from attracting to repelling.
Panel (b) shows the time series of the variable A along Γ. The inset panel shows a blow-up
of the region where SAOs undergo a slow decay.

respectively; it is given by the differential equations

(6.1)


A′ = −k3ABY + k7 − k−7A,

B′ = α(−k3ABY − k1BX + k8),

X ′ = k1BX − 2k2X
2 + 3k3ABY − k4X + k6,

Y ′ = −k3ABY + 2k2X
2 − k5Y.

Note that α is an artificial time-scale parameter that we introduced for the purpose
of this case study; α = 1 in [37, 173]. The other parameters are reaction rates and
we chose their values as given in Table 2, such that the periodic orbits that exist for
these parameter values are representative for the Olsen model (6.1). We focus our
study on a stable MMO periodic orbit, denoted Γ; its time series of the variable A
is shown in Figure 26(b). We observe that Γ has signature 1s, and we estimate that
s is about 15. Below, we show that the SAOs of this example occur during passage
through a dynamic Hopf bifurcation, and we analyze the global return mechanism of
this trajectory.

6.1. Bifurcations of the Fast Subsystem. There is no clear split between the
different time scales in the Olsen model (6.1), but it is known that B evolves on a
slower time scale than the other variables [154]. Hence, it makes sense to consider the
fast subsystem obtained by setting α = 0, that is, B′ = 0 and B acts as a parameter
in (6.1). The bifurcation diagram is shown in projection onto the (A,B)-plane in
Figure 26(a), which is invariant because k6 = 0; see Table 2. There are two branches
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of equilibria that intersect at a transcritical bifurcation T for B = k4/k1 ≈ 71.426;
solid lines indicate stable and dashed lines unstable equilibria. The equilibria that are
colored black in Figure 26(a) are physically relevant because they have nonnegative
values of X and Y ; for gray equilibria, on the other hand, X or Y is negative. One
branch is the black horizontal line at A = 8; it lies in the (A,B)-plane (where X =
Y = 0), which is invariant since k6 = 0. Equilibria along this branch are stable for
B < k4/k1. A second branch intersects the horizontal branch and the (A,B)-plane
at the point T ; only the black part of this second branch with positive X and Y is
physically relevant; it consists near T of saddles with one unstable and two stable real
eigenvalues. Two further bifurcations along this physically relevant branch change the
stability of the equilibria; there is a saddle-node bifurcation SN at B = BSN ≈ 35.144
and a subcritical Hopf bifurcation H at B = BH ≈ 57.949. The emanating branch
of saddle periodic orbits (green) is labeled Γ̂, for which only minimal and maximal
values of A are shown. The hyperplane Σ⊥ = {(A,B,X, Y ) |B = k4/k1} marks where
the linear contraction normal to the (A,B)-plane is zero; note that T ∈ Σ⊥. Overlaid
on this bifurcation diagram is the MMO periodic orbit Γ of (6.1) (with α = 1), and
we can now see how Γ is composed of a segment of SAOs, generated by passage
through a dynamic Hopf bifurcation, and a global return: starting from the minimum
of Γ, the trajectory spirals in and out of a vortex structure due to the presence
of the family of equilibria of the fast subsystem with a pair of complex conjugate
eigenvalues that cross the imaginary axis. The presence of the Hopf bifurcation in
the fast subsystem explains the observed slow decay and increase in amplitude of the
SAOs of the attractor Γ of the full system. The reinjection back to a neighborhood of
the attracting branch is mediated by an increase in A, which triggers a slow increase
in B, as the trajectory closely follows the invariant (A,B)-plane toward the curve of
stable equilibria with A = 8. As soon as B > k4/k1, that is, the trajectory crosses
Σ⊥, the (A,B)-plane is unstable and the trajectory begins to move away from it.
Finally, the sharp decay in A appears to be a fast segment that brings the trajectory
back to the entrance of the dynamic Hopf bifurcation; compare also with the time
series of the A-variable along Γ in Figure 26(b). The rapid decrease in amplitude of
the SAOs is an indication that Γ is in an intermediate regime between the tourbillon
and delayed Hopf bifurcations, but we label it as a tourbillon; see the discussion in
section 3.4.

6.2. Slow Manifolds of the Olsen Model. The SAOs of Γ in Figure 26 terminate
abruptly via a mechanism that can be visualized by computing slow manifolds. The
shape of these manifolds and the geometry of their interactions in the fast subsystem
allow us to unravel the organization of MMOs in the Olsen model (6.1). Consider
the curve of saddle equilibria for B < k4/k1 in Figure 26(a) between the points
SN and T . Each equilibrium has one positive and two negative eigenvalues and
the family of associated two-dimensional stable manifolds acts as a limiting (three-
dimensional) repelling slow manifold that organizes the termination of the SAOs.
Since this termination still takes place extremely close to the invariant (A,B)-plane,
we may assume that X is a fast variable in this region. Therefore, we may reduce the
dimension by way of a quasi-steady-state assumption (QSSA) [74], where we assume
that X has reached its steady-state value

(6.2) X =
k1B − k4 +

√
(k1B − k4)2 + 8k2(3k3ABY + k6)

4k2
.
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Fig. 27 The repelling slow manifold Sr
B (blue) of the fast subsystem of the Olsen model (6.1) (α = 0),

where X was eliminated via the QSSA (6.2). The manifold Sr
B was computed as the family

of one-dimensional stable manifolds W s
B (one side only) of saddle equilibria (dashed black

curve) for 53 ≤ B ≤ 63. The branch of equilibria (dashed/solid black curve) in the vicinity
of the Hopf bifurcation point (dot) is also shown, along with several unstable periodic orbits
(green curves) born at this Hopf bifurcation; the periodic orbits are almost the same as
those in Figure 26 for the fast subsystem. Panel (b) shows W s

60 and the corresponding

unstable periodic orbit Γ̂60 for B = 60 in the (A,Y )-plane. Note that the viewpoint in both
panels was chosen such that A increases toward the left; this is also the case in subsequent
three-dimensional figures.

Using the QSSA, we approximate the fast subsystem (6.1) with α = 0 as a B-
dependent family of two-dimensional vector fields in the (A, Y )-plane, and the re-
pelling slow manifold is now approximated by a family Sr

B of one-dimensional stable
manifolds. Note that the QSSA (6.2) preserves the equilibria of the fast subsystem,
and their stability properties change only in the sense that essentially one contracting
direction (for B < k4/k1) is removed. The equilibria on the branch bounded by SN
and T are still saddles, but now with only one stable eigenvalue. The equilibria on
the branch on the other side of SN are repelling for the planar system if B lies in
between BSN and BH , and attracting past BH . We computed Sr

B with AUTO [52]
by defining a suitable two-point boundary value problem (BVP); see section 8.2. Fig-
ure 27 illustrates how Sr

B rolls up (in backward time) around the lower equilibrium
branch for BSN ≤ B ≤ BH and around the family of unstable periodic orbits for
B ≥ BH until the homoclinic bifurcation for B ≈ 66.480 < k4/k1; to emphasize the
B-dependent nature, we show this planar dynamics for the fixed value B = 60 in
panel (b).

The repelling slow manifold Sr
B is only an approximation and it is not an invariant

object for the full system (6.1). However, it provides an indication of how an MMO
trajectory is trapped by an actual repelling slow manifold as it passes through the
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B

A

Y

Σ53
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B

Sa
B

H
SN

.

Fig. 28 The attracting slow manifold Sa
B (red) of the full Olsen model (6.1) (α = 1), computed from

near the equilibria for A = 8 and B > k4/k1 up to the section Σ53 = {B = 53}. The black
solid/dashed curves are the physically relevant equilibria of the fast subsystem (α = 0).

tourbillon and indicates how the trajectory flows toward the curve of saddle equilibria.
By combining this approximation of a repelling slow manifold with an approximation
Sa
B of the attracting slow manifold that guides trajectories back to the entrance of the
tourbillon, we can visualize the mechanism that organizes the SAOs.

To find Sa
B, we consider the curve L of saddle equilibria with A = 8 and B > k4/k1

(past T ); see Figure 26(a). These equilibria have one-dimensional unstable manifolds
in (A,X, Y )-space, that is, in the full fast subsystem without the QSSA (6.2). The
B-dependent family Wu(L) of unstable manifolds is a two-dimensional surface that
makes a large excursion before spiraling toward the attracting equilibrium branch that
lies just above the invariant (A,B)-plane. We define the attracting slow manifold Sa

B

in this setting as the equivalent of Wu(L) when B is not fixed but allowed to vary.
In particular, with this definition Sa

B enters a neighborhood of H and interacts with
the repelling slow manifold Sr

B that only exists for B < k4/k1. We compute the
two-dimensional manifold Sa

B with AUTO [52] by using a BVP setup as in section 8;
specifically, we require that one endpoint of the computed orbit segments lies along
a line La very close to the curve L of equilibria and in the linear approximation
to Wu(L); see [44] for more details on how this computation can be performed.
Figure 28 illustrates how Sa

B provides a global return mechanism from near La via a
large excursion and then guides trajectories through the tourbillon.

Figure 29 illustrates how the interaction of Sa
B and Sr

B determines the behavior
in the tourbillon regime. The two surfaces are shown in (B,A, Y )-space in panel (a).
Recall that Sa

B is a two-dimensional surface in (B,A,X, Y )-space, and shown is its
projection. The manifold Sr

B, on the other hand, was computed by assuming the
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Fig. 29 Approximations of the attracting and repelling slow manifolds of the Olsen model (6.1).
Panel (a) shows the surfaces Sa

B (blue) and Sr
B (red) projected into (A,B, Y )-space between

the sections Σ53 and Σ63 (green planes). Also shown are three orbits η1 in orange, η2 in
magenta, and η3 in cyan; they lie in the intersection of Sa

B and Sr
B . Intersections of Sa

B
and Sr

B with Σ53 are shown in panel (b); the intersections of η1, η2, and η3 with Σ53 are
labeled.

QSSA (6.2), which is due to an additional strongly attracting direction. Hence, Sr
B is

a two-dimensional surface in (B,A, Y )-space that corresponds to a three-dimensional
surface in (B,A,X, Y )-space. Therefore, the intersections of Sa

B and Sr
B with the

plane Σ53 = {B = 53} are isolated points, and they are shown in Figure 29(b); note
that Sr

B ∩ Σ53 = W s
53, while the computation of Sa

B ∩ Σ53 is more involved. The
intersection points of these two curves define trajectories that resemble canard orbits
near a folded node, because they spiral in the tourbillon region, making an increasing
number of turns. The first three intersection points are labeled in Figure 29(b) and
their corresponding trajectories η1, η2, and η3 are shown in Figure 29(a). These
trajectories η1, η2, and η3 are contained in Sa

B, but only their intersection points with
Σ53 lie on Sr

B. Indeed, S
r
B is not an actual invariant manifold of (6.1) and only serves

as an approximation of the repelling slow manifold. Nevertheless, Sa
B and Sr

B give a
qualitative illustration of the nature of SAOs generated by slow passage through the
tourbillon. In particular, the intersection curves of Sa

B and Sr
B with Σ53 provide an

approximate location of the sectors of oscillations in this region of phase space.

7. The Showalter–Noyes–Bar-Eli Model of MMOs in the BZ Reaction. The
Showalter–Noyes–Bar-Eli model [207] is one of many kinetic models that have been
proposed for the Belousov-Zhabotinsky (BZ) reaction. It is a seven-dimensional vector
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field derived from a system of reactions

A+ Y � X + P,

X + Y � 2P,

A+X � 2W,

C +W � X + Z,

2X � A+ P,

Z → gY + C,

that satisfy the law of mass action, resulting in the equations

(7.1)



A′ = k0(A0 −A)− k1AY + k−1PX − k3AX + k−3W
2 + k5X

2 − k−5AP,

C′ = k0(C0 − C)− k4CW + k−4XZ + k6Z,

P ′ = −k0P + k1AY + 2k2XY − 2k−2P
2 + k5X

2 − k−5AP − k−1PX,

W ′ = −k0W + 2k3AX − 2k−3W
2 − k4CW + k−4XZ,

X ′ = −k0X + k1AY − k−1PX − k2XY + k−2P
2 − k3AX + k−3W

2

+ k4CW − k−4XZ − 2k5X
2 + 2k−5AP,

Y ′ = k0(Y0 − Y )− k1AY + k−1PX − k2XY + k−2P
2 + gk6Z,

Z ′ = −k0Z + k4CW − k−4XZ − k6Z,

where we use the same letter to identify a chemical species and its concentration.
Note that C′ +Z ′ = k0(C0 −C − Z), so the hyperplane C + Z = C0 is invariant and
attracting. We reduce (7.1) to a six-dimensional vector field on this hyperplane by
setting C = C0 − Z and eliminating the equation for C′. The model is “realistic” in
the sense that each variable is associated with a definite chemical species. The reac-
tion rates are based upon experimental measurements. As is typical with chemical
reactions, the concentrations of intermediate species differ from each other by many
orders of magnitude. Nevertheless, some intermediate species that have very low con-
centrations are still dynamically important. The variable Y represents concentration
of bromide, which is often measured in experiments to monitor the state of the sys-
tem. The variable A in the model represents the concentration of bromate. This
chemical has much larger concentrations than the other species, but the chemically
relevant quantity is its variation, which is of order comparable to the variations of
other concentrations. See Showalter, Noyes, and Bar-Eli [207] for more details about
the chemistry. In previous studies of this model, Barkley [16] was unable to clearly
identify a dynamical explanation of the MMOs it exhibits.

We study this system for a single set of parameters where Showalter, Noyes, and
Bar-Eli observed an MMO, specifically,

(7.2)

k1 = 0.084 (Ms)
−1

, k−1 = 1× 104 (Ms)
−1

,

k2 = 4× 108 (Ms)−1, k−2 = 5× 10−5 (Ms)−1,

k3 = 2× 103 (Ms)
−1

, k−3 = 2× 107 (Ms)
−1

,

k4 = 1.3× 105 (Ms)
−1

, k−4 = 2.4× 107 (Ms)
−1

,

k5 = 4.0× 107 (Ms)−1, k−5 = 4.0× 10−11 (Ms)−1,

k6 = 0.65 (Ms)
−1

, k0 = 7.97× 10−3 s−1,

A0 = 0.14 M, C0 = 1.25× 10−4 M,

Y0 = 1.51× 10−6 M, g = 0.462.
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Fig. 30 Time series of an MMO periodic orbit for (7.1), with parameters given in (7.2). The time
series of each variable is scaled to the interval [0, 1] and the trajectory is plotted over one
period. Panel (a) shows the slow variables A (black) and P (gray), and panel (b) the fast
variables W (black), X (gray), Y (black), and Z (gray).

Table 3 Minimum and maximum ranges of variation of each coordinate in Figure 30.

A P W X Y Z

1.39856 × 10−1 1.83× 10−4 1.45× 10−9 4.2× 10−11 2.39× 10−8 3.89× 10−8

1.39907 × 10−1 2.80× 10−4 1.38× 10−6 1.5× 10−7 2.28× 10−6 6.41× 10−6

Note that the system (7.1) and the parameters in (7.2) have dimensional units;
throughout, concentrations are measured in molar (M) and time in seconds (s).

Figure 30 shows time series of the MMO periodic orbit of (7.1) with parameters
given by (7.2), plotted over one period T ≈ 209 s. In the time series, each variable
is scaled by an affine transformation so that it varies on the interval [0, 1]. To relate
back to the dynamics of (7.2) the minimum and maximum values of each variable
prior to rescaling are listed in Table 3. Figure 30 displays the characteristics of an
MMO. There are small oscillations that occur while the relative concentration of Y
is small and the relative concentration of Z is large. Note from Table 3 that these
concentrations are varying by over two orders of magnitude. The periodic orbit makes
two circuits and has signature 1415.

There is no explicit slow-fast structure in (7.1). We infer that (A,P ) vary slowly
relative to (W,X, Y, Z) in an ad-hoc manner from Figure 30 by making two observa-
tions. First, the variables (A,P ) show a monotone decrease and increase during the
times that the variables (W,X, Y, Z) undergo small oscillations. Second, (A,P ) do not
undergo rapid changes at the beginning or end of the small oscillations as (W,X, Y, Z)
do. Therefore, to investigate the mechanisms producing the SAOs in this MMO, we
identify the system as a slow-fast system with slow variables (A,P ) and fast variables
(W,X, Y, Z) as far as the MMO dynamics is concerned. Figure 31(a) projects the
MMO periodic orbit Γ onto the (P, Y, Z)-space. Notice the region of SAOs, which is
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Fig. 31 Panel (a) shows the trajectory projected onto the space spanned by the coordinates (P, Y, Z).
A curve along the critical manifold is plotted as a gray line, and the black dot marks the
location of a Hopf bifurcation in the fast subsystem. In panel (b) the MMO is projected
onto the (A,P )-plane. The gray line is defined by 2A+ P = 2A0 and the ranges of A and
P are [0.13985, 0.13991] and [0.00018, 0.0003].
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Fig. 32 Panel (a) shows the curve of Hopf bifurcations (black line) and the line defined by 2A +
P = 2A0 (gray) in the (A, P )-plane. Panel (b) shows the SAOs projected onto the three-
dimensional space spanned by the center manifold of the Hopf bifurcation and the direction
of the line {2A+P = 2A0} in the (A,P )-plane. The MMO periodic orbit Γ visits this region
twice and each time spirals around the center manifold of the Hopf bifurcation (gray); the
Hopf bifurcation point of the layer system itself is the black dot.

visited twice. Panel (b) shows Γ projected onto the (A,P )-plane of slow variables.
We observe from this projection that Γ lies close to the hyperplane 2A + P = 2A0

(gray line), which means that the change of A and P along the MMO periodic orbit
is of the same order.

Figure 31(a) suggests that the SAOs of the MMO periodic orbit Γ are due to a
tourbillon. To ascertain this, we compute the critical manifold near the vicinity of
the SAOs with continuation methods using the program MatCont [46]. Figure 32(a)
shows the curve of Hopf bifurcations in the fast subsystem in the (A,P )-plane of the
slow variables together with the curve 2A+ P = 2A0. The small portion of the Hopf
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curve plotted in Figure 32(a) is almost horizontal, so the two curves cross transversally.
MatCont also calculates the first Lyapunov coefficient of the Hopf bifurcations along
this part of the branch, showing that they are all subcritical. To demonstrate further
that the tourbillon associated with the Hopf bifurcation is indeed the basis for SAOs,
we project Γ onto the three-dimensional space spanned by the two-dimensional center
manifold of the Hopf bifurcation in the space of fast variables and the direction defined
by 2A + P = 2A0. The projection of the center manifold is plotted as a gray curve
and the Hopf point of the layer equation is the black dot. The two parts of Γ that
correspond to SAOs surround the center manifold and have minimal amplitudes close
to the Hopf point. This is clear evidence that the MMO found in (7.1) features SAOs
that are generated by the tourbillon mechanism of a dynamic Hopf bifurcation, similar
to the one observed for the Olsen model in section 6. This example illustrates how the
methods described in this paper can be applied effectively to a system of dimension
higher than just three or four.

8. Numerical Methods for Slow-Fast Systems. This section discusses numeri-
cal methods that we used to compute the two-dimensional slow manifolds shown in
many of the figures, as well as stable and unstable manifolds of equilibrium points.
The slow manifold computations use numerical integration and boundary value meth-
ods to compute orbit segments that lie along the slow manifolds. An orbit segment is
simply a finite piece of a trajectory of the vector field; as such, it has two endpoints
and an associated integration time. In the context of computing slow manifolds, each
such orbit segment is chosen to have one endpoint on the critical manifold away from
its folds, where the critical manifold is a good approximation of the slow manifold
one wishes to compute. Indeed, Fenichel’s theorem implies that the distance between
the critical manifold and the slow manifold is O(ε), and that trajectories flow from
the critical manifold to an attracting or repelling slow manifold at an exponential
rate in the appropriate time direction; see Theorem 2.1. Consequently, the computed
orbit segments are expected to be as close to the slow manifold as the order of the
numerical method allows, except for short O(ε) segments at one end where there is
a fast transition from the critical manifold to the slow manifold in question. For sta-
ble or unstable manifolds of equilibria, orbit segments are chosen to lie in the linear
eigenspace associated with the stable or unstable eigenvalues, respectively. The com-
putational error associated with this approximation also decays quickly as one moves
away from the endpoint; see [43, 131] for analysis of these approximation errors.

A simple and effective method for computing invariant manifolds as families of or-
bit segments is to use initial value solvers as the basic algorithm with initial conditions
chosen on a mesh of points transverse to the flow in the invariant manifold; we call this
the “sweeping” method. Despite its simplicity, this sweeping method fails to produce
satisfactory results in some cases. In particular, strong convergence or divergence
of trajectories toward one another makes the choice of the initial mesh problematic
and can produce very nonuniform “coverage” of the desired manifold; see [61, 62].
In multiple-time-scale systems, the fast exponential instability of Fenichel manifolds
that are not attracting makes initial value solvers incapable of tracking these mani-
folds by forward integration. These issues prompt the use of boundary value methods
combined with continuation as an alternate strategy for computing invariant mani-
folds [132, 133]. We have used both strategies in this paper. This section presents
more details of the techniques used to compute attracting and repelling slow mani-
folds of systems with one fast and two slow variables, as well as the continuation of
canard orbits when a parameter is varied.
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8.1. Sweeping Invariant Manifolds. The Fenichel manifolds of systems with a
single fast variable are either attracting or repelling. As a result, forward trajectories
with initial conditions on the critical manifold will converge quickly to an attract-
ing Fenichel manifold and backward trajectories with initial conditions on the criti-
cal manifold will converge quickly to a repelling Fenichel manifold. Thus, one way
to compute two-dimensional attracting and repelling Fenichel manifolds of a three-
dimensional flow is to apply an initial value solver in the appropriate time direction to
a mesh of initial conditions along a curve of the critical manifold transverse to the slow
flow. We used this sweeping method to compute Sr

ε in Figure 11; see also [163] for an
early use of this method to compute two-dimensional invariant manifolds and Wechsel-
berger [237] and Guckenheimer and Haiduc [88] for an example involving folded nodes.

When incorporated into a continuation framework, the sweeping method can also
be used if the critical manifold is not known in closed form and the mesh of ini-
tial conditions cannot be selected beforehand. Continuation methods [51] provide
well-established algorithms that augment equation solvers like Newton’s method with
strategies for choosing new starting points when solving underdetermined systems of
equations. More precisely, suppose F : Rm+n → R

m is a smooth function given by
m equations of m+ n variables. The implicit function theorem states that the zeros
of F form a smooth n-dimensional manifold M near points where the matrix DF of
partial derivatives has full rank m. Moreover, the theorem gives a formula for the
tangent space of M . Most continuation methods treat the case n = 1, where the
set of solutions is a curve; see [104] for the case n > 1. In general, the methods are
based on a predictor-corrector procedure: given a point on M , tangent (or higher-
order) information is used to choose a new seed for the solver to find a new point on
M . The sweeping method described above selects the continuation step size based
on equal increments of a specific coordinate or direction, but more sophisticated step
size adaptations can be used as well.

We also used a sweeping method to compute the global unstable manifold Wu(p)
in Figure 11. The mesh of initial conditions was taken to lie along a ray in the tangent
space of Wu(p), with endpoints of the mesh at successive intersections of a trajectory
of the linearized system with this ray. The sweeping method works well here, because
the selected orbit segments provide adequate “coverage” of Wu(p).

8.2. Continuation of Orbit Segments with Boundary Value Solvers. The core
algorithms of AUTO [52] are a BVP solver and the numerical continuation of solutions
of implicitly defined equations. The BVP solver of AUTO uses a collocation scheme,
where solution segments are represented by piecewise polynomials (of a user-specified
degree, usually between 3 and 5) that are defined on the mesh intervals of a user-
specified mesh. Solving the ODEs at the collocation points gives a large system of
equations for the coefficients of the polynomials that is solved by Newton’s method.
AUTO uses what is known as pseudo-arclength continuation to follow or continue solu-
tions of such equations in a chosen parameter, where the step size is adapted automati-
cally; see [51] for details. The combination of a BVP solver and numerical continuation
allows us to find and then continue one-parameter families of orbit segments that form
(parts of) invariant manifolds of interest. The sweeping method described in the pre-
vious section can also be implemented in AUTO [52], so that the initial value problems
are solved by collocation. The techniques described in this section impose boundary
conditions on both endpoints of the orbit segments, which makes the method more ver-
satile and suitable in a wider context; see also [132]. We describe here how to formulate
two-point BVPs in order to compute slow manifolds and associated canard orbits.
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We consider two-point BVPs of the scaled form

(8.1)


u̇ = Tg(u, λ),

u(0) ∈ L,
u(1) ∈ Σ,

where g : Rn × R
p → R

n is sufficiently smooth, T ∈ R, λ ∈ R
p are parameters,

and L and Σ are submanifolds of Rn. The parameter T rescales time so that the
orbit segments always correspond to trajectories in the time interval [0, 1]. Hence,
the boundary conditions at the two endpoints always apply to u(0) and u(1), and
T is the associated (unscaled) total integration time. In order to have a well-posed
problem with isolated solutions, the number of boundary conditions should equal the
number of equations (n, because u̇ ∈ R

n) plus the number of free parameters (at
most p+ 1 for the parameter λ and the total integration time T ). We are interested
in one-parameter families of solutions of (8.1), which means that we allow one fewer
boundary condition (or one additional free parameter). Note that the total integration
time T is typically unknown and may be viewed as the extra free parameter.

Let us first consider the computation of two-dimensional attracting and repelling
slow manifolds Sa

ε and Sr
ε . To simplify the explanation, we assume that we have a

three-dimensional slow-fast system with two slow variables and a folded node. In
this context, the parameter λ remains fixed, and we obtain a one-parameter family
of orbit segments (with unknown total integration times T ) by imposing a total of
three boundary conditions. This means that the dimensions of L and Σ in (8.1)
sum up to n = 3. Our approach is to choose L as a curve (e.g., a straight line) on
the critical manifold, which requires two boundary conditions, and Σ as a surface
(e.g., a plane), which requires one boundary condition, such that the associated one-
parameter family of orbit segments covers the desired portion of the slow manifold.
For example, in order for Sa

ε to come into the folded-node region, we let L be a curve
on the attracting sheet of the critical manifold transverse to the slow flow and Σ be a
surface orthogonal to the fold curve F at the folded node. The same approach works
for Sr

ε , where we choose L on the repelling sheet of the critical manifold; note that
T < 0 for such a family of orbit segments. We remark that these choices can also be
used with the sweeping method and an initial value solver that detects a “stopping
condition” defined by the level set of a function. The slow manifolds can be extended
by choosing cross-sections Σ orthogonal to F at points that lie beyond the folded
node. Figures 6, 20, and 29 give examples of such visualizations; see also [42, 43, 45].

As with all continuation, an important issue is to find a first solution. When
continuing solutions of a BVP, explicit solutions may be known from which such a
first solution may be constructed; see [43] for an example. However, in general no
explicit solution is known and a first solution must be found in a different way. We
use a homotopy method to generate an initial orbit segment; the main idea is to
continue intermediate orbit segments via two auxiliary BVPs—the first to obtain an
orbit segment from a point on the fold curve F to the section, and the second to move
the endpoint on F along the critical manifold to a suitable distance from F ; see [42]
for details.

We now illustrate this method with the Koper model (4.1), which was also used
for the case study in section 4. We use the parameters (ε1, ε2, λ, k) = (0.1, 1, 7,−10);
note that λ > 0 as in [123], which is symmetrically related to the case with λ = −7
considered in section 4. As shown in section 4, there is a folded node in this model,
which organizes the SAOs in some of the observed MMOs; in original coordinates it
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is at

(8.2) pfn =

(
−1,

2 + λ

k
,
2λ+ 4 + k

k

)
= (−1,−0.9,−0.8).

We compute Sa
ε1 and Sr

ε1 as solutions to the BVPs given by (8.1), where g is defined
by the right-hand side of (4.1). As boundary conditions, we use the same section Σ
for both Sa

ε1 and Sr
ε1 with respective lines L = La and L = Lr as follows:

Σfn := {(x, y, z) ∈ R
3 | z = −0.8},(8.3)

La := S ∩ {x = −1.5},(8.4)

Lr := S ∩ {x = −0.2}.(8.5)

Figure 33 shows the result of the computations. We find a first orbit segment on Sa
ε1

using two homotopy steps; this is illustrated in Figure 33(a). Starting from the trivial
solution u = {pfn | 0 ≤ t ≤ 1}, with total integration time T = 0, we continue the
family of orbit segments that solves (4.1) subject to u(1) ∈ Σfn and u(0) ∈ F . We
stop the computation, detected by a user-defined function in AUTO, as soon as

u(0) ∈ Σ̃a := {(x, y, z) ∈ R
3 | z = −0.76}.

The orbit segment with its endpoint on F in Figure 33(a) is this last computed
solution of the family. The second step of the homotopy moves u(0) ∈ S away from F
(approximately) parallel to Σ, that is, we next continue the family of orbit segments

that solves (4.1) subject to u(1) ∈ Σfn and u(0) ∈ L̃a = S ∩ Σ̃a. The continuation
stops when La is reached, which is again detected by a user-defined function in AUTO.
A selection of orbit segments in this family are shown in Figure 33(a) (red curves);
only the last orbit segment ua (lowest, dark red) lies on Sa

ε1 to good approximation;
this is the one from which the manifold computation is started. A similar computation
was done to obtain a first orbit segment on Sr

ε1 , where we use the intermediate section

Σ̃r := {z = −0.87}; this is illustrated in Figure 33(b), where the orbit segment ur

(cyan) serves as a first solution on Sr
ε1 .

Once the first orbit segments ua and ur have been found we start the continuation
of (8.1) with (8.3) and (8.4) for the attracting slow manifold Sa

ε1 and with (8.3)
and (8.5) for the repelling slow manifold Sr

ε1 . The result is presented in Figure 33(c),
and the intersection curves of Sa

ε1 and Sr
ε1 with Σfn are shown in Figure 33(d). The

transverse intersection points of Sa
ε1 ∩ Σfn and Sr

ε1 ∩ Σfn in panel (d) correspond to
secondary canard orbits; the three-dimensional view in panel (c) shows three of these,
labeled ξ1, ξ2, and ξ3.

8.3. Finding and Following Canard Orbits. Maximal canards near a folded node
are transverse intersection curves of the two-dimensional attracting and repelling slow
manifolds Sa

ε and Sr
ε . We briefly discuss here how to detect the canard orbits and

subsequently continue them in a system parameter; see also [42, 43, 45]. To represent
a maximal canard we must compute Sa

ε and Sr
ε using a common cross-section Σ

of the fold curve at or near the folded node. The common cross-section allows us
to obtain a representation of the canard orbit as the concatenation uc of an orbit
segment ua ⊂ Sa

ε (with associated total integration time T a) with an orbit segment
ur ⊂ Sr

ε (with associated total integration time T r), where ua and ur are chosen such
that ua ∩ Σ = ur ∩ Σ. The concatenated orbit uc located with this method can be
continued in a system parameter without the need to recompute the slow manifolds
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Fig. 33 Computation of the slow manifolds Sa
ε1

and Sr
ε1

of the Koper model (4.1) with (ε1, ε2, λ, k) =
(0.1, 1, 7,−10). Panel (a) shows a homotopy family of red orbit segments that connect the
section Σfn with the critical manifold S (gray). The first (uppermost) curve in the family
was computed by a separate homotopy that found an orbit segment ending along F at some
suitable distance from pfn. The second homotopy step swept out the family of red curves,
terminating with the last (lowest, darker red) orbit segment whose endpoint lies on the curve
La. Panel (b) shows a similar homotopy family of orbit segments (blue) connecting Σfn

with the repelling sheet of the critical manifold. The final (rightmost, cyan) orbit segment
starts at Lr. Panel (c) shows Sa

ε1
and Sr

ε1
together with three secondary canards ξ1, ξ2, and

ξ3. Panel (d) shows the intersection curves of Sa
ε1

and Sr
ε in Σfn that are used to detect

canard orbits.

at each step. Recall that AUTO always scales BVPs to the time interval [0, 1], so we
rescale time on uc appropriately and set T = T a +T r in (8.1). We can then start the
continuation (in a system parameter) subject to the boundary conditions

uc(0) ∈ La,(8.6)

uc(1) ∈ Lr,(8.7)
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Fig. 34 Continuation of secondary canards of the Koper model (4.1) with (ε2, λ, k) = (1, 7,−10)
starting from ε1 = 0.1. Panel (a) shows the canard orbit ξ4 represented by the concatenation
uc of two orbit segments ua and ur that match up in Σfn. Panel (b) shows the continuation
of the canard orbits ξ1–ξ7 in ε1, plotted as total integration time T versus ε1. Panel (c)
shows a two-dimensional “waterfall diagram” of the time profiles of the fast variable x
(subject to an offset δi) of computed orbit segments along the branch ξ4. The bold black
curve in panel (c) is the canard orbit ξ4 at the fold point of the (boldfaced) branch in
panel (b).

which determine uc as an isolated solution. In fact, such a continuation typically
starts already provided that ua ∩Σ ≈ ur ∩Σ; any small gap in Σ is forced to close by
the first Newton step. These two boundary conditions (8.6) and (8.7) force the orbit
segment uc to stay very close to the attracting sheet of the critical manifold S until
near the fold curve F , and then stay close to the repelling sheet of S up to Lr.

Figure 34 illustrates canard continuation with the Koper model (4.1), where we
used ε1 as the second free parameter (together with T ) and kept (ε2, λ, k) = (1, 7,−10)
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fixed. Figure 34(a) shows the two orbit segments ua and ur with (almost) equal end-
points in the section Σ = Σfn; they have been detected as a good approximation of
the maximal secondary canard orbit ξ4, which is then represented by the concate-
nated orbit uc. We continued ξ4, along with six other maximal secondary canards,
for increasing and decreasing ε1; see also Figure 33. Figure 34(b) shows these seven
branches, labeled ξ1–ξ7; here, the vertical axis shows the total integration time T be-
cause it clearly distinguishes the branches. When ξ1–ξ7 are continued in the direction
of increasing ε1, a fold in ε1 is detected for each branch; we have already seen this
in section 5 and it has also been observed in other systems [45]. Figure 34(c) is a
“waterfall diagram” that shows how the maximal secondary canard orbit ξ4 evolves
along the branch as ε1 is varied; specifically, the time profiles of the fast variable
x of consecutively computed orbit segments along the branch ξ4 are plotted with a
suitable offset δi. The orbit segment that corresponds to the fold of ξ4 is highlighted
in bold black. Observe that the orbit segments to the left of the fold have four SAOs,
whereas past the fold there are only three SAOs followed by a fast segment. Hence
the canard orbits past the fold are no longer maximal canards; see also section 5.

9. Discussion. We have described several mechanisms in slow-fast systems that
produce MMOs, namely, the twisting of slow invariant manifolds near a folded node,
oscillations that follow the two-dimensional unstable manifold of a saddle-focus equi-
librium near a singular Hopf bifurcation, and the tourbillon mechanism of a dynamic
Hopf bifurcation. Geometric singular perturbation theory (GSPT) provides tools to
identify the geometry associated with each mechanism, to quantify the MMO signa-
tures, and to describe associated bifurcations. Analysis of the folded-node case is more
complete than that of the other cases. Recent work on singular Hopf bifurcation [87]
and the transition from singular Hopf to folded nodes [144] provides substantial de-
tail on the second case, but much remains to be discovered about the unfolding of a
singular Hopf bifurcation that is relevant to MMOs. Historically, the dynamic Hopf
bifurcation was discovered first, and detailed analysis exists for the case of a delayed
Hopf bifurcation of the layer equations [169]. Together, these mechanisms constitute
a partial framework for classifying MMOs in multiple-time-scale systems that can be
further extended. Perhaps the most surprising aspect of the theory we have described
is that oscillations can appear from the interaction of fast and slow time scales even
when neither of these time scales individually displays oscillations.

We have used four case studies to illustrate theoretical concepts, and they serve as
a testbed for the development of numerical methods. The MMOs in the Koper model
and the three-dimensional reduction of the Hodgkin–Huxley equations have SAOs that
occur on intermediate time scales due to folded nodes and singular Hopf bifurcations.
In the folded-node mechanism, three parameters play key roles in determining the
geometry of the small oscillations: the ratio ε of time scales, the eigenvalue ratio
µ of the folded node in the desingularized reduced system, and the distance δ of
global return trajectories from certain invariant manifolds. Intersections of invariant
manifolds are prerequisite to global returns that produce MMOs in these examples,
and tangencies between these manifolds constitute a new type of bifurcation that
is found on the boundaries of parameter regions yielding MMOs. We found fast
oscillations of the layer equations in the Olsen and Showalter–Noyes–Bar-Eli models
of chemical reactions. Both models exhibit MMOs due to a tourbillon mechanism of
a dynamic Hopf bifurcation. These two case studies also illustrate how the theory
applies in higher dimensions and how numerical tools can be extended to investigate
and identify the mechanisms for generating MMOs in higher-dimensional systems.
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One of our goals for this paper is to facilitate fitting dynamical models to data. In
the case of MMOs, this task has been less successful than with many other nonlinear
dynamical phenomena. On the one hand, MMOs are a complex phenomenon, and
on the other hand, numerical studies of models have yielded puzzling and sometimes
paradoxical results. The theory that has been developed thus far deals best with
circumstances where the SAOs have amplitudes that are far too small to be observed
even in numerical simulations, but model studies frequently show MMOs with SAOs
that are readily visible. Thus, numerical methods that identify the geometric objects
highlighted by the theory are essential for bringing theory, models, and empirical data
together. We have reviewed recent advances in computing two-dimensional invariant
manifolds and their intersections that are especially important in three-dimensional
models. Extension of these methods to higher dimensions is one of the challenges for
further advances in this subject.

In the next section we provide a brief review of the MMO literature that includes
many references to experimental studies, followed by a short discussion of other mech-
anisms for MMOs in ODEs and beyond. We conclude this survey with a discussion
of some outstanding issues that demand further research.

9.1. MMO Literature Review. This section provides an overview, in the form of
three tables, of references where examples of MMOs have been studied experimentally
or in model systems. We do not claim that this overview is complete; rather, these
tables are intended as an entry point into the extensive literature on the subject. Ta-
ble 4 lists experimental work on MMOs. The majority of these experiments have been
carried out for chemical reactions. As suggested in [8], we have subdivided the large

Table 4 References for experimental investigations of MMOs.

System / Reaction References

Belousov–Zhabotinsky (BZ) reaction

- Virginia [85, 106, 107, 108, 204]

- Texas [157, 158, 159, 196, 197]

- Bordeaux [8, 9, 185, 195, 231]

- Other groups [110, 156, 186, 187, 208]

Briggs–Rauscher (BR) reaction [28, 75, 172, 234]

peroxidase-oxidase (PO) reaction [78, 100, 101, 102, 103, 109, 174, 209]

HPTCu reaction [15, 138, 177, 178, 230]

Bray–Liebhafsky (BL) reaction [75, 150, 233]

copper and phosphoric acid [6, 202]

indium/thiocyanate (IT) reaction [126, 127]

BSFA-system [129]

p-CuInSe2/H2O2-system [168, 184]

spin-wave experiment [5]

rhythm neural network (PreBötC) [40]

stellate cells [47, 48, 63]

pituitary cells [228, 232]

combustion oscillations [84]

dusty plasmas [161]

semiconductor lasers [7, 83, 229]

CO oxidation [59, 60, 137]
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Table 5 References for realistic mathematical models that exhibit MMOs.

Mathematical Model Dimension References

Belousov–Zhabotinsky (BZ) reaction

- Field–Koros–Noyes (FKN) 11 [72]

- FKN-extended (GTF-model) 26 [98]

- Showalter–Noyes–Bar-Eli 7 [16, 36, 155, 190, 207]

- (minimal) Oregonator 3 [73, 181, 205, 221, 223]

- Model K (“Kyoto”) 3 [219, 224]

- IUator (“Indiana University”) 4 [203, 224]

- Geiseler–Föllner Oregonator 3 [79, 224]

- FKN-modified 7 [188]

- Zhabotinsky–Korzuhkin 3 [245]

BR-reaction

- De Kepper, Epstein; Furrow, Noyes 11 [39, 171, 172, 222, 234]

- Kim, Lee, Shin 8 [121, 122]

- Vukojević, Sørensen, Hynne 13 [234]

PO-reaction

- Olsen / DOP models 4 [4, 37, 44, 151, 153, 154, 174, 210]

- BFSO model, Urbanalator 10 [29, 30, 102, 152, 175, 200]

- Yokota–Yamazaki (YY) model 8 [67, 201, 243]

- FAB model 7 [66, 201]

- Model A, Model C 9, 10 [2, 3]

- Model C-HSR 12 [109]

Plenge model (hydrogen oxidation) 4 [11]

IT-reaction 3 [124, 125, 126, 128]

BSFA-system 4 [129]

p-CuInSe2/H2O2-system 2, 4 [168, 184]

self-replicating dimer 3 [180, 183]

autocatalytic SU3 unit 3 [220]

Hodgkin–Huxley (HH) 4 [54, 198, 199]

self-coupled HH 3 [55]

CO oxidation 3 [60, 137]

self-coupled FitzHugh–Nagumo (FHN) 3 [42, 237]

FHN, traveling frame 3 [91, 93]

combustion oscillations 3 [77, 84]

stellate cells

- Acker, Kopell, White (AKW) 7 [1, 193, 239]

- reduction of AKW 3 [112, 194, 239]

pituitary cells 3, 4 [170, 211, 215, 232]

dopamine neurons 4 [140, 160]

autocatalator 3 [94, 162, 163, 182]

LP neuron 14 [89]

Erisir model 5 [64, 65]

semiconductor lasers 3 [7, 53, 134, 136, 179]

number of references on the BZ reaction into research groups. Table 5 lists references
to mathematical models that were derived or proposed for a particular application
that features MMOs; several papers from Table 4 also contain a theoretical model
and are, hence, listed again in Table 5. Finally, Table 6 lists several abstract models
that are designed to be among the simplest systems that yield MMOs with specified
characteristics; the first five rows of the table represent frameworks of folded nodes,
folded saddle-nodes, and singular Hopf bifurcation that are presented in this paper.
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Table 6 References for abstract models exhibiting MMOs.

Abstract Model Dimension References

Boissonade and De Kepper; Koper 2, 3 [26, 38, 123]

Boissonade and De Kepper; Strizhak 2, 3 [26, 82, 120]

Kawczynski and Strizhak 3 [116, 117, 186, 187]

folded node toy model 3 [31]

3-scale: Krupa, Popović, Kopell 3 [139, 140]

Hopf-hysteresis normal form 3 [16, 188]

two coupled oscillators 4 [212]

Rössler; Gaspard and Nicolis 3 [16, 76]

Barkley 4 [16]

Chemical reactions feature strongly in Tables 4–6. There have been substantial
efforts to develop models, from the law of mass action, that reproduce experimental
observations. We remark that detailed models that attempt to capture the full chem-
istry of a reaction are typically very stiff and contain large numbers of parameters; as a
result, it is often difficult to fit the models to experimental data. We hope that the the-
ory and numerical methods reviewed in this paper lead to better fits of models to data.
Note that recent interest in MMOs in neuroscience is also reflected in the three tables.

9.2. Other MMO Mechanisms in ODEs. Historically, MMOs have also been
studied in the context of bifurcations of systems with a single time scale. More
specifically, homoclinic or heteroclinic cycles involving one or several invariant objects
provide a mechanism for MMOs that does not require an explicit slow-fast structure.
The best-known case is that of a homoclinic orbit to a saddle-focus in R

3. A theorem
by Shil′nikov [90, 148, 206] proves that (depending on a condition on the eigenvalues of
the saddle-focus) there exists one or an infinite number of periodic orbits in a tubular
neighborhood of the homoclinic orbit; see also [81]. Each such periodic orbit near this
global bifurcation involves one or several large excursions along the homoclinic orbit,
as well as small oscillations when the trajectory spirals away from, or back toward,
the saddle-focus. This type of oscillation near Shil′nikov bifurcations can be found
readily in laser systems: one or several large pulses of the laser power are followed by
small damped oscillations near the saddle-focus; see, for example, [7, 53, 83, 134, 136,
179, 229, 241]. The small oscillations are at a characteristic frequency and are due
to a periodic exchange of energy between the optical field and the carrier reservoir
(electron-hole pairs in the case of a semiconductor laser). Similarly, more complicated
heteroclinic cycles may give rise to large excursions followed by small oscillations. A
concrete example is a heteroclinic cycle between a saddle equilibrium and a saddle
periodic orbit, as can be found, for example, near a saddle-node Hopf bifurcation with
global reinjection. Near this global bifurcation one can find large attracting periodic
orbits that visit a neighborhood of the equilibrium and also have an arbitrary number
of smaller loops around the saddle-periodic orbit; see [130, 135].

While such global bifurcations are generic and require no special properties of
the system, they often appear in slow-fast systems, and proving their existence is
greatly simplified in this context [164, 213]. A notable example was introduced by
Rössler [191, 192] and later illustrated by a model due to Gaspard and Nicolis [76].
Figure 35(a) shows the geometry of this model; it has a classical S-shaped critical
manifold S with two fold lines and there exists a stable MMO periodic orbit Γ that
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x
y2

y1

S

Γ

(a)

t

x (b)

.

.

Fig. 35 An MMO periodic orbit Γ in the Gaspard–Nicolis–Rössler model [76]. Panel (a) shows Γ
relative to the S-shaped critical manifold; this illustrates that the SAOs are taking place
entirely on the slow manifold. Panel (b) shows the time series of the x-coordinate of Γ.

contains two fast segments. Figure 35(b) shows the corresponding time series of one of
the coordinates of Γ and illustrates that Γ has signature 12. The LAOs of Γ are formed
by the usual relaxation-oscillation mechanism. The phase portrait in Figure 35(a) is
near (the simple case of) a Shil′nikov bifurcation; the SAOs occur because, after one
fast transition, Γ is in the vicinity of a saddle-focus equilibrium, which is an unstable
focus of the slow flow. Note that the time series also show that the SAOs happen on
the slow time scale. Barkley [16] observed that this mechanism does not account for
MMOs in the BZ reaction because there the SAOs also have a fast component. More-
over, this particular mechanism does not seem to occur in other models as commonly
as the slow-fast mechanisms presented in section 3. Intuitively this is expected since
the global return mechanism has to be special (namely, near a Shil′nikov bifurcation)
to provide returns to a small neighborhood of a slow-flow focus. Nevertheless, the
Rössler mechanism is of interest historically as one of the first proposed geometric
mechanisms for MMOs. It is also another nice example that illustrates the geometric
approach of exploiting the slow-fast nature of a system to understand MMOs.

Subcritical Hopf bifurcation in a system with a single time scale has also been
observed to give rise to MMOs. The appearance of these MMOs resembles those
associated with Shil′nikov bifurcation. Guckenheimer and Willms [95] analyze this
phenomenon, which we briefly sketch here. Consider a three-dimensional system in
which an equilibrium q makes the transition from a sink to a saddle-focus via a
subcritical Hopf bifurcation. When q is a saddle-focus, it has a real eigenvalue of
magnitude O(1) and a pair of complex eigenvalues whose real parts are small and
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positive. Trajectories that come close to the stable manifold of q will flow close to q
and then slowly spiral away with oscillations of increasing magnitude, similar to those
observed near a singular Hopf bifurcation; see Figure 21. MMOs will occur if these
spiraling trajectories make a global return to the vicinity of q. Global returns for
portions of the unstable manifold of q are robust and may exist already at the Hopf
bifurcation where the center manifold of q is weakly unstable. In this case, the returns
are likely to come close enough to q that they will give rise to long epochs of small,
slowly growing oscillations. See Guckenheimer and Willms [95] for a three-dimensional
example and Guckenheimer et al. [89] for a high-dimensional example occurring in a
neural model. We remark that, although this mechanism for creating MMOs applies
to a single-time system, the Hopf bifurcation naturally introduces a slow time scale
in the system associated with the real parts of the unstable complex eigenvalues.

The MMOs that we have discussed in this survey have SAOs generated by a
local mechanism near a special point of the limiting system. However, SAOs and
associated MMOs may also arise in other ways in slow-fast systems. An example
of this is that of MMOs with two well-defined separate oscillations that occur when
the layer equations have two families of periodic orbits, one large and one small, and
fast jumps between them. This scenario is analogous to the phenomenon of bursting,
which is common in neural systems. In bursting, oscillations alternate with quiescent
epochs (associated with a slow drift along a stable equilibrium of the layer equations)
instead of there being oscillations of different amplitudes. Since the seminal work of
Rinzel [189], bursting has been viewed as a multiple-time-scale phenomenon. In this
context, bursts occur when the layer equations of a model have both equilibria and
limit-cycle attractors and the full system makes fast jumps between these features
in both directions. Izhikevich [111] compiled an extensive classification of bursting
patterns based upon the bifurcations of the layer equations that initiate and terminate
the oscillations in a burst. A similar table could be constructed for MMOs, but it
would be even larger. Golubitsky, Josiç, and Kaper [80] use a different classification
of bursting patterns based on singularity theory, which is more in the spirit of this
survey. Section 6 gives a brief taste of the analysis of global mechanisms for transitions
between large and small oscillations in MMOs.

9.3. MMOs Beyond ODEs. This survey only considers MMOs that arise in slow-
fast ODEs, but they have also been found in dynamical systems that are described
by stochastic differential equations (SDEs), delay differential equations (DDEs), and
partial differential equations (PDEs). The analysis of MMOs in these more involved
settings is much less developed than that for ODEs. To give a flavor, we now describe
briefly a few recent examples in which a slow-fast structure is an important aspect of
the MMOs that have been identified.

9.3.1. Stochastic MMOs. Muratov and Vanden-Eijnden [166] study the Van der
Pol oscillator with small (additive) noise; they use λ as the bifurcation parameter and
consider the case 0 < ε � 1. Their analysis shows an intricate interplay between
the noise and the singular perturbation parameter ε and how this depends on λ. For
example, it can be shown that even if the deterministic limit without noise has just
a stable fixed point for suitable λ, the SDE can exhibit relaxation-type oscillations;
also, MMOs that are composed of “small canard orbits” and relaxation LAOs can
occur. Borowski and Kuske [146] consider a similar stochastic slow-fast equation of
FitzHugh–Nagumo type and find MMOs due to noise as well; see also [147]. Closely
related is the work by Berglund and Gentz [24, 25], who study spike generation in
slow-fast neural models with noise in the framework of SDEs. The common ingredient
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in these examples is excitability: while small noise only leads to small irregular oscil-
lations, a sufficiently large noise perturbation can kick the system beyond a threshold
that results in a large excursion. There is a noise level when the system is most co-
herent or regular and, hence, shows well-defined but irregular MMOs. Excitability as
a mechanism to generate large pulses as the result of external and/or internal noise
has also been observed and studied in several laser systems [56, 134].

Another possible mechanism for noise-induced MMOs was investigated by Yu,
Kuske, and Li [244], who consider a system of coupled-oscillator SDEs. If the deter-
ministic limit is at least bistable, then noise can provide a mechanism for sample paths
to alternate between the basins of attraction of deterministically stable invariant sets.
The simplest way to visualize this idea is to consider two stable limit cycles for an
ODE, one with a small and the other with a large amplitude. If the basins of attraction
are suitably located, noise can induce repeated transitions between tubular neighbor-
hoods of each cycle. Hence, a typical sample path will then be an irregular MMO.

9.3.2. MMOs in DDEs. One can ask what happens when one adds delay terms
to a slow-fast system. Sriram and Gopinathan [208] consider the BZ reaction with
delay in an experiment. They compare the results with a version of the classical
three-dimensional Oregonator model [73, 205] with delay and claim that the delay
induces MMOs [208]. This prompts the question of whether DDEs have slow-fast
phenomena, such as canards, similar to their ODE counterparts. In principle, this
should be expected at least for the case of a finite number of fixed delays, for which
the DDE does not feature a continuous spectrum [96]. Indeed a positive answer was
recently obtained by Campbell, Stone, and Erneux [32] for a two-dimensional DDE
model of high-speed machining. In their system a small delay induces perturbation
from a degenerate Hopf bifurcation, which results in a canard explosion as discussed
in section 2.2; see also [34] for details of the underlying theory for slow-fast DDEs
with small delay.

9.3.3. MMOs in PDEs. Given a time-dependent PDE on a domain in R
n, one

can look for MMOs in space, time, or a mixture of space and time. Nagumo’s equa-
tion [167], which models the evolution of an activator v(x, t) and a slow inhibitor
u(x, t), is an example that has been studied extensively as an idealized model for
propagation of action potentials. Traveling-wave profiles are found via the ansatz
v(x, t) = v(x + σt) = v(τ) and w(x, t) = w(x + σt) = w(τ) as homoclinic solutions of
a three-dimensional ODE with two fast variables and one slow variable [92]; here, σ
is the wave speed. It has been shown that MMOs exist as solutions of this reduced
ODE [93]. More generally, work on evolution equations given by PDEs suggests that
oscillatory patterns with alternating amplitudes [35] and slow-fast structures [17] ex-
ist in many common models. Hence, the study of this type of MMO for PDEs will
benefit from multiple-time-scale methods.

9.4. MMOs: Bringing Together Theory and Data. We end with a few addi-
tional remarks about outstanding issues concerning MMOs in the context of multiple-
time-scale ODE models. We regard the central goal of research on MMOs as compre-
hensive analysis of empirical data: this opinion shapes our view of the priorities for
further research on the subject. The MMO literature reviewed above has only a mod-
est amount of empirical data, but that is sufficient to raise concern about whether
we have yet discovered models that capture the essence of the MMOs observed in
experiments. We have discussed the amplitudes of SAOs and the sizes of parameter
regimes yielding MMOs in this review but have not explored the implications of our
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findings for empirical data. We do suggest that these characteristics be used in fitting
models to data.

The study of MMOs has its origins in investigations of oscillations in chemical re-
actions, especially during the 1970s and 1980s. There was interest then in determining
whether aperiodic dynamics in these systems are the result of deterministic chaos or
noise. With a focus on the BZ reaction, quantitative models for systems with complex
dynamics were developed. Nonetheless, these attempts to produce accurate kinetic
models for the reactions were only partially successful. The models had multiple time
scales, making it difficult to interpret their dynamics in the light of theory existing
at that time. The advances that have been made in GSPT since then suggest that a
renewed study of these models could make significant progress on problems that were
abandoned rather than solved a generation ago. New technologies may also enable
experiments that measure the dynamics of these reactions with greater precision than
was possible in the 1980s. Then, and now, one of the motivations for studying these
reactions is to develop methods for studying the dynamics of biological systems.

The focus of this survey has been on local mechanisms that generate SAOs via
the passage near special points that can be found generically in multiple-time-scale
system. MMOs arise in the presence of a return mechanism that allows trajectories
to pass through the region of SAOs over and over again. We considered here only
return mechanisms that bring the trajectory immediately back to the SAO region
after one large excursion, which corresponds to a single LAO. However, MMOs may
have more general signatures with several LAOs in between epochs of SAOs. There
has been little study to date of mechanisms that produce such MMOs with L > 1. For
some three-dimensional systems with two slow variables and one fast variable with an
S-shaped critical manifold, the global returns from a region surrounding SAOs back
to itself are very regular and can be approximated by nearly one-dimensional linear
maps. This scenario is not expected to produce many complicated signatures with
L > 1. A similar effect has also been analyzed for a system with three time scales
[139, 140], where the only signatures that are found are 21, 22, and L1. These results
are also supported by numerical evidence in several other three-dimensional models
[123, 126, 182, 198, 199] and in an experiment [6].

More complicated MMO signatures with L > 1 have rarely been analyzed in
any detail in the current literature. They seem to occur most frequently in higher-
dimensional chemical reactions such as the BZ reaction [159, 157, 158, 106], the
Briggs–Rauscher reaction [122], and the PO reaction [154, 151]; see also section 7.
We discussed one possibility of obtaining L > 1 LAOs as part of an MMO: that
there are several large oscillations in the fast subsystem before an MMO trajectory
reenters the SAO region. As was discussed in section 3.3, this requires there to be
two-dimensional fast dynamics in at least some part of phase space. We remark that
in systems with two or more fast variables, the presence of MMOs with L > 1 is
analogous to the oscillations found in bursting systems [111]. Analysis of the mech-
anisms associated with the initiation and termination of LAOs that follow a family
of periodic orbits in the layer equations of slow-fast systems with MMOs has hardly
been attempted. For bursting, Terman and Lee [217] is a representative study. More
generally, for MMOs in systems with at least two slow and two fast variables, one
would expect to find quite a number of different global return mechanisms that may
give rise to several LAOs between epochs of SAOs.

Investigations of slow-fast systems with more than two slow variables have just
begun. Wechselberger [238] extends the theory of canards to such systems and Harvey
et al. [99] use these results to study models of intracellular calcium dynamics.
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Much of the analysis of MMOs in models has been based upon numerical studies
of bifurcation sequences and the interpretation of these sequences in terms of the
iterations of one-dimensional maps. Theoretically, the properties of return maps for
the examples of this paper could be decomposed into a composition of two maps,
the first describing flow through the small region producing SAOs and the second
describing the global returns of trajectories emerging from this region. These maps
are quite complicated and deserve further study. They may have discontinuities and
gaps where trajectories tend to small attractors in the region with SAOs, and the
fate of trajectories following canards is often difficult to compute. More analysis of
bifurcation and chaos in one-dimensional approximations of the return maps may help
further to characterize the mechanisms underlying MMOs observed in empirical data.
An important system in which to complete such an analysis is the Koper model and
its extension as a modified normal form for singular Hopf bifurcation with a global
return.

One of the highlights of dynamical systems theory has been its success in identify-
ing simple models that capture the essence of behaviors that are found in large classes
of systems. Nonetheless, our ability to analyze models as complex as realistic models
for chemical reaction kinetics or spiking neurons is limited by the efficacy of our nu-
merical methods. We have demonstrated here how advanced numerical methods for
slow-fast systems can be brought to bear for the study of systems of dimension up
to four. However, further development of methods to analyze the dynamics of high-
dimensional, multiple-time-scale systems is definitely needed. It would be helpful to
have better methods to enable a systematic model reduction in regimes with low-
dimensional attractors. The analysis of MMOs in more general situations would also
be facilitated by numerical methods for computing invariant manifolds and the fast-
slow decomposition of trajectories in higher-dimensional systems. In particular, such
numerical techniques will be crucial for the study of new types of return mechanisms
and, hence, MMOs with more complicated signatures of LAOs and SAOs.
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