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1 Introduction

Jansen’s neural mass model is based on the work of Lopes Da Silva et al. and Van Rot-

terdam et al. [Lopes da Silva et al., 1974, Lopes da Silva et al., 1976, van Rotterdam et al., 1982].

They developed a biologically inspired mathematical framework to simulate sponta-

neous electrical activities of neurons assemblies recorded by EEG, with a particular

interest for alpha activity. In their model, populations of neurons interact by excitation

and inhibition and can in effect produce alpha activity. Jansen et al. [Jansen et al., 1993,

Jansen and Rit, 1995] discovered that this model was also able to simulate evoked po-

tentials, i.e. EEG activities observed after a sensory stimulation (by a flash of light,

a sound, etc...). More recently, Wendling et al. used this model to synthesize activ-

ities very similar to those observed in epileptic patients [Wendling et al., 2000], and

David and Friston studied connectivity between cortical areas with a similar frame-

work [David and Friston, 2003, David et al., 2004].

The contribution of this paper is a fairly detailed description of the behaviour of this

particular neural mass model as a function of its input. This description is grounded

in the mathematics of dynamic systems and bifurcation theories. We briefly recall the

model in section 2 and describe in section 3 the properties of the associated dynamical

system.

2 Description of the model

The model features a population of pyramidal neurons (central part of figure 1.a.) that

receive excitatory and inhibitory feedback from local inter-neurons and an excitatory

input from neighbouring cortical units and sub-cortical structures like the thalamus.

Actually the excitatory feedback must be considered as coming from both local pyra-

midal neurons and genuine excitatory interneurons like spiny stellate cells.

∗The final version of this article can be found in Neural Computation, Vol. 18, Issue 12, published

by the MIT Press→ http://mitpress.mit.edu/NECO
†This work was partially supported by Elekta Instrument AB.
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Figure 1: a) Neural mass model of a cortical unit: it features a population of pyramidal

cells interacting with two populations of inter-neurons, one excitatory (left branch) and

the other inhibitory (right branch). b) Block representation of a unit. The h boxes

simulate synapses between the neurons populations. Sigm boxes simulate cell bodies

of neurons by transforming the membrane potential of a population into an output

firing rate. The constants Ci model the strength of the synaptic connections between

populations.

Equations of the model

Figure 1b. is a translation of figure 1.a in the language of system theory. It represents

the mathematical operations performed inside such a cortical unit.

The excitatory input is represented by an arbitrary average firing rate p(t)which can be
random (accounting for a non specific background activity) or deterministic, account-

ing for some specific activity in other cortical units. The three families –pyramidal

neurons, excitatory and inhibitory inter-neurons– and synaptic interactions between

them are modeled by different systems.

The Post-synaptic systems Pi, i = 1, 2, 3 (labeled he(t) or hi(t) in the figure) con-
vert the average firing rate describing the input to a population into an average excita-

tory or inhibitory post-synaptic potential (EPSP or IPSP). From the signal processing

standpoint, they are linear stationary systems that are described either by a convolution

with an impulse response function or, equivalently, by a second-order linear differen-

tial equation. They have been proposed by van Rotterdam [van Rotterdam et al., 1982]

in order to reproduce well the characteristics of real EPSPs and IPSPs. The impulse
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response function is of the form

h(t) =

{

αβte−βt t ≥ 0
0 t < 0

.

In other words, if x(t) is the input to the system, its output y(t) is the convolution
product h ∗ x(t).
The constants α and β are different in the excitatory and inhibitory cases. α, ex-
pressed in millivolts, determines the maximal amplitude of the post-synaptic potentials,

β, expressed in s−1, lumps together characteristic delays of the synaptic transmission,

i.e. the time constant of the membrane and the different delays in the dendritic tree

[Freeman, 1975, Jansen et al., 1993].

The corresponding differential equation is

ÿ(t) = αβx(t) − 2βẏ(t) − β2y(t), (1)

In the excitatory (respectively inhibitory) case we have α = A, β = a (respectively
α = B, β = b). This second-order differential equation can be conveniently rewritten
as a system of two first-order equations

{

ẏ(t) = z(t)
ż(t) = αβx(t) − 2αz(t) − α2y(t)

. (2)

The Sigmoid systems introduce a nonlinear component in the model. They are the gain

functions that transform the average membrane potential of a neural population into an

average firing rate (see, e.g. [Gerstner and Kistler, 2002]):

Sigm(v) =
νmax

2
(1 + tanh

r

2
(v − v0)) =

νmax

1 + er(v0−v)
,

where νmax is the maximum firing rate of the families of neurons, v0 is the value of the

potential for which a 50% firing rate is achieved and r is the slope of the sigmoid at v0;

v0 can be viewed either as a firing threshold or as the excitability of the populations.

This sigmoid transformation approximates the functions proposed by the neurophys-

iologist Walter Freeman [Freeman, 1975] to model the cell body action of a population.

The connectivity constants C1, . . . , C4 account for the number of synapses established

between two neurons populations. We will see that they can be reduced to a single

parameter C.

There are three main variables in the model, the outputs of the three post-synaptic

boxes noted y0, y1 and y2 (see figure 1.b); we also consider their derivatives ẏ0, ẏ1, ẏ2

noted y3, y4 and y5, respectively. If we write two equations similar to (2) for each post-

synaptic system we obtain a system of 6 first-order differential equations that describes

Jansen’s neural mass model:
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ẏ0(t) = y3(t) ẏ3(t) = AaSigm[y1(t) − y2(t)] − 2ay3(t) − a2y0(t)
ẏ1(t) = y4(t) ẏ4(t) = Aa{p(t) + C2Sigm[C1y0(t)]} − 2ay4(t) − a2y1(t)
ẏ2(t) = y5(t) ẏ5(t) = BbC4Sigm[C3y0(t)] − 2by5(t) − b2y2(t).

(3)

We focus on the variable y = y1 − y2, the membrane potential of the main family of

neurons (see figure 1.b). We think of this quantity as the output of the unit because

in the cortex, the pyramidal cells are the main vectors of long range cortico-cortical

connections. Besides, their electrical activity corresponds to the EEG signal: pyrami-

dal neurons throw their apical dendrites to the superficial layers of the cortex where

the post-synaptic potentials are summed, accounting for the essential part of the EEG

activity [Kandel et al., 2000].

Numerical values of the parameters

The parametersA,B, a and b have been adjusted by van Rotterdam [van Rotterdam et al., 1982]
to reproduce some basic properties of real post-synaptic potentials and make the sys-

tem produce alpha activity. These authors set A = 3.25mV , B = 22mV , a = 100s−1

and b = 50s−1.

The excitability of cortical neurons can vary as a function of the action of several

substances and v0 could potentially take different values, though we will use v0 =
6mV as suggested by Jansen on the basis of experimental studies due to Freeman
[Freeman, 1987]. The works of the latter also suggest that νmax = 5s−1 and r =
0.56mV −1, the values used by Jansen and Rit.

The connectivity constants Ci, i = 1, . . . , 4 are proportional to the average number
of synapses between populations. On the basis of several neuroanatomical studies

([Braitenberg and Schüz, 1998] among others) where these quantities had been esti-

mated by counting synapses, Jansen and Rit succeeded in reducing them to fractions

of a single parameter C:

{

C1 = C C2 = 0.8C
C3 = 0.25C C4 = 0.25C

Jansen and Rit varied C to observe alpha-like activity and obtained it for C = 135 (see
figure 2).

In summary, previous work shows that the following set of parameters allows the neural

mass model described by equations (3) to produce a set of EEG-like signals:







A = 3.25 B = 22
a = 100 b = 50
v0 = 6 C = 135

(4)

We show in section 3.4 that the behaviour of the neural mass model is fairly sensitive

to the choice of the values of these parameters. Indeed changes as small as 5% in these

values produce some fairly different behaviours.
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Figure 2: Activities of the unit shown in figure 1 when simulated with a uniformly

distributed white noise (between 120 and 320 Hz) as input. The different curves

show different activities depending on the value of the parameter C. The third curve
from the top looks like alpha activity and has been obtained for C = 135 (From
[Jansen and Rit, 1995]).
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The quantity p represents the lumped activity of the brain areas connected to the unit.
Jansen and Rit chose p(t) to be a uniformly distributed noise ranging from 120 to 320
pulses per second as they wanted to model non-specific input (they used the terms back-

ground spontaneous activity). This noise dynamics allowed them to produce alpha-like

activity. Similarly, Wendling and his colleagues used a white Gaussian noise (mean 90

and standard deviation 30) for p(t) and observed the emission of spikes that was rem-
iniscent of an epileptic activity. We show in the next section that these two different

behaviours can be nicely accounted for by a geometric study of the system (3) through

its bifurcations.

3 Bifurcations and oscillations

In this section we consider p as a parameter of the system and propose to study the
behavior of a unit when p varies. We therefore study the dynamical system (3) all
parameters, but p, being kept constant and equal to the values set by Jansen and Rit
(see (4)). In section 3.4 we extend this analysis to other values of the parameters in (4).

Let Y = (y0, . . . , y5)
T
, the system has the form

Ẏ = f(Y, p),

where f is the smooth map from R
6 to R

6 given by (3) and p is a parameter.

We are interested in computing the fixed points and periodic orbits of the system as

functions of p because they will allow us to account for the appearance of such activities
as those shown in figures 2 (alpha-like activity) and 3 (epileptic spike-like activity).

3.1 Fixed points

The one parameter family of fixed points

We look for the points Y where the vector field f(., p) vanishes (called fixed points,
critical points or equilibrium points). Writing Ẏ = 0we obtain the system of equations







y0 = A
a
Sigm[y1 − y2] y3 = 0

y1 = A
a
(p + C2Sigm[C1y0]) y4 = 0

y2 = B
b
C4Sigm[C3y0] y5 = 0,

(5)

which leads to the (implicit) equation of the one-parameter family of equilibrium points

in the (p, y = y1 − y2) plane:

y =
A

a
p +

A

a
C2Sigm

[A

a
C1Sigm(y)

]

−
B

b
C4Sigm

[A

a
C3Sigm(y)

]

(6)

As mentioned before, y = y1 − y2 can be thought of as representing the EEG activity

of the unit and p is our parameter of interest. We show the curve defined by (6) in fig-
ure 4.a. The number of intersections between this curve and a vertical line of equation

p = constant is the number of equilibrium points for this particular value of p. We
notice that for p ≈ 110−120, the system goes from three equilibrium points to a single
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Simulated signals

Real signals

Figure 3: (a)-(e) Activities of the unit shown in figure 1 when simulated with a white

Gaussian noise as input (corresponding to an average firing rate between 30 and 150

Hz). The authors varied the excitation/inhibition ratio A/B. As this ratio is increased
we observe sporadic spikes followed by increasingly periodic activities. (f)-(i) Real

activities recorded from epileptic patients before (f,g) and during a seizure (h,i) (From

[Wendling et al., 2000]).
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one. We also note that the curve has been drawn for some negative values of p. These
points do not have any biological meaning since p is a firing rate. It turns out though
that they play a central role in the mathematical description of the model (see section

3.2).

The coordinates of the singular points cannot be written explicitely as functions of p
but every singular point is completely determined by the quantity y. More precisely,
the coordinates of every singular point S(y) have the following form :

S(y) =
(

A

a
Sigm(y)

A

a
(p+C2Sigm[C1

A

a
Sigm(y)])

B

b
C4Sigm[C3

A

a
Sigm(y)] 0 0 0

)⊤

(7)

p and y being related through equation (6).

Local study near the singular points

In order to study the behavior of the system near the fixed points we linearize it and

calculate its Jacobian matrix, i.e. the partial derivative J of f(., p) at the fixed point
S(y). It is easy but tedious to show that at the fixed point S(y) we have

J (S(y)) =

(

03 I3

KM(y) −K

)

,

where K = 2diag(a, a, b), M(y) =





−a/2 γ(y) −γ(y)
δ(y) −a/2 0
θ(y) 0 −b/2



, I3 is the three-

dimensional identity matrix and 03 the three-dimensional null matrix.

The three functions γ, δ and θ are defined by

γ(y) = A
2 Sigm

′(y)

δ(y) = AC1C2

2 Sigm′(C1y0(y))

θ(y) = BC3C4

2 Sigm′(C3y0(y)),

where y0(y) is the first coordinate of S(y) and Sigm′ is the derivative of the function

Sigm.
We compute the eigenvalues of J along the curve of figure 4.a to analyze the stability
of the family of equilibrium points. The results are summarized in figure 4.b. The solid

portions of curve correspond to stable fixed points (all eigenvalues have a negative real

part) and the dashed ones to unstable fixed points (some eigenvalues have a positive

real part). Stars indicate points where at least one eigenvalue of the system crosses the

imaginary axis, having therefore a zero real part. These points are precious landmarks

for the study of bifurcations of the system.
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3.2 Bifurcations and oscillatory behaviour in Jansen’s model

A bifurcation is a drastic and sudden change in the behavior of a dynamic system

that occurs when one or several of its parameters are varied. Often it corresponds to

the appearance or disappearance of limit cycles. Describing oscillatory behaviours in

Jansen’s model is therefore closely related to studying its bifurcations. In our case

when p varies from−∞ to+∞ the system undergoes five bifurcations (remember that
only the positive values of p are biologically relevant).

We now describe these bifurcations from a somewhat intuitive viewpoint but our results

are grounded in the mathematical theory of bifurcations [Perko, 2001, Ioos and Adelmeyer, 1999,

Kuznetsov, 1998, Berglund, 2001a, Berglund, 2001b] and the extensive use of the soft-

ware XPP-Aut due to Bard Ermentrout (available on http://www.pitt.edu/˜phase/).

Wewere also inspired by bifurcation studies of single neuronmodels (see [Izhikevich, 2006,

Hoppenstaedt and Izhikevich, 1997, Rinzel and Ermentrout, 1998]).

Hopf bifurcations and alpha activity in Jansen’s model

When p is varied smoothly the eigenvalues of the fixed points move smoothly in the
complex plane: when two complex conjugate eigenvalues cross the imaginary axis the

system undergoes in general what is called a Hopf bifurcation. Two of them happen in

Jansen’s model (if we ignore the negative values of p) for p = 89.83 and p = 315.70.
A theorem due to Hopf [Perko, 2001] shows 1 that for p = 89.83 a one parameter fam-
ily of stable periodic orbits appears at the fixed point that has two complex conjugate

eigenvalues crossing the imaginary axis towards positive real parts. These periodic

orbits persist till p = 315.70 where a second Hopf bifurcation occurs: the two eigen-
values whose real parts became positive for p = 89.83 see them become negative again,
corresponding to the (re)creation of a simple attractive fixed point. This is shown in

figure 4.c: for p between 89.83 and 315.70, there is a family of periodic orbits (we call
them Hopf cycles from now on) parametrized by p for which the minimal and maximal
y values have been plotted (thick oval curve). Numerically, using XPP-Aut, we find
that these oscillations have a frequency around 10 Hz, which corresponds to alpha ac-
tivity. So it appears that alpha-like activity in Jansen’s model is determined by Hopf

cycles. Interestingly enough, the system does not display any Hopf bifurcation if we

approximate the sigmoid by a piecewise linear function, or if we try to reduce the di-

mensionality of the system by singular perturbation theory [Berglund, 2001b]. In both

cases the system is unable to produce alpha activity.

Let us interpret Jansen and Rit’s results in the light of our mathematical analysis. They

report observing alpha activity (third curve in figure 2) when they use a uniformly

distributed noise in the range 120-320 Hz at the entry of the system. This is easy to

account for if we look at figure 4.c: in this domain of p values, the Hopf cycles are
essentially the only attractors of the dynamical system (3). So, at every time instant t,
its trajectories will tend to coil around the Hopf cycle corresponding to p = p(t). We

1 The proof of the existence of a Hopf bifurcation relies on the calculation of the Lyapunov number at the

bifurcation points. It is quite technical and is not developed here.
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Figure 4: a) Curve defined by equation (6). For each value of p, the curve yields the
coordinate(s) y of the corresponding fixed point(s). b) Fixed points and their stability:
stable fixed points lie on the solid portions of the curve and unstable points lie on the

dashed ones. Stars correspond to transition points where the Jacobian matrix has some

eigenvalues with zero real part. c) Curve of the fixed points with two branches of limit

cycles (shaded regions bounded by thick black curves). The stars labeled 3 and 5 are

Hopf bifurcation points. The oval between them is the branch of Hopf cycles: for each

89.83 ≤ p ≤ 315.70, the thick black curves between points 3 and 5 give the highest
and lowest y values attained by the Hopf cycle. The other branch of limit cycles lies
in the domain between the star labelled 1, where there is a saddle-node bifurcation

with homoclinic orbit and the dash-dotted line 4 representing a fold bifurcation of

limit cycles. This kind of representation is called a bifurcation diagram. d) A Hopf

bifurcation at the point labeled 2 (p = −12.15) gives rise to a branch of unstable limit
cycles that merges with the branch of stable cycles lying between the point labeled 1

and the dashed line labeled 4. This phenomenon is called a fold bifurcation of limit

cycles.
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will therefore see oscillations of constant frequency and varying amplitude leading to

the waxing and waning activity reported by Jansen and Rit.

Global bifurcations and spike-like epileptic activity

Hopf bifurcations are called local because their appearance only depends on local prop-

erties of the dynamical system around the bifurcation point. In figure 3, we see that

the system is able to display spike-like activities that resemble certain epileptic EEG

recordings [Wendling et al., 2000]. These activities arise from a branch of large stable

periodic orbits delimited by a pair of global bifurcations (i.e. depending not only on

local properties of the dynamical system) that correspond to the star labeled 1 and the

dash-dotted line labeled 4 in figure 4.c. From now on, we will call these orbits spike

cycles.

The branch of spike cycles begins for p = 113.58, thanks to a saddle-node bifurcation
with homoclinic orbit 2 (see [Perko, 2001, Kuznetsov, 1998]). It ends for p = 137.38
because of a fold bifurcation of limit cycles that we identified with XPP-Aut. This

bifurcation results from the fusion of a stable and an unstable family of periodic orbits.

The stable family is the branch of spike cycles and the unstable family originates from

a Hopf bifurcation occuring at p = −12.15.
Thanks to XPP-Aut, we have been able to plot the folding and the associated Hopf

bifurcation with respect to the y0 axis (see figure 4.d). So far we have shown the

bifurcation diagrams in the (p, y) plane, but for technical reasons due to XPP-Aut, we
show the bifurcation diagram in the (p, y0) plane in this case. Its general properties are
the same though. For example we recognize the S shape of the fixed points diagram

and the relative position of landmarks 1, 2 and 4.

Contrary to the Hopf cycles whose periods remains around 10 Hz, the spike cycles can
display every frequency in the range 0− 5 Hz (it increases with p) so that they are able
to reproduce the various “spiking” activities observed in figure 3.

In this case also we can identify the central role played by p in shaping the output of
the unit. Wendling et al. used a Gaussian noise with mean 90 and standard deviation

30 to produce the spikes in figure 3 resulting in an input to the unit essentially varying

between 30 and 150 Hz, which is quite low compared to the range used by Jansen and

Rit. Let us first distinguish two parts in the curve of fixed points in figure 4.c. We call

lower branch the set of stable fixed points below the star labelled 1 and upper branch

the one between the stars labelled 2 and 3. For p between 30 and 90 the system displays
a classical bistable behaviour with two stable fixed points (one on each branch), the

lowest fixed points appearing to be dominant: we found experimentally that the basin

of attraction of the upper point is not very large, so that one has to start quite close to

it in order to converge to it. As a result, a low input (p ≤ 90) produces in general a
low output: the trajectory is attracted by the lower branch. For p between 110 and 140,
we are in the range of p values where spike-like activity can appear and where spiking
competes with Hopf cycles, but trajectories near the lower branch are attracted by spike

cycles (as we will see in 3.3) hence producing spike-shaped activities. These two facts

2 The proof of the existence of this saddle-node bifurcation with homoclinic orbit uses a theorem due to

Shil’nikov [Kuznetsov, 1998].
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– attraction to the lower branch and preference of the lower branch for spike cycles –

allow us to understand how the model can produce epileptic-like activities.

3.3 Synthesis: behavior of the cortical unit model according to the

input parameter p

We now have in hands all the ingredients to describe the activity of this neural mass

model when stimulated by a slowly varying input. For that purpose we computed two

trajectories (or orbits) of the system with p increasing linearly in time at a slow rate
(dp/dt = 1). The system was initialized at the two stable fixed points at p = 0: the
stable state on the lower branch and the one on the upper branch (see stars in figure 5).

As long as p ≤ 89.83, the two trajectories are ”flat”, following their respective branches
of fixed points (figure 6, p = 80). After the Hopf bifurcation occurring at p = 89.83
the orbit corresponding to the upper branch naturally coils on the Hopf cycles branch

(figure 6, p = 100), resulting in alpha-like activity. The trajectory on the lower branch
does the same with the spike cycles as soon as p reaches the value 113.58 (figure 6,
p = 125). As p ≥ 137.38, the only remaining attractor is the Hopf cycle branch so that
the system can only exhibit alpha-like behaviour (figure 6, p = 200). For high values
of p (≥ 315.70), there is only one stable fixed point and the trajectory is ”flat” again.
These results lead us to distinguish two states, the lower and the upper, for the unit.

The lower state is described by the combination of the lower branch of fixed points

that correspond to rest, and the spike cycles (thick lines in figure 5). It corresponds to

positive values of p less than 137.38. The upper state is described by the upper branch
of fixed points, the Hopf cycle branch and the branch of fixed points following it (thin

lines in figure 5). It corresponds to positive values of p. These states are relevant for
slow dynamics of the input p. In effect, a trajectory starting near one of these states
will stay in its neighborhood when p is varied slowly (increasing or decreasing). When
the unit is in its lower state and p becomes larger than 137.38, it jumps to its upper state
and cannot return to its lower state (if p varies slowly). Therefore, when in its upper
state, a unit essentially produces alpha-like activity and its input must be decreased

abruptly to bring it back to its lower state. Conversely, starting in the lower state a unit

can be brought to the upper state by an abrupt increase of its input. It can also stay in

its lower state regime, between rest and spiking, if the input and its variation remains

moderate.

3.4 What about other parameters?

We think that the bifurcation analysis with respect to p is the most relevant since this
parameter is expected to vary more and faster than the others, but it is interesting to

build bifurcation diagrams with respect to p with different settings of the other param-
eters. We indeed observed that varying any parameter by more than 5% leads to quite
drastic changes in the bifurcation diagram and to significantly less rich behaviours of

the unit. These changes fall into two broad categories (see figure 7).

For low values of A, B or C, or high values of a or b, the system is no longer able to
produce oscillations (figure 7.a). For high values of A, B or C, or low values of a or
b, we observed a new kind of bifurcation diagram (an example is given in figure 7.b).
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Figure 5: Diagram of the stable attractors (stable fixed points and stable limit cycles)

of the model described by equations (3). The stars show the starting points of the two

trajectories we simulated with p slowly increasing. Their time courses have been frozen
for p = 80, 100, 125 and 200 (as indicated by the vertical dashed lines on this figure)
and can be seen in figure 6. Lower and upper states of the unit correspond to the thick

and thin lines, respectively.
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Figure 6: Activities produced by Jansen’s neural mass model for typical values of the

input parameter p (see text). The thin (respectively thick) curves are the time courses
of the output y of the unit in its upper (respectively lower) state. For p > 137.38, there
is only one possible behaviour of the system. Note: in the case of oscillatory activities

we added a very small amount of noise to p (a zero mean Gaussian noise with standard
deviation 0.05).
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Figure 7: The stable attractors of the system in two typical cases encountered for dif-

ferent settings of parameters A, B, C, a or b. a) corresponds to lower (respectively
higher) values of A, B, C (respectively a and b) than those given by (4). Here, A = 3
instead of 3.25: there are no more limit cycles. b) corresponds to higher (respectively
lower) values of A, B, C (respectively a and b). Here C = 140 instead of 135. The
spiking behaviour is more prominent and is the only one available in a wide range of

p values (112.6 ≤ p ≤ 173.1). Except in a narrow band (173.1 ≤ p ≤ 180.4), the
system displays one single behaviour for each value of p.

In this regime, the system has only one stable state for each value of p, except some-
times in a narrow range of p values (in the figure, 173.1 ≤ p ≤ 180.4). The range
where spiking can occur is broader and the one for alpha activity is severely truncated.

Moreover, spiking does not coexist with alpha rhythm anymore so that (except for a

very small range of p values) it is the only available behaviour on a broad interval of p
values (in the figure, 112.6 ≤ p ≤ 173.1). So spiking becomes really prominent.
The mathematical explanation for this new diagram is the fusion of the Hopf cycles

branch with the branch of unstable periodic orbits that can be seen in figure 4.d. It

results in a new organization of periodic orbit branches. We have two stable branches

(for 112.6 ≤ p ≤ 180.4 and 173.1 ≤ p ≤ 457.1), linked by a branch of unstable orbits.
Transitions between stable and unstable orbits are made via fold bifurcations of limit

cycles like the one in figure 4.d.

4 Conclusion

The bifurcation diagram (figure 5) is a precious tool to describe Jansen’s neural mass

model’s behaviours for constant or slowly varying stimulus we also showed that this

analysis provided a good basis for understanding what happened when the input was

noisy. In the case of small or slow variations of this input, the model can be reduced to

a binary unit with two possible states.
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When we studied how the bifurcation diagram varied when changing the values of the

other model’s parameters it appeared that Jansen’s model’s behaviour was quite sensi-

tive to the choice of the physiological parameters A, B, C, a and b. Variations of a few
percents in the values of these parameters can cause drastic changes in the qualitative

behaviour of this neural mass model. Detailed comparisons of these behaviours with

experimental data should be essential for further validation of the model and for defin-

ing ways to make it evolve.

What about the behaviour of spatial assemblies of suchmodels? Jansen et al. have stud-

ied evoked potentials in two connected cortical units [Jansen and Rit, 1995, Jansen et al., 1993]

and Wendling et al. have simulated an epileptogenic network composed of three units

[Wendling et al., 2000]. There are still no studies involving an arbitrary number of such

units or a continuum of them.

This is a difficult task, for at least three reasons. First, the size of the system of dif-

ferential equations describing the network increases linearly with the number of units

making its mathematical analysis even more difficult. Second, the nonlinearities in the

model and the network open the door to emerging properties impossible to predict from

the sole knowledge of the behaviour of one unit. Third, the way to connect those units

is an open question since our knowledge of anatomical connectivity in the cortex is still

very poor. But we think this an important area for future work.
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